• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Geographical authenticity evaluation of Mentha haplocalyx by LIBS coupled with multivariate analyzes

    2020-07-09 04:19:52XiaonaLIU劉曉娜XiaoqingCHE車(chē)曉青KunyuLI李坤玉XiboWANG王喜波ZhaozhouLIN林兆洲ZhishengWU吳志生andQiushengZHENG鄭秋生
    Plasma Science and Technology 2020年7期
    關(guān)鍵詞:李坤

    Xiaona LIU (劉曉娜),Xiaoqing CHE (車(chē)曉青),Kunyu LI (李坤玉),Xibo WANG (王喜波),Zhaozhou LIN (林兆洲),Zhisheng WU (吳志生) and Qiusheng ZHENG (鄭秋生),7

    1 College of Integrated Traditional Chinese Medicine and Western Medicine,Binzhou Medical University,Yantai 256603,People’s Republic of China

    2 Shandong Runzhong Pharmaceutical Co.,Ltd,Yantai 256603,People’s Republic of China

    3 Hebei Baicaokangshen Pharmaceutical Co.,Ltd,Shenzhou 053800,People’s Republic of China

    4 Penglai Municipal Bureau of Ocean Development and Fishery,Penglai 265600,People’s Republic of China

    5 Beijing Institute of Clinical Pharmacy,Beijing 100035,People’s Republic of China

    6 Beijing University of Chinese Medicine,Beijing 100102,People’s Republic of China

    7 Authors to whom any correspondence should be addressed.

    Abstract

    Keywords:laser-induced breakdown spectroscopy,Mentha haplocalyx,geographical origin,least squares support vector machines,herb authenticity

    1.Introduction

    Mentha haplocalyx Briq.,commonly known as mint,is a vital Chinese herb [1,2].Its aerial parts are prescribed for cold,cough,swollen glands,aphtha,measles,and alleviation of inflammation [3,4].In traditional Chinese medicine (TCM),geo-authentic herb or‘Daodi’herb is a term defining those TCM planted in specific geographical origins (GOs) and meets the highest quality criteria.Due to multiple consumption,many mint cultivation is increasing greatly.Thus,more attention is being paid to the clear GOs of mint products due to the medicinal efficacy and food quality caused by their GOs [5,6].

    Table 1.Analytical methods evaluating the geographical authenticity of herb and food.

    To date,discrimination of GOs has mostly been performed by high performance liquid chromatography (HPLC),gas chromatography (GS),mass spectrum (MS),nuclear magnetic resonance(NMR),inductively coupled plasma atomic emission spectrometry (ICP-AES),and recently genomics,proteomics,metabolomics,etc [7–10].Particularly the multi-elemental techniques combined with multivariate analysis have been successfully applied [11,12].Mineralogical elements of herb and food play significant roles in the biological activity and greatly affect their quality[13,14].Therefore,it is valuable to develop effective methods to certify the authenticity of TCM through elemental fingerprints.

    Laser-induced breakdown spectroscopy (LIBS) is an emerging elemental analysis technique,which is widely used for its simplicity and versatility[15–17].This technique is based on the consecutive plasmas formation and optical emission following laser ablation of the target material.Spectral characteristics allow multi-element identification and quantitative analysis.Commonly-used element analytical techniques such as atomic absorption spectrometry (AAS),ICP-AES and inductively coupled plasma mass spectrometry (ICP-MS) are limited by tedious sample preparation and may not meet the need of real-time measurement.The use of LIBS is attractive for assessment of multi-elemental determination in different materials,while the use for in situ measurement can be challenging given the other elemental analysis methods [18].

    Table 1 lists the recent works found regarding geographical authenticity of herb and food using different multivariate analysis methods and diverse analytical techniques.Most of works focus on differentiating samples by various multi-element analytical techniques.For several evaluated methods,analytical accuracy ranged from 77% to 100%,indicating the promising techniques.Compared to other multi-element techniques,LIBS is faster and more environmentally friendly,since it needs minimal sample pretreatment.

    Recently,LIBS has been applied in biomedical fields,notably for plant materials [29–31].Moreover,the numerous spectral peaks necessitate multivariate analysis in LIBS applications [32–34].Liu et al employed the partial leastsquares discriminant analysis (PLS-DA) method to classify the provenance of a medicinal herb(Blumea balsamifera DC)using LIBS[27].Zhan et al applied random forest algorithm,rapid classification method,to identify aluminum alloy based on LIBS [35].

    However,many conventional classification approaches used for LIBS analysis are constrained by the underlying linear treatment.While a series of the real-world questions cannot be addressed.For example,the prediction accuracy(sensitivity) is used as the strong criterion to establish and optimize the classification models.Nevertheless,robust classification algorithms were omitted which possess high power in discriminating unknown cases.

    In this work,a nonlinear classification algorithm,named least-squares support vector machines (LS-SVM) was employed to classify GOs of mint,as well as to investigate the sensitivity and robustness of models.LS-SVM,as described by Suykens,is a variant of the SVM with a least squares loss function and equality constraints[36].Dingari et al employed LS-SVM to discriminate nonprescription pharmaceutical samples,compared with PLS-DA,soft independent modeling of class analogy(SIMCA),and other traditional linear pattern recognition methods,LS-SVM addressed the intrinsic curved effects in the acquired LIBS data and provided superior predictions on the classification results [37].In addition,the computational complexity of LS-SVM can be reduced relatively by solving a linear equation instead of quadratic programming method used in traditional SVM [38,39].

    Thus,the aim of this work is to explore the robustness issues and the classification power of a spectroscopic technique combined with advanced chemometric approaches for multi-classification of mint samples from distinct regions.First,PCA was used to explore the data structure of different cases.Subsequently,LS-SVM algorithm including linear and nonlinear classification was applied to evaluate the sensitivity and robustness of the models based on acquired LIBS data.

    2.Materials and methods

    2.1.Experimental setup

    The experimental setup used in the present work has been previously described [27].Briefly,a commercial LIBS system (TSI,ChemRevealTM-3764,USA) equipped with a Q-switched Nd:YAG laser at 1,064 nm was employed in this study.The experimental setup integrates a laser source with maximum of 400 mJ per pulse and a spectrometer.The system is capable of 2 Hz maximum pulse repetition rate with a pulse duration of 3–5 ns.A focal lens and optical fibers were used to collect the plasma which was then fed into the spectrometer coupled with a CCD device to record the spectra.The spectrum is covering continuous wavelength from 167.323 nm to 984.621 nm.A three-dimensional translation stage with stepper motors was applied to ensure the movement of sample to fresh position.The CCD starts collecting spectra at 1 μs after the initiation.The laser energy was about 340 mJ per pulse.A restricted integration time of 1 ms was used.All experiments were carried out at ambient air.

    2.2.Materials

    The aerial parts of mint were collected from Hebei,Anhui,Guangxi,Hubei,and Jilin provinces of China,which were identified by Dr Aijuan Shao (Institute of Chinese Materia Medica,Chinese Academy of Traditional Chinese Medicine,China).All mint samples coming from the harvest season are stored at ambient temperature in a shady,well-ventilated room for about two weeks (mean temperature 22 °C).

    2.3.Data acquisition

    The dried aerial parts of mint were cut into sections of 2–3 cm in length.Spectra were taken along the length of the samples at the surface.Three locations were randomly selected and each one comprised of nine spectra (3×3 (100 μm×100 μm)) for each sample.Thus,27 spectra were averaged.Nineteen representative samples for Hebei group were typically taken,and for the other four GO groups,twenty representative samples were typically taken.Therefore,a total of 99 spectra were obtained.

    2.4.Multivariate analysis

    Figure 1.The normalized LIBS spectra of mint samples.(Hebei,Anhui,Guangxi,Hubei,and Jilin).

    In this present study,multivariate analysis methods are developed for classification of a large number of mint samples from five GOs in China.The challenge is to be able to discriminate the GOs based on elemental fingerprints of mint.To account for pulse-to-pulse variations in the laser energy,the full spectral spectra were performed by mean-centering.PCA is an unsupervised technique of dimensionality reduction without the use of class labels,which was carried out by PLS_toolbox version 6.21 under Matlab version R2009a(MathWorks Inc.,USA) [36].The linear multivariate PCA models was developed by eigenvectors also named principle components.The new coordinates of the independent PC scores can visualize the similarities among spectra.

    Furthermore,LS-SVM algorithm was employed to retrieve the class labels,which was performed by a LSSVM MATLAB toolbox under Matlab version R2009a (MathWorks Inc.,USA)[36].The linear kernel and radial basis function (RBF) kernel were used for linear and nonlinear classification as mentioned in references,respectively [30,40].

    The sensitivity analysis and robustness analysis were applied to screen the mint samples.In the‘sensitivity test’,the rate of correct classification,misclassification and unclassification are computed when all classes of pharmaceutical samples are included in the training data.While,the abovementioned methods are evaluated to determine the rate of correct allocation,unallocation and misclassification when each class is alternately removed from the training set but is included in the test data in the ‘robustness test’ as mentioned in [34].Robustness (a positive identification) was also significant for classification test in multivariate models.In this case,‘robust’ implies the ability to detect unknown samples correctly,while not comprising on the prediction accuracy of the known samples.Two separate tests were used,one test was for sensitivity and the other was for robustness [37,41].

    Specially,the performance indicators including ‘correct classification’,‘misclassification’,and ‘unclassification’ were adopted in the multi-class cases.The ‘correct classification’categories referred to all correctly classified spectra and all correctly unclassified spectra.Incorrect classification fallen under the category of ‘misclassification’.In addition,an unclassification criterion labeled incorrect unallocation of the spectra from the known samples to prevent misclassification.

    The input variables for LS-SVM computations were the full-spectral.Classic Kennard–Stone (KS) approach was implemented to separate the datasets into training and test sets[42].Leave-one-out (LOO) cross-validation paradigm was employed in both algorithms.

    Figure 2.The typical normalized LIBS spectrum obtained from a mint sample.

    In the sensitivity tests,99 datasets were randomly splitting into 66 for training and 33 for test,respectively.Especially,the 33 test samples consist of 5 randomly selected samples from each of the five regions.Additionally,100 iterations are executed in the screening process.

    In this investigation,the robustness tests follow a similar way to the sensitivity tests with a key difference.One mint region class is removed from the calibration set at one time.Meanwhile,this process is alternated for each region class.Moreover,the size of the test set maintains the same as sensitivity tests.Similarly,100 independent iterations for each removed class were also applied to get a representative result.

    3.Results and discussion

    3.1.Construction of ‘elemental fingerprints’spectra

    Figures 1 and 2 depict the representative LIBS spectra of mint samples.Macro-elements(Ca,K,Ba,Na,Mg)dominated the LIBS spectra.The peaks corresponding to lithium(Li),silicon(Si) and aluminum (Al) with lower intensities also appear in the spectra.Simultaneously,light organic elements such as carbon (C),oxygen (O),hydrogen (H) and nitrogen (N)together with molecular band C–N are monitored in the stem.Table 2 shows the elements detected in the spectra.

    Figure 3 is an average per GO of such intensities.Each bar is an average of 20 or 19(Hebei group)such intensity and the error bars were standard deviation.Figure 3 shows higher intensities for Ca (393.3 nm; 396.8 nm),K (766.523 nm;769.959 nm),and Mg(279.418 nm; 285.080 nm).The lowest intensities of mint samples for K (766.523 nm; 769.959 nm)and Na (588.952 nm) show in Anhui and Hebei provinces,respectively.Hubei and Jilin provinces are high in C,N and K(247.725 nm; 746.918 nm; 766.523 nm; 769.959 nm).However,figure 3 reveals the high standard deviation reflecting the significant fluctuation in the intensities of spectral emission lines from mint samples.Obviously,it is not easy to discriminate the GOs by the single element.

    3.2.Multivariate analysis

    3.2.1.Identifcation geographical origins by PCA.PCA was first applied on the total 99 dataset to probe the critical spectral features in the LIBS dataset [43,44].In PCA,a 99 (objects)×13204 (variables) data matrix was submitted for PCA.The first five principal components(PC1–5)demonstrate 91.07%of the total variability in the original data.Figure 4 displays the projection of the LIBS spectral database for the principal components.The first three principal components(PCs)explain 80.51% of the total variance in the dataset.Clearly,the large dispersion and local overlapping classes are present along the PC directions,which may attribute to the mineralogical variability of each class.Due to the unsupervised nature,PCA cannot provide classification automatically.Yet PCA is a valuable technique for exploring similarities among classes.

    Figure 3.Bar plots representing major emission lines in the LIBS spectra of mint samples.Each bar is an average of 20(or 19)such intensity and the error bars were their standard deviation.

    Table 2.Elemental emission lines used in the spectral fingerprinting of the mint samples.

    Figure 4.PC scores plot of the three principal components for the spectral dataset acquired from the five GOs of mint samples.

    Table 3.Sensitivity test results of mint sample from five GOs.

    3.2.2.Distinguishing geographical origins by LS-SVM.Table 3 lists the results of sensitivity test for LS-SVM classification analysis with linear kernel and RBF kernel,respectively.Two models exhibit excellent performance in the sensitivity test.The correct allocation rate in linear metric increases marginally over the corresponding nonlinear one(except for samples from Hebei),but the improvement has no statistical significance in both tests(p > 0.05).Furthermore,the unclassification rate was lower as well.The average rates of correct allocation and unclassification are 96.10%and 1.85%in linear kernel model,94.38% and 4.10% in RBF kernel model.

    Table 4 exhibits the performance of LS-SVM in robustness test when each sample is alternately removed from the training set.linear kernel LS-SVM algorithm shows good performance over RBF kernel LS-SVM among Anhui and Guangxi(a highercorrect classification rate as well as a lower misclassification rate).Similar to sensitivity analysis,results of samples from Hebei are prominent in both models.Evidently,RBF kernel LSSVM algorithm shows a fairly high correct classification rate(ca.99.2%) in robustness test of Hebei cases.The result of samples from Hubei and Jilin provides acceptable sensitivity performance(table 3),while the robustness performance is not desirable(table 4).Ominously,samples of Hubei and Jilin still have the highest rate of misclassification or unclassification.Generally,linear kernel shows better performance than RBF kernel in the robustness analysis,in terms of average correct allocation (ca.88% versus ca.86%),but the improvement is not statistically significant(p > 0.05).In summary,these results seem to indicate that LS-SVM presents good performance in dealing with samples of unknown classes,though the correct discrimination rates are still lower than those in sensitivity analysis.

    Table 4.Robustness test results of mint sample from five GOs.

    Due to massive data reduction,LS-SVM needs only short calculation time.Previous investigators have also noted the advantage of reduced computation time for LS-SVM,in comparison with SIMCA,thus making it valuable screening tool for large LIBS datasets [45,46].Combined LIBS with a suitable nonlinear classification method such as LS-SVM may provide an important tool for GOs classification.Further investigations in a variety of herbs (e.g.herbs and mineral herbs) by LIBS are underway in our lab.

    4.Conclusion

    Spectral fingerprints of mint obtained by LIBS were applied to discriminate samples according to their GOs.Mineralogical elements of TCM are considered to be more feasible elemental markers for discriminating GOs owing to the biological activity and relatively coming from soil.Common elemental and molecular species such as Ca,Mg,Na,Ba,and CN were identified from LIBS spectra of the sampled mint.However,the similar spectra of various mint samples made classification very difficult by direct visual inspection.Thus multivariate analysis was performed by the LIBS elemental fingerprints to evaluate GO discrimination of the considered mint samples.Findings demonstrated that combined with LS-SVM classification algorithm,LIBS can provide a sensitive and robust tool in GOs discrimination and classification of mint.The LS-SVM method exhibited excellent prediction accuracy in discrimination of blind cases despite the unsatisfactory performance of samples from Hubei and Jilin provinces.

    In general,the present study demonstrated the potential of LIBS in future applications of herbal medicine,especially for in situ monitoring applications of geographical authenticity rapidly.Due to the complex matrix composition of herbal medicine,a large number of instances are still being the need to train models.Furthermore,plant samples should be grinded and then made pressed pellets to minimize matrix effects.More comprehensive SVM applications in LIBS measurements are necessary to improve robust performance of current results.The perspective LIBS application to GOs study of medical and food,especially TCM will need a hybrid of chemometric algorithms to exploit the best feature.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China(Nos.81903796,81603396 and 31870338),the National Key Research and Development Program of China(No.2019YFC1711200),Major new drug innovation project of the ministry of science and technology (2018ZX09201011),Scientific and Technological Planning Projects of Colleges and Universities of Shandong Province (No.J18KA287) and Binzhou Medical University Research Startup Fund Project (No.BY2016KYQD02).The authors declare that they have no conflict of interest.

    猜你喜歡
    李坤
    菲菲生氣了
    菲菲生氣了
    開(kāi)心漫畫(huà)
    開(kāi)心漫畫(huà)
    開(kāi)心漫畫(huà)
    開(kāi)心漫畫(huà)
    開(kāi)心漫畫(huà)
    因果
    漫畫(huà)四則
    神算
    freevideosex欧美| 91精品国产九色| 国产一区有黄有色的免费视频| 不卡视频在线观看欧美| 日日啪夜夜撸| 欧美少妇被猛烈插入视频| 欧美 亚洲 国产 日韩一| 亚洲成人一二三区av| 两个人免费观看高清视频 | 91久久精品国产一区二区三区| 王馨瑶露胸无遮挡在线观看| 亚洲精品中文字幕在线视频 | 99热网站在线观看| 毛片一级片免费看久久久久| 乱人伦中国视频| av有码第一页| 国产极品粉嫩免费观看在线 | av国产久精品久网站免费入址| 国产精品久久久久久精品古装| 国产又色又爽无遮挡免| 精品人妻偷拍中文字幕| 午夜久久久在线观看| 美女cb高潮喷水在线观看| 欧美成人精品欧美一级黄| 亚洲精华国产精华液的使用体验| 亚洲真实伦在线观看| 国国产精品蜜臀av免费| 亚洲精品成人av观看孕妇| 久久狼人影院| 纵有疾风起免费观看全集完整版| 男女边吃奶边做爰视频| 日韩一区二区三区影片| 伦精品一区二区三区| 亚洲av中文av极速乱| 有码 亚洲区| 中文乱码字字幕精品一区二区三区| 观看免费一级毛片| 三级国产精品欧美在线观看| 国产亚洲午夜精品一区二区久久| 少妇 在线观看| 精品视频人人做人人爽| 午夜日本视频在线| 亚洲自偷自拍三级| 久久综合国产亚洲精品| 啦啦啦视频在线资源免费观看| av卡一久久| 99九九在线精品视频 | av网站免费在线观看视频| 老司机影院毛片| 欧美区成人在线视频| .国产精品久久| 国产av精品麻豆| 97在线人人人人妻| 国产在线一区二区三区精| 久久狼人影院| 人妻一区二区av| 精品国产露脸久久av麻豆| 国内揄拍国产精品人妻在线| 一二三四中文在线观看免费高清| 十八禁高潮呻吟视频 | 老司机亚洲免费影院| 新久久久久国产一级毛片| 久久女婷五月综合色啪小说| 丰满人妻一区二区三区视频av| 亚洲国产最新在线播放| 国产成人精品一,二区| 亚洲电影在线观看av| 久久久久久久久大av| 王馨瑶露胸无遮挡在线观看| 亚洲三级黄色毛片| 久久久午夜欧美精品| 91久久精品国产一区二区三区| 久久人人爽人人片av| 人人妻人人看人人澡| 国产黄色免费在线视频| 亚洲精品久久午夜乱码| 国产在线一区二区三区精| 欧美区成人在线视频| 最近最新中文字幕免费大全7| 一级毛片我不卡| 新久久久久国产一级毛片| av.在线天堂| 爱豆传媒免费全集在线观看| 麻豆成人午夜福利视频| 伦精品一区二区三区| 婷婷色综合大香蕉| 国产精品久久久久成人av| 亚洲av成人精品一区久久| 永久网站在线| 日韩强制内射视频| 国产精品久久久久久精品古装| 久久久久国产网址| 少妇被粗大猛烈的视频| 国产精品嫩草影院av在线观看| 黄色欧美视频在线观看| 国产极品天堂在线| 91精品国产国语对白视频| 亚洲图色成人| 我的老师免费观看完整版| 2018国产大陆天天弄谢| 99热这里只有是精品在线观看| 欧美+日韩+精品| 精华霜和精华液先用哪个| 高清不卡的av网站| 国产在线一区二区三区精| 欧美日韩一区二区视频在线观看视频在线| 亚洲av福利一区| 国产精品一区www在线观看| 国产在线男女| 看非洲黑人一级黄片| 国产成人a∨麻豆精品| 亚洲av在线观看美女高潮| 九九在线视频观看精品| 97在线视频观看| 国产乱来视频区| 久久鲁丝午夜福利片| 亚洲欧洲国产日韩| 色婷婷久久久亚洲欧美| 久热这里只有精品99| 日日啪夜夜撸| 国产精品久久久久久av不卡| 中文字幕久久专区| 亚洲精品视频女| 黄色怎么调成土黄色| 18禁动态无遮挡网站| .国产精品久久| av又黄又爽大尺度在线免费看| 久久久久精品性色| 午夜福利,免费看| 精品久久久久久久久亚洲| 热re99久久国产66热| 精品亚洲成a人片在线观看| 成年美女黄网站色视频大全免费 | 日韩 亚洲 欧美在线| a级片在线免费高清观看视频| 深夜a级毛片| 卡戴珊不雅视频在线播放| videos熟女内射| 国产永久视频网站| 毛片一级片免费看久久久久| 男女无遮挡免费网站观看| 亚洲精品亚洲一区二区| 91精品国产国语对白视频| 国产一区有黄有色的免费视频| 亚洲精品乱码久久久久久按摩| 久久综合国产亚洲精品| 日本欧美视频一区| 少妇人妻一区二区三区视频| 最后的刺客免费高清国语| 男人添女人高潮全过程视频| 免费观看a级毛片全部| 亚洲成人手机| 91精品一卡2卡3卡4卡| 日本午夜av视频| 欧美日韩国产mv在线观看视频| 久久精品熟女亚洲av麻豆精品| 免费人妻精品一区二区三区视频| 精品久久久精品久久久| 中国美白少妇内射xxxbb| 少妇被粗大猛烈的视频| 日韩亚洲欧美综合| 精品人妻熟女毛片av久久网站| 亚洲国产av新网站| 三级国产精品片| 大香蕉久久网| 日韩av免费高清视频| 亚洲成人一二三区av| 成人亚洲欧美一区二区av| 自拍欧美九色日韩亚洲蝌蚪91 | 搡女人真爽免费视频火全软件| 我要看黄色一级片免费的| 国产成人午夜福利电影在线观看| 亚洲怡红院男人天堂| 男人爽女人下面视频在线观看| 日韩成人伦理影院| 777米奇影视久久| 人妻系列 视频| 精品酒店卫生间| 亚洲自偷自拍三级| 成年av动漫网址| 日本黄大片高清| 国产精品一区二区在线不卡| 国产乱人偷精品视频| 91久久精品电影网| 欧美日韩国产mv在线观看视频| 国产av一区二区精品久久| 免费观看a级毛片全部| 中文字幕精品免费在线观看视频 | 夜夜爽夜夜爽视频| 少妇丰满av| 老司机影院成人| 午夜福利,免费看| 久久久亚洲精品成人影院| 免费观看性生交大片5| 观看免费一级毛片| av福利片在线| 简卡轻食公司| 国产高清不卡午夜福利| 一级毛片久久久久久久久女| 黄色欧美视频在线观看| 日韩制服骚丝袜av| 嘟嘟电影网在线观看| 夜夜看夜夜爽夜夜摸| 狂野欧美激情性xxxx在线观看| 中文字幕免费在线视频6| 久久久久久久久久久久大奶| av国产久精品久网站免费入址| 少妇的逼水好多| 久久久久精品久久久久真实原创| 建设人人有责人人尽责人人享有的| 人体艺术视频欧美日本| 精品少妇久久久久久888优播| 成人美女网站在线观看视频| 午夜av观看不卡| 99久国产av精品国产电影| 中文资源天堂在线| 亚洲av福利一区| 极品教师在线视频| 91午夜精品亚洲一区二区三区| 黄色毛片三级朝国网站 | 国产高清有码在线观看视频| 久久久a久久爽久久v久久| 免费高清在线观看视频在线观看| 一级二级三级毛片免费看| 能在线免费看毛片的网站| 亚洲美女黄色视频免费看| 亚洲精品国产色婷婷电影| 51国产日韩欧美| 人妻一区二区av| 精品国产一区二区久久| 国产高清有码在线观看视频| 极品教师在线视频| 国产精品99久久久久久久久| 少妇被粗大猛烈的视频| 一本一本综合久久| 一个人看视频在线观看www免费| 最新中文字幕久久久久| av卡一久久| 久久国产精品男人的天堂亚洲 | 一本一本综合久久| 亚洲av综合色区一区| 久久狼人影院| 三级国产精品欧美在线观看| 视频区图区小说| 日日爽夜夜爽网站| 97在线人人人人妻| 亚洲欧美日韩东京热| 男女免费视频国产| 大码成人一级视频| 国产高清国产精品国产三级| 国内精品宾馆在线| 亚洲av不卡在线观看| 国产午夜精品一二区理论片| 高清黄色对白视频在线免费看 | 麻豆精品久久久久久蜜桃| 人妻 亚洲 视频| 欧美老熟妇乱子伦牲交| 婷婷色麻豆天堂久久| 国产精品三级大全| 国产免费视频播放在线视频| 成人二区视频| 精品少妇黑人巨大在线播放| 亚洲av欧美aⅴ国产| 97超视频在线观看视频| 久久6这里有精品| 日本黄色片子视频| 亚洲欧美成人精品一区二区| 少妇人妻一区二区三区视频| 久久6这里有精品| 亚洲av成人精品一区久久| 26uuu在线亚洲综合色| 狂野欧美白嫩少妇大欣赏| 欧美日韩综合久久久久久| 久久人人爽av亚洲精品天堂| 另类亚洲欧美激情| 2018国产大陆天天弄谢| 黄色欧美视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产在线一区二区三区精| 一区在线观看完整版| 精品人妻熟女av久视频| 在线看a的网站| av卡一久久| 国产精品99久久久久久久久| 亚洲国产精品一区三区| av专区在线播放| 各种免费的搞黄视频| 自线自在国产av| 亚洲熟女精品中文字幕| 亚洲成人一二三区av| 91午夜精品亚洲一区二区三区| av不卡在线播放| 看十八女毛片水多多多| 91精品国产国语对白视频| 伦精品一区二区三区| 欧美国产精品一级二级三级 | 久久人人爽av亚洲精品天堂| 久久久精品免费免费高清| 99久久中文字幕三级久久日本| 美女视频免费永久观看网站| 久久国产乱子免费精品| 色视频www国产| 伊人亚洲综合成人网| 精品久久久精品久久久| 熟女电影av网| 一本久久精品| 国产成人精品福利久久| 日日摸夜夜添夜夜爱| 日韩成人伦理影院| 亚洲国产精品一区三区| 亚洲国产精品999| 日本猛色少妇xxxxx猛交久久| 极品少妇高潮喷水抽搐| 精品久久久久久电影网| 国产深夜福利视频在线观看| 日韩伦理黄色片| 建设人人有责人人尽责人人享有的| 美女大奶头黄色视频| 男人和女人高潮做爰伦理| 黄色配什么色好看| 99久久中文字幕三级久久日本| 91精品国产国语对白视频| 日韩中文字幕视频在线看片| 亚洲国产色片| 人人妻人人看人人澡| 国产极品粉嫩免费观看在线 | 婷婷色综合大香蕉| 日本av手机在线免费观看| 欧美丝袜亚洲另类| 高清视频免费观看一区二区| 日本午夜av视频| av国产久精品久网站免费入址| 丝袜喷水一区| 人妻夜夜爽99麻豆av| 91久久精品国产一区二区三区| 超碰97精品在线观看| 伊人久久精品亚洲午夜| 最黄视频免费看| 22中文网久久字幕| 国产精品人妻久久久影院| 精品人妻一区二区三区麻豆| 日本vs欧美在线观看视频 | 亚州av有码| videos熟女内射| 国产成人91sexporn| 乱人伦中国视频| 亚洲欧洲国产日韩| 又爽又黄a免费视频| 精品一区二区免费观看| 日本91视频免费播放| 国产一区二区在线观看av| 丝瓜视频免费看黄片| 成人国产麻豆网| 欧美成人精品欧美一级黄| 成人黄色视频免费在线看| 国产精品一二三区在线看| 日韩av在线免费看完整版不卡| 在线 av 中文字幕| 日韩欧美 国产精品| 日韩亚洲欧美综合| a级毛片在线看网站| 男人爽女人下面视频在线观看| 亚洲av日韩在线播放| 一本一本综合久久| 天天躁夜夜躁狠狠久久av| 下体分泌物呈黄色| 亚洲精品日韩在线中文字幕| 性色av一级| 欧美精品一区二区免费开放| 亚洲av不卡在线观看| 欧美bdsm另类| 十八禁高潮呻吟视频 | 蜜桃在线观看..| 久久久久人妻精品一区果冻| 国产毛片在线视频| 久久97久久精品| 不卡视频在线观看欧美| 男男h啪啪无遮挡| 五月开心婷婷网| 国产免费视频播放在线视频| 欧美区成人在线视频| 午夜福利影视在线免费观看| 成年美女黄网站色视频大全免费 | 一级毛片aaaaaa免费看小| 一级片'在线观看视频| 久久国产精品男人的天堂亚洲 | av免费在线看不卡| 涩涩av久久男人的天堂| 久久人人爽人人爽人人片va| 日韩欧美一区视频在线观看 | 久久久久国产网址| 国产免费一区二区三区四区乱码| 天堂中文最新版在线下载| 老司机影院成人| 美女大奶头黄色视频| 免费黄色在线免费观看| 日本与韩国留学比较| 国产精品伦人一区二区| 国产欧美日韩综合在线一区二区 | 亚洲精品日韩av片在线观看| 亚洲不卡免费看| 日韩制服骚丝袜av| 日本欧美视频一区| av一本久久久久| 亚洲精品一二三| 丰满迷人的少妇在线观看| 精品少妇黑人巨大在线播放| 亚洲婷婷狠狠爱综合网| 欧美日韩一区二区视频在线观看视频在线| 国产精品久久久久久精品电影小说| 久久久亚洲精品成人影院| 秋霞在线观看毛片| 美女主播在线视频| 国产在线一区二区三区精| 国产精品国产三级国产av玫瑰| 国产色爽女视频免费观看| 高清av免费在线| 久久久精品免费免费高清| 亚洲av电影在线观看一区二区三区| 国产毛片在线视频| 国产精品久久久久久av不卡| 亚洲欧美一区二区三区黑人 | 一区在线观看完整版| 久久久久久人妻| 极品人妻少妇av视频| 91成人精品电影| 大片电影免费在线观看免费| 午夜免费男女啪啪视频观看| 91在线精品国自产拍蜜月| 亚洲av二区三区四区| 中文字幕精品免费在线观看视频 | 精品熟女少妇av免费看| 欧美日韩av久久| 男人舔奶头视频| 久久精品久久久久久久性| 26uuu在线亚洲综合色| av在线app专区| 一级片'在线观看视频| 18+在线观看网站| 日本爱情动作片www.在线观看| 亚洲成色77777| 午夜福利影视在线免费观看| 日韩一本色道免费dvd| 热re99久久精品国产66热6| 最新中文字幕久久久久| 国产日韩欧美在线精品| 久久午夜综合久久蜜桃| 女人久久www免费人成看片| 99九九在线精品视频 | 免费看日本二区| 日韩制服骚丝袜av| 男女无遮挡免费网站观看| 久久影院123| 一个人看视频在线观看www免费| 美女内射精品一级片tv| 日本黄大片高清| 韩国av在线不卡| 哪个播放器可以免费观看大片| 久久久久久久久久久丰满| 自拍欧美九色日韩亚洲蝌蚪91 | 大片免费播放器 马上看| 国产成人精品久久久久久| 亚洲欧美一区二区三区国产| 亚洲美女黄色视频免费看| 黑人巨大精品欧美一区二区蜜桃 | 国产伦精品一区二区三区视频9| 一级爰片在线观看| 亚洲精品国产色婷婷电影| 九草在线视频观看| 男人和女人高潮做爰伦理| 热99国产精品久久久久久7| 成年美女黄网站色视频大全免费 | 国产成人一区二区在线| 六月丁香七月| 美女大奶头黄色视频| 欧美3d第一页| 日韩大片免费观看网站| 97超碰精品成人国产| av在线播放精品| 欧美三级亚洲精品| 青春草国产在线视频| 少妇丰满av| 精品久久久噜噜| 欧美性感艳星| 免费av不卡在线播放| 色婷婷久久久亚洲欧美| 国产精品无大码| 老熟女久久久| 激情五月婷婷亚洲| 免费大片黄手机在线观看| av不卡在线播放| 在线观看免费日韩欧美大片 | 日本免费在线观看一区| 青春草国产在线视频| 精品一区二区免费观看| 国产午夜精品一二区理论片| 日日爽夜夜爽网站| 国产成人精品无人区| 国产乱来视频区| 国产一区二区在线观看av| 午夜免费观看性视频| 日本av手机在线免费观看| 中文字幕人妻丝袜制服| 亚洲精品成人av观看孕妇| 亚洲欧美成人综合另类久久久| 久久精品熟女亚洲av麻豆精品| 嫩草影院新地址| 国产精品久久久久久久电影| 久久人人爽人人片av| 国产伦精品一区二区三区视频9| av专区在线播放| 日本爱情动作片www.在线观看| 免费观看av网站的网址| 麻豆精品久久久久久蜜桃| 美女国产视频在线观看| 亚洲欧美成人精品一区二区| 亚洲国产最新在线播放| 日产精品乱码卡一卡2卡三| 久久久久久久久久久丰满| 欧美另类一区| 伦理电影大哥的女人| 久久久久精品性色| 国产欧美日韩综合在线一区二区 | 丰满人妻一区二区三区视频av| 亚洲精品一二三| 成人无遮挡网站| 最新的欧美精品一区二区| 精品亚洲乱码少妇综合久久| 久久久精品94久久精品| 久久久亚洲精品成人影院| 亚洲美女搞黄在线观看| 男女国产视频网站| 大陆偷拍与自拍| 久久久久国产精品人妻一区二区| 国产伦精品一区二区三区视频9| 少妇被粗大的猛进出69影院 | 日韩大片免费观看网站| 国产伦在线观看视频一区| videossex国产| 蜜臀久久99精品久久宅男| 丁香六月天网| 综合色丁香网| 高清黄色对白视频在线免费看 | 欧美精品国产亚洲| 免费大片黄手机在线观看| 亚洲欧美中文字幕日韩二区| 欧美日韩精品成人综合77777| 亚洲三级黄色毛片| 一二三四中文在线观看免费高清| a级毛片在线看网站| 乱人伦中国视频| 黑人猛操日本美女一级片| 日本黄色日本黄色录像| 国产精品熟女久久久久浪| 国产真实伦视频高清在线观看| 免费少妇av软件| 国精品久久久久久国模美| 国内少妇人妻偷人精品xxx网站| 欧美成人午夜免费资源| 噜噜噜噜噜久久久久久91| 久久久久久久久久人人人人人人| 久久99热6这里只有精品| 久久久久视频综合| 国产一区二区三区综合在线观看 | 午夜老司机福利剧场| 国产极品天堂在线| 久久久久久久亚洲中文字幕| 天美传媒精品一区二区| 91久久精品电影网| 精品亚洲乱码少妇综合久久| 久久人人爽av亚洲精品天堂| 人妻夜夜爽99麻豆av| 内地一区二区视频在线| 我要看日韩黄色一级片| 欧美xxⅹ黑人| 99热这里只有精品一区| 欧美另类一区| 一级毛片黄色毛片免费观看视频| 亚洲精品456在线播放app| 午夜久久久在线观看| 久久久久久久久久人人人人人人| 欧美3d第一页| 亚洲内射少妇av| 国产白丝娇喘喷水9色精品| 国产乱来视频区| xxx大片免费视频| 成人免费观看视频高清| 麻豆精品久久久久久蜜桃| 亚洲av福利一区| 成人亚洲精品一区在线观看| 秋霞在线观看毛片| 国产精品人妻久久久影院| 性高湖久久久久久久久免费观看| 国产精品国产三级国产专区5o| 大码成人一级视频| h日本视频在线播放| 少妇熟女欧美另类| 日韩中文字幕视频在线看片| 日韩熟女老妇一区二区性免费视频| 久久精品国产亚洲网站| 777米奇影视久久| 人人妻人人澡人人爽人人夜夜| 日本黄色片子视频| 国产男女内射视频| 色网站视频免费| 亚洲成人一二三区av| 97在线视频观看| 精品熟女少妇av免费看| 自线自在国产av| 少妇裸体淫交视频免费看高清| 伊人亚洲综合成人网| 久久久国产欧美日韩av| 91久久精品国产一区二区成人| 这个男人来自地球电影免费观看 | 亚洲精品aⅴ在线观看|