• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of target temperature on femtosecond laser-ablated brass plasma spectroscopy

    2020-07-09 04:19:44JunfengSHAO邵俊峰JinGUO郭勁QiuyunWANG王秋云AnminCHEN陳安民andMingxingJIN金明星
    Plasma Science and Technology 2020年7期
    關鍵詞:安民明星

    Junfeng SHAO (邵俊峰),Jin GUO (郭勁),Qiuyun WANG (王秋云),Anmin CHEN (陳安民),4 and Mingxing JIN (金明星),4

    1 State Key Laboratory of Laser Interaction with Matter & Innovation Laboratory of Electro-Optical Countermeasures Technology,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,People’s Republic of China

    2 Institute of Atomic and Molecular Physics,Jilin University,Changchun 130012,People’s Republic of China

    3 Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy (Jilin University),Changchun 130012,People’s Republic of China

    4 Authors to whom any correspondence should be addressed.

    Abstract

    Keywords:laser-induced breakdown spectroscopy,time-resolved spectroscopy,emission enhancement,femtosecond laser,target temperature

    1.Introduction

    Traditional spectral analysis methods include scanning electron microscopy,Raman spectroscopy,atomic absorption spectrometry,near-infrared spectroscopy,and atomic emission spectrometry (AES).As one of AES,laser-induced breakdown spectroscopy (LIBS) has a good application prospect in the field of element analysis.LIBS technique has many advantages such as fast and remote application [1–6],nearly nondestructive and in situ detection[7],and simplicity of design for field utilization [8,9].Its application field is very broad in material composition detection,such as soil composition detection,environmental governance,archeology,marine science,biomedicine [10–12].Although LIBS technique has unique advantages and good application prospects,some bottlenecks gradually appear and hinder the development of LIBS detection technique.It is mainly manifested in the following three aspects:(1) lack of ability to detect molecular structure; (2) relatively low detection sensitivity and measurement accuracy; (3) matrix effect has a significant influence on detected results.In order to make up for the low detection sensitivity of LIBS technique,researchers have carried out a large number of studies on emission enhancement.Thus,many methods to enhance spectral emission are proposed,including spark assisted LIBS[13–16],spatial confined LIBS [17–21],double-pulse LIBS[22–28]and magnetic field confined LIBS [29–32],nanoparticle enhanced LIBS [33,34],surface enhanced LIBS[35,36],and preheated sample LIBS [37].

    It is a simple and easy method to enhance emission line of LIP by preheating target.Eschlb?ck-Fuchs et al investigated the influence of the preheated target on the plume expansion and emission line of LIP,their results suggested that the higher temperature,the larger the volume of plume,the higher the brightness of plasma emission,and the stronger the intensity of spectral emission [38].Tavassoli and Khalaji used a Nd:YAG laser to study the effect of preheated target on laser-ablated copper plasma,their results showed that the preheated target increased the spectral line emission by nearly 90%,but the initial target temperature has no effect on the background emission of LIP,which can effectively improve the signal-to-background ratio[39].Hai et al investigated the effect of target temperature on the spectral line of laserablated molybdenum-tungsten plasma [40],their experiment was performed in a temperature range from 20°C to 410°C.Tavassoli and Gragossian studied the effect of the preheated target on the line intensity of LIBS,their results showed that the limit of detection was reduced by 40% when the sample was heated to 150°C [41].Zhang et al studied the effect of lens focusing distance on plume expansion of laser-ablated Si plasma under different target temperatures [42].All of the above examples used nanosecond laser pulses to investigate the effect of sample temperature on spectral characteristics of LIP,while few researchers used femtosecond lasers to study the effect of sample temperature on the emission intensity.

    Femtosecond laser relative to nanosecond laser has many outstanding characteristics,such as extremely narrow pulse width which can neglect plasma shielding effect,achieving faster continuous decay,and no delay detection.It can also increase the spectral emission and corresponding signal-tobackground ratio,and it is easier to obtain a discrete spectrum,allowing a large number of spectra to be accumulated[43–49].Since femtosecond laser has a very short pulse width,it is in a‘cold ablation’state.Therefore,increasing the temperature of the sample is interesting in studying the spectral characteristics of femtosecond LIP.In addition,due to the Stark effect [50],line broadening is used to determine electron density of LIP.When the electron density is high,the line broadening tends to widen,resulting in a decrease in the spectral resolution,thereby reducing the accuracy of element detection.To enhance spectral line resolution and intensity in LIBS,researchers are studying high-temperature and lowdensity plasma generation methods.He et al used re-excitation of laser-ablated particle to obtain high spectral resolutions by producing high-temperature and low-density plasmas [27].Xu et al obtained high-temperature and lowdensity plasma produced by femtosecond laser by changing the focusing distance [51].

    The spectral properties of LIBS are accompanied by dynamic decay process.Time-resolved spectroscopy can increase data information and enhance the understanding of various physical processes.In this paper,the time-resolved spectral emission of femtosecond laser-ablated brass at different target temperature was measured.Also,electron temperature and density were calculated based on Boltzmann plot and Stark broadening,and the time-resolved spectra presented the high-temperature and low-density characteristics of femtosecond LIP with higher sample temperature.

    2.Experimental setup

    The experimental setup for studying femtosecond laser-ablated brass plasmas under different target temperatures is displayed in figure 1.Femtosecond laser system used was a regeneration amplified Ti:sapphire laser (Libra,Coherent).The laser wavelength was 800 nm,and the pulse duration was 50 fs.The laser energy was adjusted by combining a halfwave plate with a Glan laser polarizer.A lens with a focal length of 100 mm was used to focus the pulse laser to target surface.The produced plasma emission was collected using two 75 mm focal length lenses with 50 mm diameter,and the collected light was transferred to a spectrometer (Spectra Pro 500i,PI Acton,1200 grooves mm?1).The optical signal was detected using an intensified charge-coupled device (ICCD,PI-MAX4,Princeton Instruments).In addition,the target was attached on the surface of a heating table by thermal grease compound.A thermocouple was used to monitor the temperature,and an electric heating resistor was used to heat the sample.When the target temperature increased,the thermocouple monitored the temperature and sent feedback to the heating resistor.If the temperature increased to a desired value,the heating resistor stopped heating; the temperature dropped,the heating resistor continued to heat the target.The heating table was used to increase the sample temperature and keep the sample temperature stable to ensure the stability of experimental data.The stability of the temperature is lower than 1°C.The heating table was moved using a threedimensional stage (PT3/Z8,Thorlabs) perpendicular to the laser.Each emission spectrum was an average of 100 pulses.The experimental measurement was performed in the atmosphere.Cu(I) 515.32 nm

    3.Results and discussion

    In order to describe the change in the plasma emission under different sample temperatures,three clear copper spectral lines were selected,they were Cu(I) 510.55 nmand Cu(I) 521.82 nmFigure 2 presents the measured spectral distribution at sample temperatures of 25°C,65°C,100°C,150°C and 200°C in the wavelength range from 510 to 522 nm.As shown in figure 2,the emission line of laser-induced Cu plasma changes with a change in the sample temperature for 0.3 and 0.5 mJ laser energies.The intensities of three spectral lines show a monotonous increasing trend as the sample is heated from 25°C to 200°C.Meanwhile,the background emission hardly changes with the increase of the brass temperature,improving signal-to-background ratio.The effect of preheated target and pulse energy on the line emission of LIBS is very important.To further analyze the influence of the preheated target and pulse energy on the emission line of brass plasma,the emission line at Cu(I) 521.8 nm with the target temperature is presented in figure 3.

    Figure 1.Experimental setup of femtosecond laser-induced preheated brass plasmas (HWP is the half-wave plate; Glan is the Glan laser polarizer; M is the mirror; I is the iris; L is the lens).

    Figure 2.Typical emission spectra at different temperatures for0.3 mJ (a) and 0.5 mJ (b) laser energies.Gate delay and width are 0.2 μs and 0.1 μs,respectively.

    Figure 3.Evolutions of line peaks for Cu (I) 521.82 nm line with brass target temperature for 0.3 and 0.5 mJ laser energies.Gate delay and width are 0.2 and 0.1 μs.

    As shown in figure 3,the peak of Cu(I)line at 521.82 nm increases with the increase of the target temperature for 0.3 mJ and 0.5 mJ laser energies.This phenomenon is caused by the following reasons:

    (a) Reflectivity of metal

    Under local thermal equilibrium (LTE),emission intensity of an atomic characteristic line can be described by the following formula [52]:

    where Ciis the element concentration in LIP,Mvis the amount of evaporated material in LIP(total mass of ablation),k is the Boltzmann constant,gkis the degeneracy of spectral level(the statistical weight),and Akrepresents the probability of spontaneous transition,h is the Planck constant,c is the light speed,Z is the partition function,λkis the emission wavelength,Ekis the upper level energy,and Teis the electron temperature in plasma.

    Equation (1) indicates that spectral intensity of plasma emission is mainly determined by the total mass of ablation Mv,and the electron temperature in plasma Te[48].The total ablation mass and the elemental density of the sample material determine the particle number in plasma.Because the electron temperature inside the plasma is very high (on the order of 104K),the change in the target temperature causes little change in the line intensity of the LIP.For a fixed target to be tested,the relevant physical parameters in equation (1)are fixed values(can be found from NIST database),and they do not change as the sample temperature changes.

    It can be seen that the intensity of the spectral emission is mainly affected by the maximum ablation mass Mv.This parameter can also characterize the maximum actual ablation efficiency produced by the coupling of pulsed laser energy and matter,calculated by the following formula [53]:

    where T is the target temperature,L is latent heat,Tbis the evaporation temperature of the sample,Cpis the specific heat capacity.

    Ecis the coupling energy of pulsed laser and sample surface,E is the energy of the pulsed laser,andR(T)is the reflectivity of the material surface.Equation (3) shows that,for fixed pulsed laser energy,the actual coupling energy Ecof the pulsed laser and the sample surface will increase due to the reduced reflectivity of the material surface,or decrease due to the increased reflectivity of the material surface,and has a certain inverse proportional linear relationship.At the same time,as the reflectivity of the sample surface is constant,the actual coupling energy Ecof the pulsed laser and the sample surface is proportional to the pulsed laser energy E.

    It can be seen from equation (2) that the main factors affecting the maximum ablation mass Mvare the target temperature T,and the reflectivityR(T) of the sample surface.The relationship between the surface reflectivity and the target temperature can be described as [54]:

    where R0is the reflectivity of the material surface at normal temperature T0,R1is the coefficient determined by the properties of the material,and T is the temperature of the material.It is clear that the material reflectivity decreases with an increase in the material temperature.

    According to the above physical mechanism,as the material temperature increased,the actual coupling energy of the laser pulse to the target surface increased,the total mass of the ablated sample increased,and the spectral intensity increased.

    (b) Ablation threshold

    As the sample was heated,the ablation threshold of the material decreased,and more material was ablated from target surface,resulting in an increase in the original internal energy of the brass target.Therefore,the plasma will gain more temperature [55].

    (c) Air density

    As the surface temperature of the brass target increased,the air near the brass surface was also heated,resulting in a decrease in the air density near the surface of the sample.This reduced the collision of particles in the air and the plasma,thereby reducing energy loss and increasing the spectral intensity of the plasma [38,56,57].

    The generation and decay of LIBS are a dynamic process,thus the emission of the LIP changes over entire delay[56].To better know the decay process of the LIP,we measured time-resolved spectra at different target temperatures.Figure 4 displays the time-resolved spectra at 25°C and 200°C target temperatures for 0.3 mJ laser energy.It is observed from the figure that the dynamic decay process of the three spectra is in the range of the delay time from 0 to 1.5 μs.After laser pulse,the LIP begins to cool,and the electron temperature begins to decrease.The optical emission of three spectral lines is dependent on the delay time.The spectral line under the condition of the preheated target(200°C) is stronger than that under the condition of 25°C.Increasing the target temperature can reduce the reflectivity and ablation threshold of the brass target.The preheated target can absorb more pulse energy,so the line intensity of the LIP is higher compared with low sample temperature.Therefore,the preheated target is equivalent to increasing the laser energy.In order to know the effect of the preheated target on the time-resolved spectroscopy,we selected the Cu (I)521.82 nm to investigate the time-resolved emission peak intensities at different sample temperatures for 0.3 and 0.5 mJ laser energies.

    The evolutions of Cu(I)521.82 nm peak intensities with delay time at different sample temperatures for 0.3 and 0.5 mJ laser energies are presented in figure 5.The peak intensity first increases and then drops as the delay time increases.In the range of delay time from 0 to 0.2 μs,the spectral peak intensity increases,and reaches a maximum at 0.2 μs.As the delay time is longer than 0.2 μs,the peak intensity decreases monotonously.Moreover,the plasma emission duration of Cu(I) at 0.3 mJ laser energy is shorter than that at 0.5 mJ laser energy,that is,the plasma lifetime at low energy was lower than that at high energy.At the high laser energy,a stronger plasma can be produced and more particles in the plasma are excited[58].In addition,the peak intensity is enhanced as the target temperature increases.When the temperature of the preheated target rises from 25°C to 200°C,the maximum enhancement factor of the spectral peak intensity is about 2.6 for 0.3 mJ laser energy.The spectral line at 0.3 mJ and 200°C is stronger than that at 0.5 mJ and 25oC.This indicates that the preheated brass target is equivalent to an increase in the laser energy.Therefore,increasing the target temperature plays an important role in enhancing the spectral intensity.

    High-intensity laser pulsed radiation sample will produce high-temperature and high-density plasmas[59].The plasmas with higher temperature can improve the sensitivity of LIBS,while the plasmas with higher density will reduce spectral resolution.This is because high-density plasmas increase line broadening due to the Stark effect (electrons in the plasma generate electric fields and can disturb the energy levels of the ions,causing the spectral lines of these high-energy levels to be broadened)[50].Since line resolution in LIBS is critical to identify the spectra and determine the elements,it is important to generate the high-temperature and low-density plasmas.Next,we investigated the changes in electron temperature and density as the temperature of the target increased.

    The electron density and temperature of the LIP are important physical parameters in LIBS.They can help us understand the kinetic processes in the plasma.The electron temperature of the LIP can be obtained by using measured intensity of spectral line.Under the LTE,the electron temperature is calculated by Boltzmann plot [60,61]:

    Figure 4.Time-resolved spectra for 25°C (a) and 200°C (b) target temperatures at 0.3 mJ laser energy.

    The parameters in equation (5) are listed in table 1 [62].The temperature is calculated by the slope (?1/kTe) of the term(ln(λkIk/gkAk)) versus the upper energy (Ek).Many investigators selected Cu (I) lines at 510.55,515.32 and 521.82 nm to obtain the Boltzmann plot[32,34,63].In the current study,these three lines also were used to calculate the electron temperature.

    Figure 6 presents the evolutions of electron temperatures with the delay time at 25 °C,65 °C,10 °C,150 °C,and 200 °C target temperatures for 0.3 and 0.5 mJ laser energies.The electron temperature decreases with the increase of the delay time,and the temperature at low energy is lower than that at high energy.At fixed laser energy,the electron temperature increases with the increase of the brass temperature.The preheated target compared with the condition of 25°C can make the ejected plasma obtain higher temperature,the number of particles in the upper energy level of Cu plasma increases,and the electron temperature of the plasma increases.The preheated condition can lower the ablation threshold of Cu sample,and more mass is ablated under the same pulse energy.In other words,the density of the plasma ejected will increase,resulting in a stronger collision within the particle,so the electron temperature of the plasma will increase.

    Figure 5.Evolutions of Cu(I)521.82 nm peak intensities with delay time at different target temperatures for 0.3 mJ (a) and 0.5 mJ(b) laser energies.

    Table 1.Physical parameters of Cu (I) lines [62].

    The stark broadening effect is a common method for obtaining electron density.The contribution to the spectral line broadening mainly comes from electron broadening and ion broadening,while the ion broadening as compared to the electron impact is very small and can be ignored.Therefore,the full width at half maximum has the following relationship with the electron density nedue to the spectral Stark broadening [64–66]:

    Figure 6.Evolutions of electron temperatures with the delay time at different target temperatures for 0.3(a)and 0.5 mJ(b)laser energies.

    The electron collision coefficient ω can be found in the [67].The Cu (I) 521.82 nm was used to calculate the electron density.Since the electron density of the plasma is very large in the early stage of plasma expansion,the Stark broadening effect dominates the broadening of the spectral line.Meanwhile,the spectral line broadening also includes instrument broadening (λΔinst),Doppler broadening,and natural broadening.The Doppler broadening and natural broadening can be ignored.The instrument broadening approximated 0.04 nm,as determined by measuring the width of the Hg lines emitted by a mercury spectral lamp at low pressure.The measured line width (Δλmeas) can be corrected by Δλ1/2=Δλmeas-Δλinst.

    Figure 7 presents the evolutions of electron densities with the delay time at different brass target temperatures for 0.3 and 0.5 mJ laser energies.The electron density decreases with increasing the delay time.The femtosecond pulse ablates the target and rapidly generates plasma on the surface,resulting in the maximum electron density of the plasma.As the delay time increases,the plasma plume expands rapidly and the electron density decreases.In addition,different from the electron temperature,as the temperature of the sample increases,the electron density decreases.Since the experiment was carried out in air,the preheating not only heats the sample but also heats the air around the sample.According to the Clapeyron equation,air density is inversely proportional to temperature in an atmospheric environment[68].When the sample temperature increases from 25 °C to 200 °C,the air density near the sample surface at 200 °C (473 K) became approximately 0.63 times at 25 °C (approximately 298 K).The density of the air around the sample decreases,and the plasma plume expands more dramatically,so the electron density decreases as the brass target is heated.Therefore,by means of preheating the sample,a high-temperature and lowdensity plasma with a strong spectral intensity in femtosecond LIBS can be obtained,thereby increasing the spectral resolution and the detection sensitivity.

    Figure 7.Evolutions of electron densities with the delay time at different target temperatures.Laser energies are 0.3 mJ (a) and 0.5 mJ (b).

    4.Conclusion

    We used femtosecond pulse laser to excite brass to study the effect of the preheated target on the spectral properties of the LIP.It was found that the preheated experimental condition can increase the spectral emission intensity of femtosecond laser-ablated brass plasma,and the time-resolved spectroscopy can better demonstrate the dynamic process of spectral decay in LIBS.We obtained time-resolved spectral intensities,electron temperatures and densities at different brass target temperatures.The obtained time-resolved spectral intensities and electron temperatures increased as the temperature of the sample increased,while the electron density decreased.Therefore,the preheating treatment of the target can obtain a strong emission,high-temperature and lowdensity plasma,thereby improving the spectral line resolution and the sensitivity of LIBS.We think that the study contributed to the development of femtosecond LIBS in scientific research and application.

    Acknowledgments

    We acknowledge the support by National Natural Science Foundation of China (Nos.11674128,11674124 and 11974138) and the Jilin Province Scientific and Technological Development Program,China (No.20170101063JC).

    猜你喜歡
    安民明星
    THE EXISTENCE AND NON-EXISTENCE OFSIGN-CHANGING SOLUTIONS TO BI-HARMONIC EQUATIONS WITH A p-LAPLACIAN*
    打羽毛球
    明星猝死背后
    南方周末(2019-11-28)2019-11-28 08:37:59
    易安民聲
    勞動保護(2018年8期)2018-09-12 01:16:02
    易安民聲
    勞動保護(2018年5期)2018-06-05 02:11:55
    交通安全小明星
    幼兒園(2017年23期)2018-02-07 15:26:54
    明星們愛用什么健身APP
    Coco薇(2017年2期)2017-04-25 03:02:27
    扒一扒明星們的
    Coco薇(2016年10期)2016-11-29 16:59:54
    龔遂治亂安民的“高招”
    學習月刊(2015年5期)2015-07-09 03:53:06
    誰是大明星
    九九久久精品国产亚洲av麻豆| 成人特级av手机在线观看| 亚洲av熟女| 一进一出抽搐动态| 国产激情偷乱视频一区二区| 不卡一级毛片| 床上黄色一级片| 日韩高清综合在线| 亚洲不卡免费看| 日韩在线高清观看一区二区三区| 国产女主播在线喷水免费视频网站 | 国产免费男女视频| av天堂在线播放| 国产精品三级大全| 非洲黑人性xxxx精品又粗又长| 亚洲欧美日韩高清在线视频| 寂寞人妻少妇视频99o| 亚洲av.av天堂| 性插视频无遮挡在线免费观看| 99热6这里只有精品| 联通29元200g的流量卡| 天堂中文最新版在线下载 | 免费在线观看成人毛片| 尾随美女入室| 亚洲精品成人久久久久久| 一级二级三级毛片免费看| 国产成人aa在线观看| 免费观看精品视频网站| 91午夜精品亚洲一区二区三区| 国产黄a三级三级三级人| 午夜福利视频1000在线观看| 联通29元200g的流量卡| 波多野结衣高清无吗| 床上黄色一级片| 国产淫片久久久久久久久| 丝袜喷水一区| 麻豆久久精品国产亚洲av| 国产成年人精品一区二区| 亚洲欧美清纯卡通| 99精品在免费线老司机午夜| 伦理电影大哥的女人| 成年女人看的毛片在线观看| 日韩精品有码人妻一区| 色哟哟·www| 亚洲欧美日韩高清专用| 精品久久久久久久人妻蜜臀av| 22中文网久久字幕| 黄色视频,在线免费观看| 一级黄片播放器| 波多野结衣巨乳人妻| 久久久久久九九精品二区国产| 精品午夜福利在线看| 国产亚洲精品久久久com| 乱码一卡2卡4卡精品| 国产老妇女一区| 精品一区二区免费观看| 中国美女看黄片| 色尼玛亚洲综合影院| h日本视频在线播放| 在线观看一区二区三区| 亚洲欧美清纯卡通| 欧美一级a爱片免费观看看| 免费观看在线日韩| 久久久精品94久久精品| 一级av片app| 免费看光身美女| 国产 一区精品| 我要搜黄色片| 亚洲不卡免费看| 在线a可以看的网站| 国产成人91sexporn| 中国美女看黄片| 老女人水多毛片| 全区人妻精品视频| 亚洲熟妇中文字幕五十中出| 给我免费播放毛片高清在线观看| 欧美最黄视频在线播放免费| 亚洲欧美精品专区久久| 亚洲五月天丁香| 别揉我奶头 嗯啊视频| 亚洲经典国产精华液单| 丰满人妻一区二区三区视频av| 久久久久九九精品影院| 赤兔流量卡办理| 国产三级中文精品| 最近中文字幕高清免费大全6| 晚上一个人看的免费电影| 国产精品.久久久| 国产精品av视频在线免费观看| 成人亚洲精品av一区二区| 久久鲁丝午夜福利片| 3wmmmm亚洲av在线观看| 一本久久中文字幕| 在线国产一区二区在线| 26uuu在线亚洲综合色| 91久久精品国产一区二区成人| 国产91av在线免费观看| 国产午夜福利久久久久久| 亚洲国产欧洲综合997久久,| 国产真实乱freesex| 国产午夜精品一二区理论片| 黄片wwwwww| 亚洲五月天丁香| 亚洲人成网站高清观看| 99国产极品粉嫩在线观看| 在线观看美女被高潮喷水网站| 国产一级毛片在线| 国产一级毛片七仙女欲春2| 99在线人妻在线中文字幕| 日韩 亚洲 欧美在线| 成人欧美大片| 欧美日韩精品成人综合77777| 欧美在线一区亚洲| 国产探花在线观看一区二区| 国产精品无大码| 卡戴珊不雅视频在线播放| 久久久久久久久久久丰满| 高清午夜精品一区二区三区 | 中文资源天堂在线| 精品一区二区免费观看| 国产淫片久久久久久久久| 欧美高清成人免费视频www| 国产真实伦视频高清在线观看| 两个人视频免费观看高清| 直男gayav资源| 全区人妻精品视频| 超碰av人人做人人爽久久| 欧美成人精品欧美一级黄| 黄色日韩在线| 亚洲无线在线观看| av黄色大香蕉| 亚洲真实伦在线观看| 狠狠狠狠99中文字幕| 级片在线观看| 国产精品一区二区性色av| a级毛片a级免费在线| 如何舔出高潮| 国内少妇人妻偷人精品xxx网站| 黄色视频,在线免费观看| 午夜福利成人在线免费观看| 国产免费一级a男人的天堂| 日韩强制内射视频| 级片在线观看| 亚洲自拍偷在线| 一个人观看的视频www高清免费观看| 午夜久久久久精精品| 悠悠久久av| av在线天堂中文字幕| 亚洲精品456在线播放app| av天堂中文字幕网| 国产一区二区三区在线臀色熟女| 午夜久久久久精精品| ponron亚洲| 校园人妻丝袜中文字幕| 天堂网av新在线| 国产极品天堂在线| 午夜免费激情av| 少妇的逼水好多| 哪个播放器可以免费观看大片| 中国美女看黄片| 国产精品电影一区二区三区| 午夜a级毛片| 一本一本综合久久| 亚洲欧美日韩东京热| www.色视频.com| 在线免费十八禁| 国产午夜精品论理片| 久久婷婷人人爽人人干人人爱| 亚洲av免费高清在线观看| 18+在线观看网站| 日韩中字成人| 日韩 亚洲 欧美在线| 成人高潮视频无遮挡免费网站| 美女国产视频在线观看| 成人鲁丝片一二三区免费| 美女脱内裤让男人舔精品视频 | 丝袜喷水一区| 精华霜和精华液先用哪个| 春色校园在线视频观看| 亚洲最大成人中文| 男女边吃奶边做爰视频| 久久精品国产鲁丝片午夜精品| 91久久精品电影网| 搡老妇女老女人老熟妇| 国产激情偷乱视频一区二区| 久久精品国产清高在天天线| 国产一级毛片在线| 天天躁夜夜躁狠狠久久av| 日本av手机在线免费观看| 日韩欧美国产在线观看| 日本色播在线视频| 熟女人妻精品中文字幕| 在线天堂最新版资源| 我要看日韩黄色一级片| 久久久久久久亚洲中文字幕| 在线观看一区二区三区| 青春草国产在线视频 | 天美传媒精品一区二区| 成人欧美大片| 久久中文看片网| 国产中年淑女户外野战色| 色综合色国产| 色综合站精品国产| 国产综合懂色| 亚洲真实伦在线观看| 97热精品久久久久久| 看片在线看免费视频| 国内揄拍国产精品人妻在线| 久久精品国产亚洲网站| 国产午夜福利久久久久久| 观看美女的网站| 日本一本二区三区精品| 久久人人精品亚洲av| 男插女下体视频免费在线播放| 日日摸夜夜添夜夜添av毛片| 国产精品一区二区三区四区久久| 亚洲精品乱码久久久v下载方式| 精品人妻偷拍中文字幕| 亚洲va在线va天堂va国产| 中文资源天堂在线| 国产黄a三级三级三级人| 99热这里只有精品一区| 日韩欧美精品v在线| 美女cb高潮喷水在线观看| 久久精品国产亚洲av涩爱 | 久久久久免费精品人妻一区二区| 波多野结衣高清作品| 亚洲av不卡在线观看| 亚洲成人久久性| 狠狠狠狠99中文字幕| 美女被艹到高潮喷水动态| 日韩精品有码人妻一区| 国产单亲对白刺激| av天堂在线播放| 美女cb高潮喷水在线观看| 伊人久久精品亚洲午夜| 国产精品爽爽va在线观看网站| 亚洲图色成人| 深夜a级毛片| 在线免费十八禁| 亚洲经典国产精华液单| 亚洲七黄色美女视频| 亚洲av中文字字幕乱码综合| 亚洲精品色激情综合| 99久国产av精品| 久久热精品热| 亚洲最大成人手机在线| 人人妻人人澡人人爽人人夜夜 | 日韩欧美精品v在线| 久久久久网色| 你懂的网址亚洲精品在线观看 | 欧美成人免费av一区二区三区| 悠悠久久av| 少妇猛男粗大的猛烈进出视频 | 中国美女看黄片| 国产成人一区二区在线| 九九热线精品视视频播放| 级片在线观看| 26uuu在线亚洲综合色| 精品无人区乱码1区二区| 免费观看在线日韩| 18禁裸乳无遮挡免费网站照片| 精品少妇黑人巨大在线播放 | 精品人妻熟女av久视频| av在线蜜桃| 久久午夜福利片| 国产伦一二天堂av在线观看| 舔av片在线| 日本一本二区三区精品| 国产私拍福利视频在线观看| 国产91av在线免费观看| 欧美日韩精品成人综合77777| 少妇人妻精品综合一区二区 | 天天躁日日操中文字幕| 欧美激情国产日韩精品一区| 一级二级三级毛片免费看| 99精品在免费线老司机午夜| 欧美精品国产亚洲| 老师上课跳d突然被开到最大视频| 亚洲国产精品sss在线观看| 成人av在线播放网站| 欧美区成人在线视频| 校园人妻丝袜中文字幕| 久久久成人免费电影| 亚洲四区av| 成年版毛片免费区| 天美传媒精品一区二区| 久久久久久久久久成人| 嫩草影院精品99| 中文字幕久久专区| www.色视频.com| 特大巨黑吊av在线直播| 亚洲精品成人久久久久久| 久久久久性生活片| 91午夜精品亚洲一区二区三区| 毛片女人毛片| h日本视频在线播放| 综合色丁香网| 国产伦一二天堂av在线观看| 听说在线观看完整版免费高清| 啦啦啦观看免费观看视频高清| 久久久久久伊人网av| 国产精品久久久久久久久免| 亚洲欧美日韩无卡精品| 桃色一区二区三区在线观看| 人人妻人人澡欧美一区二区| 国产亚洲欧美98| 亚洲精品自拍成人| 日韩 亚洲 欧美在线| 国产精品一区二区性色av| 99riav亚洲国产免费| 白带黄色成豆腐渣| 女人十人毛片免费观看3o分钟| 在线播放无遮挡| 国产精品日韩av在线免费观看| 又黄又爽又刺激的免费视频.| 男女下面进入的视频免费午夜| 久久久国产成人精品二区| 国产三级中文精品| 韩国av在线不卡| 国产乱人视频| 日韩亚洲欧美综合| 国产一级毛片七仙女欲春2| 在线观看午夜福利视频| 一级黄色大片毛片| 插阴视频在线观看视频| 免费观看在线日韩| 久久久色成人| 日本黄大片高清| 午夜福利视频1000在线观看| 永久网站在线| 99久国产av精品国产电影| av福利片在线观看| 一边摸一边抽搐一进一小说| 国产高清不卡午夜福利| 高清毛片免费观看视频网站| 在线天堂最新版资源| 成人无遮挡网站| 免费无遮挡裸体视频| 搡老妇女老女人老熟妇| www.av在线官网国产| 一个人免费在线观看电影| 亚洲无线观看免费| 久久综合国产亚洲精品| 国产伦理片在线播放av一区 | 又爽又黄a免费视频| 婷婷六月久久综合丁香| 久久精品国产亚洲av天美| eeuss影院久久| 又爽又黄无遮挡网站| 国产午夜精品久久久久久一区二区三区| 韩国av在线不卡| 国产精品久久久久久亚洲av鲁大| 熟女人妻精品中文字幕| 午夜福利在线在线| 免费在线观看成人毛片| 亚洲自拍偷在线| 啦啦啦啦在线视频资源| 18禁黄网站禁片免费观看直播| 在现免费观看毛片| 成年版毛片免费区| 国产成人a∨麻豆精品| 特级一级黄色大片| 国产黄a三级三级三级人| 99久久人妻综合| 成人国产麻豆网| 高清毛片免费看| 26uuu在线亚洲综合色| 成熟少妇高潮喷水视频| 久久亚洲精品不卡| av黄色大香蕉| 日韩三级伦理在线观看| 一级毛片aaaaaa免费看小| 99在线人妻在线中文字幕| 亚洲丝袜综合中文字幕| 综合色av麻豆| 国产伦在线观看视频一区| 久久综合国产亚洲精品| 欧美激情久久久久久爽电影| 六月丁香七月| 国产亚洲精品久久久久久毛片| videossex国产| 99视频精品全部免费 在线| 成人无遮挡网站| 国产精品久久久久久久电影| 99久国产av精品国产电影| av在线蜜桃| 午夜爱爱视频在线播放| av在线观看视频网站免费| 美女高潮的动态| 日本色播在线视频| 色尼玛亚洲综合影院| 美女国产视频在线观看| 国产在线精品亚洲第一网站| 男女边吃奶边做爰视频| 国产午夜精品论理片| 搡老妇女老女人老熟妇| .国产精品久久| 午夜老司机福利剧场| 亚洲电影在线观看av| 亚洲av免费高清在线观看| 悠悠久久av| 最近的中文字幕免费完整| 蜜臀久久99精品久久宅男| 麻豆av噜噜一区二区三区| 亚洲国产精品sss在线观看| 成人亚洲精品av一区二区| 久久这里只有精品中国| 国产大屁股一区二区在线视频| 免费电影在线观看免费观看| 国产色爽女视频免费观看| 波多野结衣高清作品| 国产精品野战在线观看| 欧美性感艳星| www.av在线官网国产| 好男人视频免费观看在线| 国产精品久久久久久久电影| 国产精品一区www在线观看| 99久久久亚洲精品蜜臀av| 国产美女午夜福利| 亚洲欧美精品专区久久| 亚洲不卡免费看| 国产精品,欧美在线| 99热这里只有是精品50| 人体艺术视频欧美日本| 一级毛片我不卡| 不卡一级毛片| 秋霞在线观看毛片| 18禁黄网站禁片免费观看直播| 九九爱精品视频在线观看| 国产精品一及| 一级毛片aaaaaa免费看小| 中文字幕熟女人妻在线| 人妻制服诱惑在线中文字幕| 插阴视频在线观看视频| 在线观看av片永久免费下载| 成人二区视频| 日韩欧美一区二区三区在线观看| 国产成人精品一,二区 | av天堂中文字幕网| av女优亚洲男人天堂| 蜜臀久久99精品久久宅男| 99久国产av精品| 精品一区二区免费观看| 免费人成在线观看视频色| a级毛片a级免费在线| 不卡视频在线观看欧美| 一边摸一边抽搐一进一小说| 日本免费一区二区三区高清不卡| 男人狂女人下面高潮的视频| 免费av毛片视频| 国产日韩欧美在线精品| 激情 狠狠 欧美| 人妻制服诱惑在线中文字幕| 男插女下体视频免费在线播放| ponron亚洲| 女人被狂操c到高潮| 婷婷六月久久综合丁香| 国产探花在线观看一区二区| 青青草视频在线视频观看| 不卡视频在线观看欧美| 18禁在线无遮挡免费观看视频| 天堂中文最新版在线下载 | 久久久久久九九精品二区国产| 国产亚洲欧美98| 热99在线观看视频| 欧美最黄视频在线播放免费| 免费看美女性在线毛片视频| h日本视频在线播放| 久久午夜亚洲精品久久| av天堂在线播放| 精品99又大又爽又粗少妇毛片| 在线免费观看的www视频| 精品久久久久久久人妻蜜臀av| 精品免费久久久久久久清纯| 女同久久另类99精品国产91| 熟女人妻精品中文字幕| www日本黄色视频网| 久久人妻av系列| 亚洲国产欧美人成| 国产毛片a区久久久久| 亚洲欧美清纯卡通| 国产亚洲5aaaaa淫片| 内地一区二区视频在线| 99在线人妻在线中文字幕| 伦精品一区二区三区| 亚洲高清免费不卡视频| 国产乱人视频| 蜜桃久久精品国产亚洲av| 国产精品一区二区三区四区久久| 伦精品一区二区三区| 最后的刺客免费高清国语| 日韩一本色道免费dvd| 精品久久久久久久人妻蜜臀av| 免费看美女性在线毛片视频| 亚洲人成网站在线播放欧美日韩| 最近2019中文字幕mv第一页| 国产不卡一卡二| 国产成人精品一,二区 | 亚洲国产高清在线一区二区三| 在线免费观看不下载黄p国产| 精华霜和精华液先用哪个| 观看免费一级毛片| 激情 狠狠 欧美| 免费av不卡在线播放| 熟女人妻精品中文字幕| 一区福利在线观看| 99久久精品一区二区三区| а√天堂www在线а√下载| 天堂中文最新版在线下载 | 日韩一本色道免费dvd| 欧美极品一区二区三区四区| 亚洲18禁久久av| 欧美日韩国产亚洲二区| 日韩欧美精品免费久久| 又粗又爽又猛毛片免费看| 午夜精品国产一区二区电影 | 国内久久婷婷六月综合欲色啪| 成年女人永久免费观看视频| 欧美激情久久久久久爽电影| 国产真实乱freesex| 欧美日韩精品成人综合77777| 天堂网av新在线| 嫩草影院新地址| 久久精品91蜜桃| 欧美色欧美亚洲另类二区| 久久久久久伊人网av| 国产成人午夜福利电影在线观看| videossex国产| 神马国产精品三级电影在线观看| 国产av一区在线观看免费| 亚洲精品国产成人久久av| .国产精品久久| 久久人人爽人人片av| 久久婷婷人人爽人人干人人爱| 欧美变态另类bdsm刘玥| 中国美女看黄片| av天堂在线播放| 国产综合懂色| 午夜亚洲福利在线播放| 麻豆久久精品国产亚洲av| 老司机福利观看| 亚洲熟妇中文字幕五十中出| 黄色配什么色好看| 99在线视频只有这里精品首页| 日本色播在线视频| 啦啦啦韩国在线观看视频| а√天堂www在线а√下载| 成人毛片60女人毛片免费| 欧美成人免费av一区二区三区| 哪里可以看免费的av片| 看十八女毛片水多多多| 最近的中文字幕免费完整| www.色视频.com| 尾随美女入室| 亚洲av免费高清在线观看| 日韩中字成人| 午夜视频国产福利| 亚洲高清免费不卡视频| 国产av在哪里看| 国产在线精品亚洲第一网站| 搡老妇女老女人老熟妇| 一进一出抽搐gif免费好疼| 亚洲美女搞黄在线观看| 91久久精品国产一区二区三区| 夫妻性生交免费视频一级片| 桃色一区二区三区在线观看| 亚洲国产欧洲综合997久久,| 色综合色国产| 免费在线观看成人毛片| 黑人高潮一二区| www.av在线官网国产| 狂野欧美白嫩少妇大欣赏| 国产私拍福利视频在线观看| 内射极品少妇av片p| 精品一区二区三区视频在线| 热99在线观看视频| 久久久久免费精品人妻一区二区| 日本欧美国产在线视频| 男人舔女人下体高潮全视频| 欧美高清成人免费视频www| 美女cb高潮喷水在线观看| 日韩中字成人| 久久久欧美国产精品| 性色avwww在线观看| 亚洲精品日韩av片在线观看| 大又大粗又爽又黄少妇毛片口| 卡戴珊不雅视频在线播放| 国产极品天堂在线| 欧美一级a爱片免费观看看| 一个人观看的视频www高清免费观看| 神马国产精品三级电影在线观看| 日本一本二区三区精品| 99国产精品一区二区蜜桃av| 亚洲精品亚洲一区二区| 一本精品99久久精品77| 一夜夜www| 又粗又爽又猛毛片免费看| 国产 一区 欧美 日韩| 午夜亚洲福利在线播放| 久久热精品热| 观看免费一级毛片| 欧美激情在线99| 99国产极品粉嫩在线观看| 精品久久久噜噜| 91久久精品国产一区二区成人| 国产极品天堂在线| 成人综合一区亚洲| 久久午夜福利片| 亚洲国产精品sss在线观看| 天堂av国产一区二区熟女人妻| 97热精品久久久久久| 婷婷色综合大香蕉| 97超碰精品成人国产| 在现免费观看毛片|