• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于對偶理論的橢圓變分不等式的后驗(yàn)誤差分析(英)

    2020-07-06 07:38:40a(u,v?u)≥?(v?u),?v∈K,
    關(guān)鍵詞:變分后驗(yàn)對偶

    a(u,v ?u)≥?(v ?u), ?v ∈K,

    E(v)=J(v,Λv)=F(v)+G(Λv), ?v ∈V,

    J?(Λ?q?,?q?)=F?(Λ?q?)+G?(?q?).

    1 Introduction

    For practical applicaton of algorithms, one of the most important points is the assessment of the reliability of numerical solutions. This reliability hinges on our ability to estimate errors after the solution is computed, such an error analysis is called a posteriori error analysis. A posteriori error estimates provide quantitative information on the accuracy of the solution and are the basis for the development of automatic,adaptive algorithms in engineering applications. In a typical a posteriori error analysis,after a numerical solution is found, the solution is used to compute an error estimator. However, a posteriori error estimation for partial diあerential equations received attention more than three decades ago[1-5]. Nowadays the literature on this subject is vast, see [6-10] and the references therein. Most error estimators can be collected into three main groups: the residual type, the gradient recovery type and the equilibrate data type. Various residual quantities[2,3,6,10,11]are used to capture lost information going from accurate solution to numerical solution,such as the residual of the equation,boundary condition, the residual from derivative discontinuity, the residual of material constitutive laws, and so on. The type based on gradient recovery[12-14]is based on averaging (smoothing) approximate solutions obtained by the finite method. These types of post-processing procedures give new approximations, which often are much more accurate. For this reason, the diあerence between the direct approximation and the averaged one can be used as an error estimator. Complementary energy principles were applied for getting error estimates in[15-18]and in other papers. They formed the basis of equilibrated data type which apply special numerical procedures designed for getting the so-called “equilibrated function” in complementary energy principles. Two desirable properties of an a posteriori error estimator are the reliability and eきciency.The reliability requires the actual error to be bounded by a constant multiple of the error estimator,up to perhaps a higher order term,so that the error estimator provides a reliable error bound. The eきciency requires the error estimator to be bounded by a constant multiple of the actual error, again perhaps up to a higher order term, so that the actual error is not over-estimated by the error estimator. The study and applications of a posteriori error analysis is currently an active research area, and the related publications grow fast.

    Most of the work on a posteriori error analysis has been devoted to ordinary boundary value problems of partial diあerential equations. In applications,an important family of nonlinear boundary value and initial-boundary value problems is that associated with variational inequalities. Although several standard techniques have been developed to derive and analyze a posteriori error estimates for finite element solutions to problems in the form of variational equations, they do not work directly for a posteriori error analysis of numerical solutions to variational inequalities. Particularly, the inequality aries as a result of the presence of a non-diあerentiable functional. Many works deal extensively also with a priori estimates,but residual type error estimators were studied for an elliptic variational inequality of the second kind in [19,20]. However, a major diきculty in solving the variational inequality of the second kind numerically is the treatment of the non-diあerentiable term. In practice, there are several approaches to circumvent the diきculty. One approach is to introduce a Lagrange multiplier for the non-diあerentiable term, or by an iterative procedure or the regularization method.

    In this paper, we mainly consider the situation where the function J is of a separated form, J(v,Λv) = F(v)+G(Λv), ?v ∈V, we make use of a diあerent bounded operator form Λv and functional form F, G to formulate their dual problems for a friction contact problem and an obstacle problem. we give a posteriori error analysis via duality theory by the regularization method for elliptic variational inequalities[21]. The idea of the regularization method is to approximate the non-diあerentiable term by a sequence of diあerentiable ones. An approximating diあerentiable sequence in the regularization method depends on a small parameter ε ≥0. The convergence is obtained when ε goes to 0. but if ε is too small, the numerical solution of the regularized problem cannot be computed accurately. Thus, it is highly desirable to have a posteriori error estimates which can give us computable error bounds once we have solutions of regularized problems.

    This paper is organized as follows. In section 2 and section 3, we, respectively,introduce a friction contact problem and an obstacle problem, give their regularized problems, variational inequalities. Choosing a diあerent bounded operator form and functional form, we formulate their dual problems for these models, on which our later a posteriori error analysis will be based. In section 4, we establish a general framework for a posteriori error estimates of an obstacle problem by using duality theory in convex analysis. The general a posteriori error estimate is featured by the presence of a dual variable. Diあerent a posteriori error estimates can be obtained with diあerent choices of the dual variable. At last, we make a particular choice of the dual variable that leads to a residual-based error estimate of the model problem and explore the eきciency of the error estimate.

    2 A frictional contact problem and its regularized problem

    Let ? be a bounded domain in Rd(d ≥1),with a Lipschitz boundary Γ. Let Γ1?Γ be a relatively closed subset of Γ, and denote Γ2= ΓΓ1for the remaining part of the boundary. Since the boundary Γ is Lipschitz continuous, the unit outward normal vector n exists a.e.on Γ. We will use ?/?n to denote the outward normal diあerentiation operator, which exists a.e.on Γ. Assume f ∈L2(?) and g >0 are given.

    Introducing the space V = H1Γ1(?) = {v ∈H1(?) : v = 0 a.e. on Γ1}, then a frictional contact problem is the following elliptic variational inequality of the second kind: find u ∈V such that

    where

    Here and below, to simplify the notation for an integral, we usually do not explicitly display the infinitesimal volume or surface or line element which can be easily identified by the domain where the integration is taken. The model we use is a so-called simplified friction problem[22]as it can be viewed as a simplified version of a frictional contact problem in linearized elasticity.

    Since the bilinear form a(·,·) is continuous and V-elliptic, the functional j(·) is proper, convex and continuous, and the linear functional ?(·) is continuous. Moreover,since the bilinear form a(·,·) is symmetric, the variational inequality (1) is equivalent to the minimization problem: find u ∈V such that

    where E is the energy functional

    Existence and uniqueness of a solution for the problems (1) and (2)-(3) follow from a classical result[23]. Moreover, the equivalence between the variational inequality and the minimization energy functional problem can be established in a standard way.

    For a given non-diあerentiable term, there are many choices for a sequence of differentiable approximations. Let us list five natural choices of a regularizing sequence for the frictional problem (similar to the first two choices are taken from [24]).

    Choice 2jε(v)=∫Γ2g(v) with

    Choice 3jε(v)=∫Γ2g(v) with

    Choice 4jε(v)=∫Γ2g(v) with

    Choice 5jε(v)=∫Γ2g(v) with

    2.1 Dual formulation

    We derive a dual formulation for the problem (2)-(3), following the framework presented in [25]. Let V and Q be two normed spaces, V?and Q?denote their dual spaces. The duality pairings in both V,V?and Q,Q?will be denoted by〈·,·〉. Assume there exists a linear continuous operator Λ ∈L(V,Q). The transpose Λ?∈L(Q?,V?)of the operator Λ is defined through the relation

    Let J be a functional mapping V ×Q intoWe consider the minimization problem(the primal problem)

    Its dual problem is defined as

    where J?:Q?×V?→is the conjugate function of J:

    Now for the minimization problem (2), let

    we introduce the functional

    where q = (q1,q2,q3) ∈Q, and introduce a linear bounded operator V →Q by the relation

    Obviously

    where

    Then the minimization problem (2) can be rewritten as: find u ∈V such that

    and the corresponding conjugate function J?of the functional J:

    We have

    and

    Define the set of admissible dual functions as

    Then the conjugate function is

    The dual problem of (5) can now be stated as: find p?∈Q?f,gsuch that

    Note that the mapping q?→J?(Λ?q?,?q?) is strictly convex over Q?f,g. By the result in ([21], Theorem 2.39), the dual problem (6) has a unique solution p?∈Q?f,g, and

    where u ∈V is the unique solution of the model problem.

    2.2 A posteriori error estimates

    As far as the practical computation is concerned, a convergence result and an a priori error estimate are not enough for a completely numerical analysis with the regularization method. A posteriori error estimates are more desirable that will provide a quantitative error bound once a solution of the regularized problem is an error bound.Here,for a frictional contact problem,we will use the duality theory to drive some other a posteriori error estimates, and then discuss the applications to the regularization method with various choices of the regularization sequence.

    Since G(q) is not Gateaux diあerentiable, we consider the energy diあerence

    Using (1) with v =uε, we find that

    Therefore

    On the other hand, applying Theorem 2.40 in [21], we have

    for any q?∈Q. Hence, we have the general inequality for a posteriori error analysis

    Since φεis diあerentiable, the variational inequality (4) is equivalent to the equality

    Thus uεis the weak solution of the elliptic boundary value problem

    From (9), we observe that if the regularizing function φ satisfies the inequality

    then a natural selection of an auxiliary field q?in the basic inequality (8) is

    From (8), the following a posteriori error estimate is obtained

    Taking v =uε∈V in (9), we find that

    Therefore, we can write the a posteriori error estimate in the form of

    The regularizing functions in the Choices 1,4,and 5 satisfy the inequality(10). Hence,we have the following a posteriori error estimates.

    For theChoice 1, we have

    Thus the a posteriori error estimate is

    For theChoice 4, we have

    Thus the a posteriori error estimate is

    For theChoice 5, we have

    Thus the a posteriori error estimate is

    So we have the same form of a posteriori error estimate as that given in (13). For the Choices 2 and 3, the regularizing functions do not satisfy the inequality (10), but it is still possible to construct an admissible field q?from uεto produce a good error bound.

    3 An obstacle problem and its regularized problem

    The model problem to be discussed is a generalized version of an obstacle problem considered in[26]. Let ? ∈Rdbe a Lipschitz domain. In the study of obstacle problems for applications,d=2. However,all the arguments below are valid for any dimension d.Let f ∈L2(?)and g∈H1/2(??)be given non-negative functions. Denote the admissible set by

    where

    Then the obstacle problem is: find u ∈K such that

    where

    The problem(16)-(17)is equivalent to an elliptic variational inequality of the first kind:find u ∈K such that

    a(u,v ?u)≥?(v ?u), ?v ∈K,

    where

    Existence of a unique solution of the problem follows from the standard result on the unique solvability of variational inequalities of the first kind ([21], Theorem 1.24)

    To develop a regularization method, the obstacle problem (16)-(17) is also written as the problem: find u ∈(?) such that

    where

    The problem (18)-(19) is equivalent to an elliptic variational inequality of the second kind: find u ∈(?) such that

    where

    Now,introducing v0=v?g for v ∈H1(?),then a solution of the problem(18)-(19)is u=u0+g and u0∈(?) such that

    where

    The problem (21) is equivalent to an elliptic variational inequality of the second kind:find u0∈(?) such that

    where

    Proposition 1 The problem(16)-(17)and the problem(18)-(19)are equivalent.

    Proof First, the problem (18)-(19) and the variational inequality (22) have a unique solution([21], Theorem 1.25). Next, the equivalence proof between the problem(16)-(17) and the problem (18)-(19) ([21], page195, Theorem 5.1). Therein, applying some results from [21] as follows: if v ∈H1(?), then |v|∈H1(?) and

    Combining with the uniqueness of a solution to the problem (18)-(19), we have u =|u| ≥0 in ?. Hence, the solution to the problem (18)-(19) is also the unique solution of the problem (16)-(17).

    The regularized problem is to find u0,ε∈(?) such that

    or uε∈(?) such that

    The relation between the solutions of the two problems is uε=u0,ε+g. We can prove that under conditions, u0,ε→u0(equivalently, uε→u) as ε →0 ([21], Lemma 5.2).

    For a given non-diあerentiable term, there are many choices for a sequence of differentiable approximations. Let us list five natural choices of a regularizing sequence for the obstacle problem (the first two choices are taken from [26]).

    Choice 1jε(v0)=∫?f(v0+g) with

    3.1 Dual formation

    For the obstacle problem (18)-(19), we adopt the function spaces

    and the operator Λv =?v, ?v ∈V, and the functional

    Then obviously

    E(v)=J(v,Λv)=F(v)+G(Λv), ?v ∈V,

    where

    Therefore, the minimization problem (18)-(19) can be rewritten as: find u ∈V such that

    the corresponding conjugate function J?of the functional J is

    J?(Λ?q?,?q?)=F?(Λ?q?)+G?(?q?).

    We have

    and

    Define the set of admissible dual functions:

    Then the conjugate function becomes

    The dual problem of (25) can now be stated as: find p?∈Q?csuch that

    Note that the mapping q?→J?(Λ?q?,?q?) is strictly convex over. By Theorem 2.39 in [21], the dual problem (26) has a unique solution p?∈, and

    where u ∈V is the unique solution of the model problem.

    3.2 A posteriori error estimates

    Similarly,here,for an obstacle problem,we also use the duality theory to drive some new a posteriori error estimates,and then discuss the applications to the regularization method with various choices of the regularization sequence.

    Since F(v) is not Gateaux diあerentiable, we consider the energy diあerence

    Using (20) with v =uε, we find that

    Therefore

    On the other hand, applying Theorem 2.40 in [21], we have

    Hence, we have the general inequality for a posteriori error analysis:

    Since φεis diあerentiable, the variational inequality (24) is equivalent to the equality

    Thus uεis the weak solution of the elliptic boundary value problem

    From (29), we observe that if the regularizing function φ satisfies the inequality

    then a natural selection of an auxiliary field q?in the basic inequality (28) is

    From (28), the following a posteriori error estimate is obtained

    Taking v =uε?g ∈(?) in (29), we find that

    Therefore, we can write the a posteriori error estimate in the form of

    The regularizing functions in the Choices 1,4,and 5 satisfy the inequality(30). Hence,we have the following a posteriori error estimates.

    For the Choice 1, we have

    Thus the a posteriori error estimate is

    For the Choice 4, we have

    Thus the a posteriori error estimate is

    For the Choice 5, we have

    Thus the a posteriori error estimate is

    So we have the same form of a posteriori error estimate as that given in (33). For the Choices 2 and 3, the regularizing functions do not satisfy the inequality (30), but it is still possible to construct an admissible field q?from uεto produce a good error bound.

    4 A general framework for a posteriori estimates

    In this section, let w be an arbitrary approximation of u ∈V, the unique solution of the frictional contact problem (1) or the obstacle problem (18), we present a general framework for a posteriori estimates of the error (u ?w). The error bounds are computable from the known approximation w. For the frictional contact problem,a general framework has been given in [21] for a posteriori estimates of elliptic variational inequalities. In the following, for the obstacle problem, we deduce its general framework by use of a similar method. By using (19) and (20), we obtain

    On the other hand, let p?be the solution to the dual problem (26). Relation (27)implies

    Therefore

    Thus, we have established the following result.

    Theorem 1Let u ∈(?) be the unique solution of (20), and w ∈V an approximation of u. Then the following estimate holds for any r?∈Q?:

    Let us now deal with the second term ∏on the right side of the estimate (37). First,from the definition of, it follows that

    Define the residual

    Then

    Combined with Theorem 1, we can derive the following result.

    Theorem 2Let u ∈V be the unique solution of (20), and w ∈V an approximation of u. Then the following estimate holds for any r?∈Q?:

    where the residual R(q?,r?) is defined by (38).

    With the special selection r?= ??w, the error bound (39) leads to the following error estimate

    In the limiting case f =0, the problem (20) reduces to the variational equation

    We observe that correspondingly, the estimate (40) reduces to the familiar form

    5 Conclusions

    In this paper, we mainly make use of a diあerent bounded operator form Λv and functional form F, G to study a posteriori error analysis via duality theory for the regularization method for a frictional contact problem and an obstacle problem. We also establish a general framework to derive reliable residual type error estimators for the above obstacle problem by applying a posteriori error analysis via duality theory in convex analysis. Certainly, the same technique presented in this paper can be used to derive a posteriori error estimates for the regularization method for other variational inequality problems.

    猜你喜歡
    變分后驗(yàn)對偶
    逆擬變分不等式問題的相關(guān)研究
    求解變分不等式的一種雙投影算法
    貝葉斯統(tǒng)計(jì)中單參數(shù)后驗(yàn)分布的精確計(jì)算方法
    關(guān)于一個約束變分問題的注記
    一種基于最大后驗(yàn)框架的聚類分析多基線干涉SAR高度重建算法
    一個擾動變分不等式的可解性
    對偶平行體與對偶Steiner點(diǎn)
    基于后驗(yàn)預(yù)測分布的貝葉斯模型評價及其在霍亂傳染數(shù)據(jù)中的應(yīng)用
    基于后驗(yàn)預(yù)測分布的貝葉斯模型評價及其在霍亂傳染數(shù)據(jù)中的應(yīng)用
    對偶均值積分的Marcus-Lopes不等式
    国产精品乱码一区二三区的特点| 成人综合一区亚洲| 一级黄片播放器| 精品99又大又爽又粗少妇毛片| 免费黄色在线免费观看| 精品一区二区三区视频在线| 在现免费观看毛片| 男人的好看免费观看在线视频| 国产精华一区二区三区| 18禁裸乳无遮挡免费网站照片| 欧美成人一区二区免费高清观看| 天天躁日日操中文字幕| 99久久精品国产国产毛片| 成人性生交大片免费视频hd| 麻豆精品久久久久久蜜桃| 午夜激情欧美在线| 亚洲av不卡在线观看| 中文字幕人妻熟人妻熟丝袜美| 免费观看精品视频网站| 亚洲在久久综合| 日日摸夜夜添夜夜添av毛片| 97热精品久久久久久| 少妇熟女欧美另类| 中文字幕亚洲精品专区| 成人综合一区亚洲| 国内精品一区二区在线观看| 国产精品一区二区性色av| 久久精品人妻少妇| 日日啪夜夜撸| 中文精品一卡2卡3卡4更新| 一个人免费在线观看电影| 亚洲综合精品二区| 六月丁香七月| 春色校园在线视频观看| 人妻少妇偷人精品九色| 非洲黑人性xxxx精品又粗又长| 韩国高清视频一区二区三区| 人妻系列 视频| 嘟嘟电影网在线观看| a级毛色黄片| 国产久久久一区二区三区| 夜夜爽夜夜爽视频| 欧美日本视频| 久久久久久久久久久免费av| 精品熟女少妇av免费看| 2021天堂中文幕一二区在线观| 久久精品国产自在天天线| 丰满乱子伦码专区| 国产视频内射| 少妇高潮的动态图| 我的女老师完整版在线观看| 亚洲精品影视一区二区三区av| 亚洲精品乱码久久久v下载方式| 少妇高潮的动态图| 亚洲精品乱久久久久久| 偷拍熟女少妇极品色| 毛片一级片免费看久久久久| 婷婷色av中文字幕| 人人妻人人澡人人爽人人夜夜 | 国产成人aa在线观看| 日本五十路高清| 我的老师免费观看完整版| 全区人妻精品视频| 亚洲第一区二区三区不卡| 2022亚洲国产成人精品| 久久精品久久久久久噜噜老黄 | 非洲黑人性xxxx精品又粗又长| 亚洲人成网站在线播| 精品久久久噜噜| 日韩成人伦理影院| 在线a可以看的网站| 一区二区三区高清视频在线| 哪个播放器可以免费观看大片| 长腿黑丝高跟| 久久99热6这里只有精品| 99久久精品一区二区三区| 欧美不卡视频在线免费观看| 尾随美女入室| 日韩成人伦理影院| 国产老妇女一区| 人妻夜夜爽99麻豆av| 亚洲av中文av极速乱| 欧美bdsm另类| 高清av免费在线| 亚洲av一区综合| 一二三四中文在线观看免费高清| 人妻少妇偷人精品九色| 欧美成人精品欧美一级黄| 国产成人精品一,二区| 国产成人午夜福利电影在线观看| 亚洲经典国产精华液单| 日韩av在线免费看完整版不卡| 国产精品,欧美在线| 禁无遮挡网站| 色5月婷婷丁香| 男女啪啪激烈高潮av片| 菩萨蛮人人尽说江南好唐韦庄 | 一级毛片aaaaaa免费看小| 久久久精品大字幕| 亚洲欧美成人精品一区二区| kizo精华| 女人久久www免费人成看片 | 欧美成人a在线观看| 久久久久网色| 99久久人妻综合| h日本视频在线播放| 免费av毛片视频| 免费观看的影片在线观看| 成人综合一区亚洲| av免费观看日本| 亚洲国产精品成人综合色| 日本三级黄在线观看| 国产熟女欧美一区二区| 我的女老师完整版在线观看| 免费电影在线观看免费观看| 国产三级中文精品| 精品一区二区免费观看| 乱人视频在线观看| 禁无遮挡网站| 国产久久久一区二区三区| 国产成人freesex在线| 22中文网久久字幕| 最近最新中文字幕免费大全7| 中国国产av一级| 亚洲最大成人手机在线| 亚洲欧美日韩高清专用| 女的被弄到高潮叫床怎么办| 成人美女网站在线观看视频| 亚洲成色77777| 日日啪夜夜撸| 99在线人妻在线中文字幕| 男人和女人高潮做爰伦理| 十八禁国产超污无遮挡网站| 国产午夜福利久久久久久| 久久久成人免费电影| 99久久无色码亚洲精品果冻| 国产一级毛片在线| 国产免费男女视频| 亚洲精品日韩av片在线观看| 在线观看美女被高潮喷水网站| 久久精品久久久久久久性| 一级毛片aaaaaa免费看小| 成人毛片a级毛片在线播放| 日本猛色少妇xxxxx猛交久久| 久久国内精品自在自线图片| 级片在线观看| 亚洲成av人片在线播放无| 老司机影院毛片| 久久热精品热| 精品一区二区免费观看| 69人妻影院| 嘟嘟电影网在线观看| 精品不卡国产一区二区三区| 国产一区二区在线av高清观看| 人妻系列 视频| 亚洲色图av天堂| 97超视频在线观看视频| 免费看av在线观看网站| 永久网站在线| 视频中文字幕在线观看| 欧美97在线视频| 汤姆久久久久久久影院中文字幕 | 亚洲精品国产成人久久av| 国产精品蜜桃在线观看| 欧美区成人在线视频| 国产亚洲午夜精品一区二区久久 | 亚洲人与动物交配视频| 老司机影院毛片| 日本猛色少妇xxxxx猛交久久| 免费看av在线观看网站| 亚洲成人av在线免费| 爱豆传媒免费全集在线观看| 人妻少妇偷人精品九色| 欧美最新免费一区二区三区| 久久久久久久午夜电影| 精品久久久久久久久久久久久| 国产爱豆传媒在线观看| 18禁在线无遮挡免费观看视频| 天堂网av新在线| 亚洲真实伦在线观看| 国产成人a∨麻豆精品| 成人一区二区视频在线观看| 亚洲欧美日韩无卡精品| 一本久久精品| 高清视频免费观看一区二区 | 国产成人a∨麻豆精品| 国产免费又黄又爽又色| 日韩精品有码人妻一区| 99在线视频只有这里精品首页| 中国美白少妇内射xxxbb| 日韩精品有码人妻一区| 久久精品夜色国产| 欧美区成人在线视频| 久久精品综合一区二区三区| 中文字幕制服av| 日本黄大片高清| 亚洲av一区综合| 男女那种视频在线观看| 五月伊人婷婷丁香| 亚洲国产精品成人久久小说| 久久久久国产网址| 中文字幕熟女人妻在线| 一级爰片在线观看| 精品国产三级普通话版| 国产视频内射| 人妻夜夜爽99麻豆av| 狠狠狠狠99中文字幕| 久久久a久久爽久久v久久| 日本五十路高清| 午夜免费激情av| 日日摸夜夜添夜夜添av毛片| 99热网站在线观看| 晚上一个人看的免费电影| 身体一侧抽搐| 一夜夜www| 国产色婷婷99| 色综合亚洲欧美另类图片| 亚洲人与动物交配视频| 国产午夜福利久久久久久| 天美传媒精品一区二区| 少妇的逼水好多| www.色视频.com| 在线免费观看不下载黄p国产| 在线观看66精品国产| 淫秽高清视频在线观看| 男女那种视频在线观看| 国产伦精品一区二区三区视频9| 久99久视频精品免费| 女人久久www免费人成看片 | 亚洲色图av天堂| 一级毛片电影观看 | 精品人妻视频免费看| 日本一二三区视频观看| 国产精品一区二区三区四区免费观看| 深爱激情五月婷婷| 国产欧美日韩精品一区二区| 久久婷婷人人爽人人干人人爱| 中文字幕精品亚洲无线码一区| h日本视频在线播放| 噜噜噜噜噜久久久久久91| 午夜久久久久精精品| 蜜臀久久99精品久久宅男| 日韩高清综合在线| www.av在线官网国产| 国产一区二区亚洲精品在线观看| av线在线观看网站| 亚洲精品日韩av片在线观看| 水蜜桃什么品种好| 日本黄色视频三级网站网址| 亚洲欧美日韩卡通动漫| 熟妇人妻久久中文字幕3abv| 国产成人福利小说| 亚洲人成网站高清观看| 精品久久久久久电影网 | 久久久成人免费电影| 国产视频内射| 亚洲精品亚洲一区二区| 国产真实乱freesex| 国产白丝娇喘喷水9色精品| 91久久精品国产一区二区三区| 级片在线观看| 日本wwww免费看| 久久精品国产亚洲网站| 日本免费一区二区三区高清不卡| 欧美成人一区二区免费高清观看| 一个人看视频在线观看www免费| 亚洲内射少妇av| 别揉我奶头 嗯啊视频| 日产精品乱码卡一卡2卡三| 最近手机中文字幕大全| .国产精品久久| 免费看美女性在线毛片视频| 欧美潮喷喷水| 亚洲自偷自拍三级| 亚洲精品乱码久久久v下载方式| 国产精品福利在线免费观看| 乱系列少妇在线播放| 色网站视频免费| 在线观看美女被高潮喷水网站| 精品国内亚洲2022精品成人| 菩萨蛮人人尽说江南好唐韦庄 | 又粗又爽又猛毛片免费看| 欧美成人一区二区免费高清观看| 日本熟妇午夜| 青青草视频在线视频观看| 精品国内亚洲2022精品成人| 国产精品久久久久久精品电影| 亚洲一区高清亚洲精品| 国产三级中文精品| 欧美xxxx性猛交bbbb| av.在线天堂| 欧美zozozo另类| 国产精品不卡视频一区二区| 久久人人爽人人爽人人片va| 天堂影院成人在线观看| 草草在线视频免费看| 嘟嘟电影网在线观看| 国产女主播在线喷水免费视频网站 | 秋霞伦理黄片| 2021天堂中文幕一二区在线观| 亚洲av熟女| 欧美97在线视频| eeuss影院久久| 亚洲av免费高清在线观看| 欧美+日韩+精品| 99热网站在线观看| 亚洲国产精品成人久久小说| 日韩成人伦理影院| 亚洲国产精品专区欧美| 少妇猛男粗大的猛烈进出视频 | 看非洲黑人一级黄片| 卡戴珊不雅视频在线播放| 在线播放国产精品三级| 熟女电影av网| 九九热线精品视视频播放| 午夜激情福利司机影院| 熟妇人妻久久中文字幕3abv| 黄片wwwwww| 午夜老司机福利剧场| 精品国内亚洲2022精品成人| 久久欧美精品欧美久久欧美| 午夜亚洲福利在线播放| 尤物成人国产欧美一区二区三区| 国产日韩欧美在线精品| 免费播放大片免费观看视频在线观看 | 啦啦啦观看免费观看视频高清| 七月丁香在线播放| 国产大屁股一区二区在线视频| 看非洲黑人一级黄片| 男人狂女人下面高潮的视频| av播播在线观看一区| 一级黄片播放器| 日韩人妻高清精品专区| 久久精品夜色国产| 2022亚洲国产成人精品| 国产亚洲一区二区精品| 国产真实伦视频高清在线观看| 免费黄色在线免费观看| 国产亚洲5aaaaa淫片| 最近2019中文字幕mv第一页| 纵有疾风起免费观看全集完整版 | a级毛色黄片| 男人舔奶头视频| 国产黄色视频一区二区在线观看 | 又爽又黄无遮挡网站| 国产精品国产三级专区第一集| 亚洲欧美中文字幕日韩二区| 一区二区三区高清视频在线| 亚洲国产色片| 日本免费一区二区三区高清不卡| 久99久视频精品免费| 亚洲精品aⅴ在线观看| 午夜精品在线福利| 两个人的视频大全免费| 国产成人aa在线观看| 国产精品综合久久久久久久免费| av女优亚洲男人天堂| 永久免费av网站大全| 午夜精品在线福利| 欧美一区二区精品小视频在线| 中文乱码字字幕精品一区二区三区 | 日日啪夜夜撸| 欧美3d第一页| 成人三级黄色视频| 中文字幕制服av| 26uuu在线亚洲综合色| 国产精品蜜桃在线观看| 搡女人真爽免费视频火全软件| 一卡2卡三卡四卡精品乱码亚洲| 少妇被粗大猛烈的视频| 国产久久久一区二区三区| 亚洲美女视频黄频| 日韩欧美国产在线观看| 精品午夜福利在线看| 天堂网av新在线| 又粗又硬又长又爽又黄的视频| 日韩视频在线欧美| 麻豆国产97在线/欧美| 99热精品在线国产| 男女边吃奶边做爰视频| 秋霞伦理黄片| av在线天堂中文字幕| 国产精品不卡视频一区二区| 乱人视频在线观看| 内射极品少妇av片p| 日本av手机在线免费观看| 国产成人freesex在线| av视频在线观看入口| 女人久久www免费人成看片 | 日韩一本色道免费dvd| 国产麻豆成人av免费视频| 日韩av在线免费看完整版不卡| 非洲黑人性xxxx精品又粗又长| 日本五十路高清| 欧美丝袜亚洲另类| av播播在线观看一区| 一级av片app| 哪个播放器可以免费观看大片| 亚洲av不卡在线观看| 精品国产三级普通话版| 丝袜喷水一区| 亚洲内射少妇av| 国产在线男女| 我要搜黄色片| 看十八女毛片水多多多| 午夜福利视频1000在线观看| 成人毛片60女人毛片免费| 亚洲欧美中文字幕日韩二区| 日韩av不卡免费在线播放| 日韩一区二区三区影片| 3wmmmm亚洲av在线观看| 国产在视频线在精品| 亚洲av免费在线观看| 99热精品在线国产| 听说在线观看完整版免费高清| 熟妇人妻久久中文字幕3abv| 一个人观看的视频www高清免费观看| 欧美激情久久久久久爽电影| 午夜老司机福利剧场| 国产一级毛片七仙女欲春2| 国产片特级美女逼逼视频| 欧美精品一区二区大全| 国产视频内射| 成人国产麻豆网| videos熟女内射| 精品午夜福利在线看| 成人午夜精彩视频在线观看| 听说在线观看完整版免费高清| 国产探花极品一区二区| 嫩草影院入口| 亚洲中文字幕一区二区三区有码在线看| av女优亚洲男人天堂| 久久欧美精品欧美久久欧美| 亚洲欧美精品综合久久99| 免费播放大片免费观看视频在线观看 | 免费av不卡在线播放| 禁无遮挡网站| 亚洲精品日韩在线中文字幕| 99久国产av精品| 久久这里只有精品中国| 大又大粗又爽又黄少妇毛片口| 久久久久久国产a免费观看| av在线亚洲专区| 欧美zozozo另类| 欧美区成人在线视频| 1024手机看黄色片| 日本五十路高清| 18禁动态无遮挡网站| 国产伦精品一区二区三区视频9| 久久久a久久爽久久v久久| 国产成人福利小说| 精品少妇黑人巨大在线播放 | 国产爱豆传媒在线观看| 一级av片app| 精品久久久久久电影网 | 在线观看美女被高潮喷水网站| 精品酒店卫生间| 日本一二三区视频观看| 男人舔奶头视频| 99久国产av精品| 国产成人免费观看mmmm| 可以在线观看毛片的网站| 美女xxoo啪啪120秒动态图| 人妻系列 视频| av在线蜜桃| 人妻系列 视频| 色噜噜av男人的天堂激情| 高清在线视频一区二区三区 | 尤物成人国产欧美一区二区三区| АⅤ资源中文在线天堂| 久久久久免费精品人妻一区二区| 69av精品久久久久久| 高清午夜精品一区二区三区| 亚洲成人久久爱视频| av播播在线观看一区| av线在线观看网站| 国产av不卡久久| 国产成人一区二区在线| 国产成人a∨麻豆精品| 大话2 男鬼变身卡| 午夜激情欧美在线| 男人舔女人下体高潮全视频| 国产成人精品一,二区| 舔av片在线| 国产精品.久久久| 一区二区三区免费毛片| 1000部很黄的大片| 干丝袜人妻中文字幕| 免费av毛片视频| 天堂av国产一区二区熟女人妻| 久久99热这里只频精品6学生 | 91久久精品国产一区二区成人| 国产午夜福利久久久久久| 麻豆乱淫一区二区| 午夜a级毛片| 国产成人a区在线观看| 舔av片在线| 国产精品一区二区在线观看99 | 最近最新中文字幕大全电影3| 丰满乱子伦码专区| 成年版毛片免费区| 国产精品久久久久久精品电影小说 | 亚洲国产色片| 哪个播放器可以免费观看大片| 最近最新中文字幕大全电影3| 亚洲精品国产成人久久av| 欧美不卡视频在线免费观看| 亚洲国产精品成人久久小说| 免费观看a级毛片全部| 又黄又爽又刺激的免费视频.| 中国国产av一级| 在线观看66精品国产| 三级毛片av免费| 亚洲欧洲国产日韩| 欧美潮喷喷水| 99国产精品一区二区蜜桃av| 精品一区二区三区人妻视频| 美女高潮的动态| 国产精品一及| 日韩欧美在线乱码| videossex国产| 男人舔奶头视频| 久久精品国产亚洲av天美| 亚洲内射少妇av| 九草在线视频观看| 国产精品久久久久久精品电影小说 | 国产美女午夜福利| 午夜a级毛片| 国产欧美日韩精品一区二区| 欧美zozozo另类| 一区二区三区高清视频在线| 成人亚洲精品av一区二区| 国产男人的电影天堂91| 亚洲最大成人中文| 亚洲国产色片| 日韩精品有码人妻一区| 成人午夜精彩视频在线观看| 性插视频无遮挡在线免费观看| 91久久精品电影网| 中文字幕制服av| 有码 亚洲区| 国产白丝娇喘喷水9色精品| 亚洲成人久久爱视频| 久久这里只有精品中国| 亚洲人成网站在线观看播放| 毛片一级片免费看久久久久| 亚洲激情五月婷婷啪啪| 日本三级黄在线观看| 国产亚洲最大av| 国产精品一区二区在线观看99 | av线在线观看网站| 久久久精品欧美日韩精品| 插逼视频在线观看| 久久99热6这里只有精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品无人区乱码1区二区| www.色视频.com| 中国美白少妇内射xxxbb| 午夜福利视频1000在线观看| 97人妻精品一区二区三区麻豆| 日韩视频在线欧美| 卡戴珊不雅视频在线播放| 亚洲激情五月婷婷啪啪| 级片在线观看| 在线观看美女被高潮喷水网站| 国产免费福利视频在线观看| 午夜福利成人在线免费观看| 国产一区二区亚洲精品在线观看| 夫妻性生交免费视频一级片| 国产精品一二三区在线看| 美女黄网站色视频| 国产精品乱码一区二三区的特点| 能在线免费观看的黄片| 色综合亚洲欧美另类图片| 久久亚洲国产成人精品v| 国产在视频线精品| av国产免费在线观看| 天堂av国产一区二区熟女人妻| 欧美xxxx黑人xx丫x性爽| 日本与韩国留学比较| 国产色婷婷99| 毛片一级片免费看久久久久| 国产亚洲5aaaaa淫片| 国产日韩欧美在线精品| 少妇猛男粗大的猛烈进出视频 | kizo精华| 男女边吃奶边做爰视频| 国产老妇伦熟女老妇高清| 国语自产精品视频在线第100页| 一本久久精品| 天天躁夜夜躁狠狠久久av| 成人二区视频| 日韩制服骚丝袜av| 亚洲在线观看片| 国内揄拍国产精品人妻在线| 综合色av麻豆| 搞女人的毛片| 性插视频无遮挡在线免费观看| 成年女人看的毛片在线观看| 国产真实乱freesex| 日本五十路高清| 午夜福利成人在线免费观看| 免费电影在线观看免费观看| 啦啦啦韩国在线观看视频| 亚洲av电影在线观看一区二区三区 | 哪个播放器可以免费观看大片| 亚洲人成网站在线播| 日韩三级伦理在线观看| 日韩在线高清观看一区二区三区| 丝袜美腿在线中文| 大话2 男鬼变身卡| 日本黄色片子视频| 久久婷婷人人爽人人干人人爱| 99热精品在线国产| 日本av手机在线免费观看|