• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SC-CO2輔助高固含量發(fā)射藥代料擠出加工的流變行為

    2020-06-15 10:13:44丁亞軍應三九
    含能材料 2020年6期
    關(guān)鍵詞:分泌量化工學院缺鈣

    阮 建,熊 奧,丁亞軍,應三九

    (1. 南京理工大學化工學院,江蘇 南京 210094;2. 南京理工大學特種能源材料教育部重點實驗室,江蘇 南京 210094)

    1 Introduction

    In recent years,reducing sensitivity without decreasing the energy of the propellant has been the main aim of research and development. Therefore,low vulnerability ammunition (LOVA) propellants were developed based on the formulation of solid-filling hexogen (RDX) and non-energetic binders[1-2]. These types of high solid content propellants are normally produced using inefficient and potentially dangerous batch processes that are prone to produce propellants of variable quality[3].

    Screw extrusion technology has great potential in the automated industrial production of high solid content propellants. Its major advantages include higher production capacity,fewer operational handling steps and more uniform products. Meanwhile,the automated extrusion process can achieve human-machine isolation, thereby overcoming the harm of energetic/toxic chemicals to operators. Rheological studies of propellants in the extrusion process have been conducted,including safety and capabilities of intensive mixing,which can guide the processing of propellants and identify conditions that lead to improved propellant quality and productivity[4-6].

    However,due to the high viscosity of the high solid content propellant,there is a great potential safety hazard in the extrusion process. Meanwhile,complex rheological properties should be found to improve the processes oriented to their manufacture.Organic solvents and energetic plasticizers have been used to improve the rheology of propellants[7].Nevertheless,these organic solvents are often toxic,environmentally unfriendly and leave residues in the product,which affects the performance of the final product. Besides,the addition of energy plasticizer increases processing risks. It is important to find an ideal plasticizer to improve the rheology of high solid content propellants in extrusion process.

    The application of supercritical fluid(SCF)technology provides an easily removable solvent system that exhibits gas-like diffusivity,liquid-like density and low viscosity,and is suitable for extrusion process[8]. The high diffusion rate of supercritical carbon dioxide(SC-CO2) enables it to penetrate into the polymer matrix faster than liquid solvents,which reduces the viscosity and promotes faster transport of dissolved solutes throughout the polymer matrix[9-11].Lee[12]found that SC-CO2had a measurable effect on the clay dispersion in the polymer matrix during the extrusion process,accordingly improving its rheology. Besides,Ding[13-15]did a lot of work for gun propellant substitutes assisted with SC-CO2in extrusion processing, which proved that the addition of SC-CO2lowered the viscosity of propellant substitutes. Indeed,the presence of SC-CO2introduced into the barrel of the single-screw extruders improves the performance of the high solid content propellant extrusion process,which is feasible and has enormous potential for development.

    LOVA propellants based on the use of solid filler RDX and cellulose acetate(CA)have been proposed as high- energy propellants with good safety[1]. Moreover,RDX is a powerful explosive that is manufactured using extrusion processes that poses a significant explosive or fire hazards. Because the physical properties and surface morphology of calcium carbonate(CaCO3)are similar to those of RDX,they are all white solids and hardly soluble in water and alcohol,so they can be well dispersed in the CA matrix[16-17]. In addition,CaCO3is often used as a filler in cellulose processing[18]. Therefore,CaCO3can be considered as a benign replacement for RDX when optimizing extrusion processes.

    In this work,experiments were performed by using a slit die rheometer to measure the viscosity of the CA/CaCO3and CA/CaCO3/SC-CO2solutions during extrusion process. Computer modeling was also performed by the modeling software Polyflow to further investigate the rheological and dispersive mixing properties of high solid content propellant substitutes during extrusion. In both methods,the effects of temperature and SC-CO2on the dispersion mixing properties and viscosity of the solutions during extrusion process were considered. In the mixture systems,CaCO3was used as a solid filler,CA was used as an inert propellant binder,and SC-CO2was used as a plasticizer. The effects of SC-CO2on solution viscosity were studied. Finally,the optimal extrusion process temperature was found.

    2 Experimental

    2.1 Materials and Devices

    CA particles were provided by Xian North Huian Chemical Industry Ltd. CaCO3(analytically pure,AR),ethanol(analytically pure,AR)and acetone(analytically pure,AR)were purchased by Sinopharm Chemical Reagent Ltd. Industrial CO2(purity≥99.9%)was provided by Nanjing Wenda Special Gas Ltd.

    The kneading machine was supplied by Jiangsu Guomao Reducer Group Ltd. The syringe pump(260D)was purchased from American Teledyne ISCO Ltd. The single screw extruder(the length-diameter aspect ratio of the screw is 36)and the slit die rheometer were purchased from Nanjing Yizhong Machinery Ltd.

    2.2 Viscosity Measurement

    CA(mass fraction of 60%)and CaCO3(mass fraction of 40%)particles were preliminarily mixed together in an acetone/ethanol(1∶1)mixed solvent for 40 minutes at 35 ℃using the kneading machine.The ratio of the volume of the mixed solvent to the mass of CA/CaCO3was 1.20 ml·g-1. Then the CA/CaCO3solution was fed into a single-screw extruder(screw speed of 6 r·min-1to 14 r·min-1),while SC-CO2was introduced into the barrel at a constant flow rate of 0.01 mL·min-1. Constant injection pressure was used to maintain above 15 MPa(higher than the critical pressure of SC-CO2),and processing temperature was used to keep above 40 ℃(higher than the critical temperature of SC-CO2). The shear forces generated by the screw resulted in the efficient dissolution of SC-CO2into the CA/CaCO3solution phase,then the pressure and the volumetric flow rate of CA/CaCO3/SC-CO2mixture were measured by a slit die rheometer(Fig.1).

    Fig.1 Schematic diagram of the slit die rheometer

    Based on the pressure values and the volumetric flow rate,the calculation of shear viscosity of the CA/CaCO3/SC-CO2solution was calculated by following Equation[19].

    The shear stress (τw) of the CA/CaCO3/SC-CO2solution on the wall of the slit die rheometer was determined from the Equation(1):

    where H(0.002 m)is the height of the slit die rheometer,L(0.130 m)is the length between the pressure transducers,and ΔP is the pressure drop between the pressure transducers,kPa.

    The shear rate(γ?)of the CA/CaCO3/SC-CO2solution at the wall of the slit die rheometer was evaluated using the Equation(2):

    where Q is the volumetric flow rate,cm3·s-1,W(0.020 m)is the width of the slit die rheometer,a is the power law index obtained from the slope of the linear plots between lg(τw)and lg(γ?)using Equation(3),(2a + 1)/3a is the Rabinowitsch correction factor,and it compensates the loss of shear rate between Newtonian fluid and shear-thinning fluid.

    Therefore,based on Equations(1-3),the actual shear viscosity(η)of the CA/CaCO3/SC-CO2solution can be calculated by Equation(4):

    Due to the ratio of W/H is 10,the measurement errors caused by the bondary effect of slit decrease to less than 5%.

    3 Numerical Simulation

    3.1 Control and Constitutive Equations

    Polyflow provides users with the ability to analyze mixing of material[20].The flow field inside the material flow in the screw section was simulated by Polyflow[21-22]. After the flow field was computed,a mixing task was executed by using the mixing module program (based on particle-tracking technology). Then,the mixing characteristic parameters inside the flow domain were analyzed using Polystat statistical module to evaluate the probability and density of the probability functions that corresponding to the maximum shear stress levels of the dispersion mixing processes respectively.

    According to the theories of rheology,combining the screwing process and the viscoelastic characteristics of the propellant materials,the basic assumptions are as follows:incompressible polymer fluid is considered to be non-Newtonian properties,generating isothermal,laminar and no-slip flow conditions near the extruder walls. Ignoring the inertia and gravity components,the following control Equations(5-7)can be used to simulate flow performance[23]:

    Continuity equation:

    Momentum equation:

    Energy equation:

    where V is the volume velocity vector,ρ is the fluid density,τ is the stress tensor,p is the pressure,T is the fluid temperature,cvis the constant volume specific heat capacity of the fluid,q is the heat flux vector,and ?is the differential operator.

    CA/CaCO3and CA/CaCO3/SC-CO2solutions exhibit the characteristics of pseudoplastic fluids. The Power model based on the constitutive Equation(8)is the ideal model that describes the relationship between the shear viscosity(lnη)and the shear rate(lnγ?):

    where η is the viscosity,k·Pas,K is the viscosity coefficient,kPa·sn,λ is the relaxation time,γ? is the shear rate,s-1,and n is the non-Newtonian index.

    3.2 Rheological Parameters

    The rheological parameters of the propellant substitutes were obtained from the experiment of the viscosity measurements and Equation(8),shown in Table 1. These experimental datas was used as parameters to simulate dispersion mixing.

    Table 1 Rheological parameters of the propellant substitute

    3.3 Geometric Model

    Fig.2 Schematic diagrams of(a)single-screw and(b)flow channel

    During extrusion process of CA/CaCO3solution assisted with SC-CO2,the material flow of the screw section has an important influence on the plasticizing process between CO2fluid and material. Therefore,this paper mainly focuses on the numerical simulation of the material flow in the screw section.A schematic diagrams of the single-screw and fluid channel used in this paper were shown in Fig.2. The length,diameter and gap of the single-screw are 78 mm,30 mm,26 mm,respectively. The groove depth,outer diameter and inner diameter of fluid channel are 3 mm,30 mm,24 mm,respectively.

    4 Results and Discussion

    4.1 Rheological Behaviors of CA/CaCO3/SC-CO2 Solution

    The in-line rheological behavior of the CA/Ca-CO3and CA/CaCO3/SC-CO2solutions can be calculated from the above Equations(1)to(4)and data measured by the slit die rheometer. Fig.3 shows the flow curves[ln shear rate(lnγ?)vs ln shear viscosity(lnη)]of the CA/CaCO3and CA/CaCO3/SC-CO2solutions at 50 ℃with screw speeds ranging from 6 r·min-1to 14 r·min-1. It was found that the viscosity level decreased with increasing shear rate.Since lnγ?has a significant linear relationship with lnη,it demonstrates that the rheological behavior of both CA/CaCO3and CA/CaCO3/SC-CO2solutions can be described by the Power law.

    Fig. 3 Rheological curves of CA/CaCO3 and CA/CaCO3/SC-CO2 solutions at 50 ℃

    The flow equations of the CA/CaCO3and CA/CaCO3/SC-CO2solutions can be described by linear fitting Equations(9)and(10):

    An increase in shear rate leads to a decrease in shear viscosity,and the phenomenon known as“shear thinning”. The n values of the CA/CaCO3and CA/CaCO3/SC-CO2solutions are 0.18 and 0.21,respectively,and they are both well below 1,so they can be treated as non-Newtonian pseudoplastic fluids. Compared with the CA/CaCO3solution,the K value of the CA/CaCO3/SC-CO2solution decreases by 26.00%,and the n value increases by approximately 16.67%. This means that SC-CO2decreases the consistency of the CA/CaCO3solution,which is beneficial to the fluidity of the mixture. Moreover,the viscosity of the CA/CaCO3/SC-CO2solution is significantly lower than that of the CA/CaCO3solution at the same shear rate.

    Furthermore,pressure values and volumetric flow rates also important for the overall safety in the extrusion of high solids propellants. The pressure values and volumetric flow rates of the CA/CaCO3/SC-CO2solution can be measured by the slit die rheometer as shown in Table 2. When the screw speed is 10 r·min-1,compared with the CA solution,the pressures in the presence of SC-CO2decrease obviously,and volumetric flow rate increases by 20.00%. Therefore,the presence of SC-CO2significantly reduces the viscosity and pressure of the extruding CA/CaCO3solution,resulting in a higher fluidity of the mixture solution extruded at an increased volumetric flow rate. These results are consistent with the plasticizing ability of SC-CO2,which acts as a“l(fā)ubricant”to improve the swelling ability and motility of the CA molecular chains that leads to a reduction in molecular entanglement and intermolecular forces. The plasticizing effect of SC-CO2also promotes more effective mixing of the CaCO3and CA components,leading to a more uniform dispersion of the system.Consequently,it is promising to extruding high solid content propellants with the solvent of SC-CO2.

    Table 2 Rheological data of CA/CaCO3 and CA/CaCO3/SC-CO2 solutions

    4.2 Effect of Temperature on Rheological Behaviors

    Temperature has a significant impact on the rheological properties of solid propellant materials,which is of great significance to the overall safety of the extrusion process. Because the high temperature and high screw speed of the propellant can cause dangerous accidents during the extrusion process,according to the experience of screw extrusion processing of energetic materials,CA/CaCO3substitutes are more sensitive to the rheological property of the high solid content propellant when temperature is below 70 ℃and screw speed is below 15 r·min-1[24].The effect of temperature on the extrusion properties of the high solid content propellant substitute are explored at 40 ℃,45 ℃,50 ℃,55 ℃and 60 ℃,respectively, with Fig. 4 showing the rheological curves of the CA/CaCO3/SC-CO2solution at different temperatures that can be calculated from the above Equations(1)to(4)and data measured by the slit die rheometer. At the same shear rate,it was found that the shear viscosity of the CA/CaCO3/SC-CO2solution decreases with increasing temperature,which is caused by the better mobility of the CA molecular chains at higher temperatures.

    Fig.4 Rheological curves of CA/CaCO3/SC-CO2 solutions at different temperatures

    Table 3 Viscosity of CA/CaCO3/SC-CO2 solutions at different temperatures

    The viscosity of the CA/CaCO3/SC-CO2solutions at different temperatures are shown in Table 3(Based on Fig.4). From 40 ℃to 45 ℃,the viscosity of the CA/CaCO3/SC-CO2solution decreases by 28.94% at 6 r·min-1,and decreases by 21.27% at 14 r·min-1,while the smaller decreases in viscosity levels of 16.57% and 13.61% observed from 55 ℃to 60 ℃. These results indicate that the viscosity of the CA/CaCO3/SC-CO2solution decreases more at lower speeds with the increase of temperature. Since the total time required for SC-CO2and CA/CaCO3solutions to be completely mixed decreases as the screw speed increases,a small amount of SC-CO2is dissolved in the CA/CaCO3solution,which reduces the plasticizing effect of the SC-CO2component.

    2.營養(yǎng)物質(zhì)缺乏。當日糧缺鈣或鈣磷比例不當,日照不足或缺乏運動,維生素源不能轉(zhuǎn)變成維生素時均可導致血鈣濃度降低,胃腸蠕動減弱、胃液分泌量下降、食欲下降和消化障礙。

    Besides,the viscosity of the CA/CaCO3/SC-CO2solution from 40 ℃to 60 ℃decrease by 29.12%,23.89%, 20.92% and 12.17%, respectively, at 10 r·min-1(same conditions as before). As the temperature increases,the effect of SC-CO2on the reduction in the viscosity of the CA/CaCO3solution becomes weaker. Due to the enhanced diffusion capacity of SC-CO2at higher temperatures,the dissolution in the CA/CaCO3solution is reduced,which results in a more uneven distribution of SC-CO2,and the interaction between SC-CO2and CA/CaCO3phases is reduced. The viscosity of CA/CaCO3/SC-CO2solution decreases obviously when the temperature rises from 40 ℃to 55 ℃,but the viscosity changes unobvious when the temperature is in the range of 55 ℃to 65 ℃. Therefore,the processing temperature is unsuitable to exceed 55 ℃for CA/CaCO3extrusion assisted with SC-CO2. Therefore,these results indicate that for the safe manufacture of CA/RDX-based propellants using extrusion processes,precise temperature and screw speed control may be required.

    The relationship between fluid viscosity and temperature can be expressed by the Arrhenius relationship[25]in a certain temperature ranges using Equation(11):

    Taking the logarithm of this formula,Equation(12)can be derived:

    where A is the viscosity constant;R is the gas constant,8.314 J·mol-1·k-1;T is the absolute temperature,K;and Eηis the viscous activation energy,kJ·mol-1.

    According to Equations(11)and(12),F(xiàn)ig.5 is obtained within a certain temperature range.Fig.5 reveals the relationship between the logarithm of the viscosity of the CA/CaCO3/SC-CO2solution and the reciprocal of temperature,with lnη exhibiting a degree of linear relationship with 1000/T. The viscous activation energy of the CA/CaCO3/SC-CO2solution at a shear rate of 4 s-1to 20 s-1are calculated as 37.87,35.85,34.67,33.83 kJ·mol-1and 33.18 kJ·mol-1obtained from the slope of the linear fit,respectively. These values represent the sensitivity of the polymer fluid to the processing temperature,showing that they decrease with increasing shear rate. Therefore,the shear viscosity of the CA/CaCO3/SC-CO2solution at higher shear rates is less sensitive to temperature fluctuation than that at lower shear rates.

    Fig.5 Effects of temperature on the rheological behaviors of CA/CaCO3/SC-CO2 solutions

    4.3 Dispersive Mixing Properties of CA/CaCO3 Solution in the Presence of SC-CO2

    The dispersion mixing properties have a significant influence on the viscosity distribution during extrusion processes,which is closely related to the rheological behavior of the material being extruded. Particle-tracking technology can be used to simulate the probability and density of the probability functions corresponding to the maximum shear stress level of the dispersion mixing process. In this type of experiment,the greater the proportion of tracer particles that experience high shear levels,the higher the dispersion level.

    Fig.6 Viscosity nephograms of CA/CaCO3 and CA/CaCO3/SC-CO2 solutions at 50 ℃and 10 r·min-1

    Fig.7 Probability functions of CA/CaCO3 and CA/CaCO3/SC-CO2 solutions at 50 ℃and 10 r·min-1

    Fig.8 Density of probability functions of CA/CaCO3 and CA/CaCO3/SC-CO2 solutions at 50 ℃and 10 r·min-1

    4.4 Effect of Temperature on Dispersive Mixing Properties

    Using Polyflow's particle-tracking technology,the effect of processing temperature on the flow of CA/CaCO3/SC-CO2solution was numerically simulated. Fig.9 shows the viscosity flow field distribution of the CA/CaCO3/SC-CO2solution at different temperatures and 10 r·min-1,indicating that the viscosity decreases and the viscosity distribution uniformity gradually increases with increasing temperatures. From 40 ℃to 60 ℃,the maximum viscosity of the CA/CaCO3/SC-CO2solution decrease by 37.56%,40.36%,17.69% and 37.27%,respectively. In spite of the maximum viscosity decreases by 37.27% from 55 ℃to 60 ℃,as the temperature approach 60 ℃,the decrease coincided with a more uneven viscosity distribution. This may be due to the too low viscosity and pressure of the CA/CaCO3solution at higher temperature,so a part of the SC-CO2fluid will convert the CO2gas and form a gas flow in the CA/CaCO3solution,resulting in instability during extrusion process. As a result,the uniformity of the viscosity distribution is weak.

    Fig.9 Viscosity nephograms of CA/CaCO3/SC-CO2 solutions at different temperatures

    The curves of probability and probability density functions of the CA/CaCO3and CA/CaCO3/SC-CO2solutions at 10 r·min-1and different temperatures under maximum shear stress are shown in Fig.10 and Fig.11. Fig.10 indicates that the maximum shear stress of the CA/CaCO3/SC-CO2solution decreases as the temperature increases. When temperature increases from 40 ℃to 60 ℃,the maximum probability density are 0.44,0.49,0.76,1.34 and 1.30,increase by 11.36%,55.10%,76.32%and -2.99%,respectively(shown as Fig.11). These results confirm that temperature increases is favorable for the dispersive mixing of the CA/CaCO3/SC-CO2solution during the extrusion process. However,when the temperature achieves 60 ℃,the increase in the maximum probability density of the CA/CaCO3/SC-CO2solution showed a negative value under maximum shear stress,indicating a less dispersion mixing efficiency of the CA/CaCO3/SC-CO2solution at this temperature. Due to the higher temperature reduces the strength of the CA/CaCO3solution,SC-CO2cannot be completely absorbed by the CA/CaCO3solution, which causes the CA/CaCO3/SC-CO2mixture to crack and phase separate. Therefore,the dispersion property of CaCO3in the CA matrix becomes poor.

    Fig.10 Probability functions of CA/CaCO3/SC-CO2 solutions at different temperatures

    Fig.11 Density of probability functions of CA/CaCO3/SC-CO2 solutions at different temperatures

    Therefore,in combination with the above results,the maximum viscosity and viscosity distribution do not change significantly from 50 ℃to 55 ℃,and 50 ℃represents the optimal processing temperature for CA/CaCO3extrusion assisted with SC-CO2.The results obtained from the numerical simulation correlate well with the experimental data,thus Polyflow can be used to predict the performance of such extrusion process.

    5 Conclusions

    The slit die rheometer and Polyflow modeling have been used to investigate the effect of SC-CO2on the rheological behavior and dispersive mixing properties of high solid content propellant substitutes in extrusion process. The following conclusions have been reached:

    (1)During screw extrusion process,CA/CaCO3and CA/CaCO3/SC-CO2solutions behave as non-Newtonian pseudoplastic fluids. With the presence of SC-CO2,the viscosity coefficient of the CA/CaCO3solution is reduced by 26.00% at 50℃. This is consistent with the role of SC-CO2in reducing the viscosity and pressure of the CA/CaCO3solution system,resulting in an increase in its overall volumetric flow rate of extrusion.

    (2)Increasing the extrusion temperature causes the viscosity of the CA/CaCO3/SC-CO2solution to decrease,and the beneficial effect of SC-CO2on the reduced viscosity levels at higher temperatures. The viscosity of the CA/CaCO3/SC-CO2solution at lower shear rates is more sensitive to temperature than for high shear rates.

    (3)The overall dispersion mixing properties of the CA/CaCO3solution in the extrusion process is significantly improved with the presence of SC-CO2.Although the maximum viscosity of the CA/CaCO3/SC-CO2solution decreases by 37.27% from 55 ℃to 60 ℃,the maximum probability density under the maximum shear stress decreases 2.99%. This results in a more uneven viscosity distribution and reduced dispersion mixing properties,50 ℃was found to be the optimal processing temperature.

    猜你喜歡
    分泌量化工學院缺鈣
    口水白流
    手術(shù)室護理對剖宮產(chǎn)術(shù)后乳汁分泌時間及分泌量的影響評價
    婚育與健康(2024年2期)2024-02-25 02:11:01
    使固態(tài)化學反應100%完成的方法
    國家開放大學石油和化工學院學習中心列表
    手術(shù)室護理對剖宮產(chǎn)術(shù)后乳汁分泌時間及分泌量的影響
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    一個信號告訴準媽媽是否缺鈣
    《化工學報》贊助單位
    化工學報(2016年3期)2016-03-14 08:37:00
    兒童缺鈣
    缺啥補啥
    丝袜在线中文字幕| 亚洲精品一二三| 国产在线免费精品| 亚洲精品日韩在线中文字幕| 少妇的丰满在线观看| 免费一级毛片在线播放高清视频 | 国产国语露脸激情在线看| 91国产中文字幕| 最新在线观看一区二区三区| 亚洲欧洲精品一区二区精品久久久| 99国产精品99久久久久| 我要看黄色一级片免费的| 97人妻天天添夜夜摸| 另类精品久久| 精品人妻一区二区三区麻豆| 久久久欧美国产精品| 美女高潮到喷水免费观看| 亚洲国产精品一区二区三区在线| 亚洲人成电影观看| 夜夜夜夜夜久久久久| 亚洲欧洲精品一区二区精品久久久| 国产免费视频播放在线视频| 女人爽到高潮嗷嗷叫在线视频| 一二三四在线观看免费中文在| 999久久久国产精品视频| 乱人伦中国视频| av视频免费观看在线观看| 黑丝袜美女国产一区| 性色av乱码一区二区三区2| 国产成人精品久久二区二区91| 中文欧美无线码| 99久久国产精品久久久| 高清在线国产一区| 日韩免费高清中文字幕av| 亚洲熟女毛片儿| 韩国精品一区二区三区| 精品国产一区二区三区四区第35| 久久久久久人人人人人| av天堂在线播放| 久久精品aⅴ一区二区三区四区| 亚洲久久久国产精品| 国产男女超爽视频在线观看| 国产伦人伦偷精品视频| 在线观看免费日韩欧美大片| 两人在一起打扑克的视频| 精品卡一卡二卡四卡免费| 成人国产一区最新在线观看| 19禁男女啪啪无遮挡网站| 久久性视频一级片| 少妇猛男粗大的猛烈进出视频| 中文字幕制服av| 欧美激情极品国产一区二区三区| 美女主播在线视频| 日日夜夜操网爽| 国产高清视频在线播放一区 | 一级毛片精品| 国产野战对白在线观看| 人成视频在线观看免费观看| 国产男人的电影天堂91| 岛国在线观看网站| 久久中文看片网| 嫁个100分男人电影在线观看| av天堂久久9| 国产日韩欧美视频二区| 久久久欧美国产精品| 亚洲人成电影观看| 一区二区三区四区激情视频| 亚洲中文字幕日韩| av线在线观看网站| 久久精品国产亚洲av香蕉五月 | 五月天丁香电影| 每晚都被弄得嗷嗷叫到高潮| 久热这里只有精品99| 视频区欧美日本亚洲| 制服诱惑二区| 99久久99久久久精品蜜桃| 午夜免费成人在线视频| 午夜福利乱码中文字幕| 99国产精品免费福利视频| 国产欧美日韩一区二区精品| 中文字幕高清在线视频| 国产日韩欧美在线精品| 最近最新中文字幕大全免费视频| 久久久国产一区二区| 曰老女人黄片| 久久精品国产亚洲av香蕉五月 | 精品免费久久久久久久清纯 | 国产欧美日韩综合在线一区二区| 久久国产亚洲av麻豆专区| 久久久久久久国产电影| 91av网站免费观看| 亚洲国产中文字幕在线视频| 精品福利观看| 人人妻人人爽人人添夜夜欢视频| 成年人黄色毛片网站| 看免费av毛片| 亚洲少妇的诱惑av| 美女大奶头黄色视频| 久久久精品94久久精品| 三级毛片av免费| 啦啦啦在线免费观看视频4| 亚洲精品国产av蜜桃| 视频区欧美日本亚洲| 99久久精品国产亚洲精品| 亚洲欧美清纯卡通| 久久天堂一区二区三区四区| 国产精品偷伦视频观看了| 91老司机精品| 国产野战对白在线观看| a级毛片在线看网站| 精品第一国产精品| av线在线观看网站| 男女之事视频高清在线观看| 国产精品免费大片| 亚洲精品国产区一区二| 最近中文字幕2019免费版| 久久久久国产一级毛片高清牌| 男人爽女人下面视频在线观看| 少妇被粗大的猛进出69影院| 国产成人影院久久av| 精品一区二区三区av网在线观看 | 国产精品久久久av美女十八| 人成视频在线观看免费观看| 亚洲av电影在线观看一区二区三区| 啦啦啦啦在线视频资源| 99精国产麻豆久久婷婷| 午夜成年电影在线免费观看| 亚洲熟女毛片儿| 啦啦啦 在线观看视频| 免费不卡黄色视频| 国产精品久久久久久精品电影小说| 精品人妻在线不人妻| 免费人妻精品一区二区三区视频| 看免费av毛片| 精品国产一区二区三区四区第35| 丝袜人妻中文字幕| 亚洲 欧美一区二区三区| 国产在线一区二区三区精| 91av网站免费观看| 免费av中文字幕在线| 婷婷色av中文字幕| 狠狠婷婷综合久久久久久88av| 婷婷丁香在线五月| 老司机靠b影院| 人人妻人人澡人人爽人人夜夜| 久久久久视频综合| 国产精品久久久久久精品电影小说| 他把我摸到了高潮在线观看 | 国产亚洲欧美精品永久| 欧美亚洲日本最大视频资源| 久久国产精品大桥未久av| 国产亚洲欧美精品永久| 在线亚洲精品国产二区图片欧美| 久久中文字幕一级| 精品国产一区二区久久| 两个人看的免费小视频| 日韩 亚洲 欧美在线| 国产精品二区激情视频| 两人在一起打扑克的视频| 老司机影院成人| 亚洲精品一二三| 99久久国产精品久久久| 亚洲欧美激情在线| 99精国产麻豆久久婷婷| 50天的宝宝边吃奶边哭怎么回事| 亚洲专区中文字幕在线| 久久精品国产亚洲av高清一级| 欧美另类一区| 日韩制服丝袜自拍偷拍| 又大又爽又粗| 少妇猛男粗大的猛烈进出视频| 新久久久久国产一级毛片| 国内毛片毛片毛片毛片毛片| 国产成人啪精品午夜网站| 欧美亚洲日本最大视频资源| 久久中文字幕一级| 久久国产精品人妻蜜桃| 免费少妇av软件| 久久精品亚洲av国产电影网| 王馨瑶露胸无遮挡在线观看| 国产成人系列免费观看| 国产欧美日韩综合在线一区二区| 欧美精品啪啪一区二区三区 | 国产97色在线日韩免费| 一级a爱视频在线免费观看| 啦啦啦 在线观看视频| 亚洲第一欧美日韩一区二区三区 | www日本在线高清视频| 日本91视频免费播放| 麻豆av在线久日| 91精品伊人久久大香线蕉| 久久精品熟女亚洲av麻豆精品| 两性夫妻黄色片| 真人做人爱边吃奶动态| 欧美老熟妇乱子伦牲交| 日韩中文字幕视频在线看片| 建设人人有责人人尽责人人享有的| 国产精品.久久久| 各种免费的搞黄视频| 国产精品一二三区在线看| 99精国产麻豆久久婷婷| 脱女人内裤的视频| 欧美黑人精品巨大| bbb黄色大片| 丝袜脚勾引网站| 国产欧美日韩精品亚洲av| 亚洲精品乱久久久久久| 亚洲国产成人一精品久久久| 亚洲一码二码三码区别大吗| 91老司机精品| 国产亚洲av片在线观看秒播厂| 成年美女黄网站色视频大全免费| 我的亚洲天堂| 欧美日韩黄片免| 国产亚洲精品第一综合不卡| 国产精品.久久久| 亚洲国产中文字幕在线视频| 999久久久国产精品视频| 美女大奶头黄色视频| 少妇猛男粗大的猛烈进出视频| 国产主播在线观看一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 一边摸一边抽搐一进一出视频| 一二三四社区在线视频社区8| 爱豆传媒免费全集在线观看| 久久久久久免费高清国产稀缺| 天堂中文最新版在线下载| 9色porny在线观看| 波多野结衣av一区二区av| 如日韩欧美国产精品一区二区三区| 人妻人人澡人人爽人人| 成年人免费黄色播放视频| 狂野欧美激情性xxxx| 超碰97精品在线观看| 狠狠婷婷综合久久久久久88av| 午夜免费鲁丝| 精品人妻在线不人妻| 菩萨蛮人人尽说江南好唐韦庄| 国产日韩欧美视频二区| 久久久久久久久久久久大奶| 久久 成人 亚洲| 日韩欧美一区视频在线观看| 欧美日韩视频精品一区| 一级毛片女人18水好多| 999久久久精品免费观看国产| 精品免费久久久久久久清纯 | 欧美精品av麻豆av| 国产成人欧美| 久久人妻熟女aⅴ| 午夜久久久在线观看| 麻豆乱淫一区二区| 在线天堂中文资源库| 色婷婷av一区二区三区视频| 一本久久精品| 久久中文看片网| 两人在一起打扑克的视频| 欧美精品亚洲一区二区| 国产免费现黄频在线看| 日韩一卡2卡3卡4卡2021年| 777久久人妻少妇嫩草av网站| 亚洲精品一二三| 两性夫妻黄色片| 精品国内亚洲2022精品成人 | 日本撒尿小便嘘嘘汇集6| 九色亚洲精品在线播放| 久久中文看片网| 99久久精品国产亚洲精品| 国产精品1区2区在线观看. | 精品少妇内射三级| 国产淫语在线视频| 操出白浆在线播放| 高清欧美精品videossex| 国产精品香港三级国产av潘金莲| 免费看十八禁软件| 可以免费在线观看a视频的电影网站| 日韩免费高清中文字幕av| 国产免费av片在线观看野外av| 男女之事视频高清在线观看| 国产激情久久老熟女| 日韩一区二区三区影片| 国产欧美日韩精品亚洲av| 国产成人欧美在线观看 | 国产成人av教育| 老司机影院成人| 国产av一区二区精品久久| 日韩人妻精品一区2区三区| 午夜久久久在线观看| 国产精品1区2区在线观看. | 99国产精品99久久久久| 在线观看人妻少妇| 亚洲性夜色夜夜综合| e午夜精品久久久久久久| 我要看黄色一级片免费的| 美女中出高潮动态图| 免费人妻精品一区二区三区视频| 五月天丁香电影| 国产精品一区二区免费欧美 | 高清在线国产一区| av欧美777| 日韩大片免费观看网站| 91成人精品电影| 亚洲一卡2卡3卡4卡5卡精品中文| 黑人巨大精品欧美一区二区mp4| 精品免费久久久久久久清纯 | 窝窝影院91人妻| 宅男免费午夜| 亚洲av电影在线观看一区二区三区| 国产精品香港三级国产av潘金莲| 欧美黄色淫秽网站| 波多野结衣av一区二区av| 午夜老司机福利片| 亚洲av成人不卡在线观看播放网 | 无遮挡黄片免费观看| 国产国语露脸激情在线看| 欧美日韩黄片免| 亚洲人成电影观看| 一区二区三区激情视频| 亚洲激情五月婷婷啪啪| 亚洲精品第二区| 亚洲av日韩在线播放| 咕卡用的链子| 丝袜美腿诱惑在线| 午夜91福利影院| 亚洲av日韩精品久久久久久密| 成人影院久久| 亚洲成人国产一区在线观看| 免费久久久久久久精品成人欧美视频| 亚洲国产看品久久| 自拍欧美九色日韩亚洲蝌蚪91| 十八禁高潮呻吟视频| 国产欧美日韩综合在线一区二区| 国产成人欧美| 日韩有码中文字幕| 狠狠精品人妻久久久久久综合| 欧美日韩视频精品一区| 飞空精品影院首页| 香蕉国产在线看| 国产精品国产三级国产专区5o| 男女边摸边吃奶| 国产精品99久久99久久久不卡| 亚洲国产精品一区二区三区在线| 国产精品久久久久成人av| 午夜福利在线免费观看网站| 日日摸夜夜添夜夜添小说| 国产欧美日韩精品亚洲av| 国产精品一区二区免费欧美 | 9191精品国产免费久久| 精品国产一区二区三区久久久樱花| 久久99热这里只频精品6学生| 宅男免费午夜| 久久久精品94久久精品| www.自偷自拍.com| 视频在线观看一区二区三区| av电影中文网址| 成在线人永久免费视频| 天天躁日日躁夜夜躁夜夜| 国产精品.久久久| 久久 成人 亚洲| 国产三级黄色录像| 在线观看免费高清a一片| 美女高潮到喷水免费观看| 一区二区三区四区激情视频| 啦啦啦 在线观看视频| 啦啦啦中文免费视频观看日本| 十八禁网站免费在线| 亚洲情色 制服丝袜| 午夜福利,免费看| 亚洲情色 制服丝袜| 精品乱码久久久久久99久播| 国产精品一区二区免费欧美 | 午夜福利影视在线免费观看| 美女脱内裤让男人舔精品视频| 在线观看舔阴道视频| 亚洲av电影在线进入| 亚洲av片天天在线观看| 精品国产乱码久久久久久男人| 搡老熟女国产l中国老女人| 91成年电影在线观看| 99久久99久久久精品蜜桃| 国产一区二区三区在线臀色熟女 | 国产极品粉嫩免费观看在线| 亚洲国产成人一精品久久久| 精品国产乱码久久久久久小说| 国产欧美日韩一区二区三区在线| 香蕉国产在线看| 999久久久精品免费观看国产| 香蕉国产在线看| 飞空精品影院首页| 国产成人一区二区三区免费视频网站| 新久久久久国产一级毛片| 久久久久久亚洲精品国产蜜桃av| tube8黄色片| 777米奇影视久久| 精品国产一区二区三区四区第35| 国产男女内射视频| 91麻豆精品激情在线观看国产 | 国产xxxxx性猛交| 亚洲国产av影院在线观看| 激情视频va一区二区三区| 18在线观看网站| 精品国产超薄肉色丝袜足j| 如日韩欧美国产精品一区二区三区| 黄色 视频免费看| 国产欧美日韩综合在线一区二区| 乱人伦中国视频| 色婷婷av一区二区三区视频| 一个人免费看片子| 欧美国产精品一级二级三级| 欧美激情 高清一区二区三区| 91老司机精品| 亚洲av日韩精品久久久久久密| 中文字幕高清在线视频| 国内毛片毛片毛片毛片毛片| 国产老妇伦熟女老妇高清| 男女下面插进去视频免费观看| 国产精品99久久99久久久不卡| 最新的欧美精品一区二区| 亚洲欧美激情在线| 美女主播在线视频| 自线自在国产av| 18禁黄网站禁片午夜丰满| 亚洲少妇的诱惑av| 最黄视频免费看| 久久人人爽人人片av| 永久免费av网站大全| 久久久久国产精品人妻一区二区| 亚洲国产精品一区二区三区在线| 欧美日韩国产mv在线观看视频| 国产男女超爽视频在线观看| 99国产精品一区二区三区| 伊人亚洲综合成人网| 91精品三级在线观看| 淫妇啪啪啪对白视频 | 国产精品欧美亚洲77777| 亚洲成人国产一区在线观看| 日日摸夜夜添夜夜添小说| 黄色视频,在线免费观看| 亚洲专区字幕在线| 一级,二级,三级黄色视频| 精品国产超薄肉色丝袜足j| 精品熟女少妇八av免费久了| 国产日韩欧美亚洲二区| 国产激情久久老熟女| 久久亚洲国产成人精品v| 窝窝影院91人妻| 精品国产一区二区三区久久久樱花| www日本在线高清视频| 中国美女看黄片| 999精品在线视频| 极品人妻少妇av视频| 精品国产一区二区三区四区第35| 久久热在线av| 久久国产精品大桥未久av| 老司机影院成人| 久久久久国内视频| 老熟妇仑乱视频hdxx| 两人在一起打扑克的视频| 日韩精品免费视频一区二区三区| 精品第一国产精品| 欧美日韩中文字幕国产精品一区二区三区 | 中国美女看黄片| 老汉色∧v一级毛片| 亚洲国产av影院在线观看| 日韩视频在线欧美| 91大片在线观看| 91精品三级在线观看| 啦啦啦视频在线资源免费观看| 99国产综合亚洲精品| 亚洲午夜精品一区,二区,三区| 又大又爽又粗| 三上悠亚av全集在线观看| 日韩大片免费观看网站| 亚洲精品一二三| 99国产精品99久久久久| 纵有疾风起免费观看全集完整版| 另类精品久久| 日韩大片免费观看网站| 久久国产精品男人的天堂亚洲| 国产高清国产精品国产三级| 老汉色av国产亚洲站长工具| 一区二区三区乱码不卡18| av网站免费在线观看视频| 超碰97精品在线观看| 99久久精品国产亚洲精品| 精品国产一区二区三区四区第35| 久久综合国产亚洲精品| 免费高清在线观看日韩| 老司机在亚洲福利影院| 成人黄色视频免费在线看| 女人高潮潮喷娇喘18禁视频| 欧美另类一区| 国产亚洲欧美在线一区二区| 99久久综合免费| 欧美精品一区二区大全| 久久久久久免费高清国产稀缺| 99久久精品国产亚洲精品| 午夜福利一区二区在线看| 亚洲精品av麻豆狂野| 天堂中文最新版在线下载| 亚洲中文字幕日韩| 女人精品久久久久毛片| 国产不卡av网站在线观看| 国产成人精品久久二区二区免费| 一级片免费观看大全| 黄色 视频免费看| 国产区一区二久久| 一区二区日韩欧美中文字幕| 亚洲精品国产色婷婷电影| 国产精品.久久久| 美女国产高潮福利片在线看| 99香蕉大伊视频| 国产又爽黄色视频| 久久青草综合色| 99国产综合亚洲精品| 亚洲精品一卡2卡三卡4卡5卡 | 欧美成人午夜精品| 国产一区二区在线观看av| 国产av一区二区精品久久| 真人做人爱边吃奶动态| 电影成人av| 成年av动漫网址| 法律面前人人平等表现在哪些方面 | 高清av免费在线| 男女床上黄色一级片免费看| 超碰成人久久| 久9热在线精品视频| 午夜影院在线不卡| 一级毛片女人18水好多| 大型av网站在线播放| 女人被躁到高潮嗷嗷叫费观| 美女扒开内裤让男人捅视频| 日韩,欧美,国产一区二区三区| 久久精品亚洲熟妇少妇任你| 波多野结衣一区麻豆| 精品亚洲乱码少妇综合久久| 精品一区在线观看国产| 国产av精品麻豆| 亚洲成人免费电影在线观看| 操美女的视频在线观看| 少妇被粗大的猛进出69影院| 99九九在线精品视频| 亚洲精品日韩在线中文字幕| 极品少妇高潮喷水抽搐| 国产精品一区二区免费欧美 | 一边摸一边做爽爽视频免费| 夜夜夜夜夜久久久久| 免费在线观看完整版高清| 9191精品国产免费久久| 大香蕉久久成人网| 免费黄频网站在线观看国产| 国产高清国产精品国产三级| 精品国产乱码久久久久久男人| 妹子高潮喷水视频| 老司机福利观看| 亚洲精品美女久久av网站| 亚洲va日本ⅴa欧美va伊人久久 | 欧美日韩精品网址| 菩萨蛮人人尽说江南好唐韦庄| 国产91精品成人一区二区三区 | 精品国产超薄肉色丝袜足j| 可以免费在线观看a视频的电影网站| 久久久久精品人妻al黑| 曰老女人黄片| 菩萨蛮人人尽说江南好唐韦庄| 久久中文看片网| 搡老熟女国产l中国老女人| 免费人妻精品一区二区三区视频| 丝袜喷水一区| 50天的宝宝边吃奶边哭怎么回事| 香蕉丝袜av| 亚洲中文字幕日韩| 少妇的丰满在线观看| 精品人妻熟女毛片av久久网站| www日本在线高清视频| 18禁黄网站禁片午夜丰满| 国产又色又爽无遮挡免| 中文字幕精品免费在线观看视频| 久久香蕉激情| 少妇被粗大的猛进出69影院| 午夜福利影视在线免费观看| 亚洲精品日韩在线中文字幕| 国产亚洲av片在线观看秒播厂| 日本av手机在线免费观看| 欧美精品人与动牲交sv欧美| 精品人妻一区二区三区麻豆| 久久久久久久精品精品| 老鸭窝网址在线观看| 精品人妻1区二区| 国产成人av激情在线播放| 男女下面插进去视频免费观看| www.自偷自拍.com| 国产一区二区 视频在线| 久久99一区二区三区| 亚洲av成人不卡在线观看播放网 | 90打野战视频偷拍视频| 亚洲中文字幕日韩| 十分钟在线观看高清视频www| 捣出白浆h1v1| 国产精品1区2区在线观看. | 最近最新中文字幕大全免费视频| 亚洲 国产 在线| 国产一区二区 视频在线| 日韩欧美免费精品| 午夜视频精品福利| 黑人猛操日本美女一级片| 精品久久久久久久毛片微露脸 | 大型av网站在线播放| 精品亚洲乱码少妇综合久久| 亚洲欧美日韩高清在线视频 | 成人影院久久| 男女免费视频国产| 日韩欧美国产一区二区入口| 黄色a级毛片大全视频| 伊人亚洲综合成人网| 丝袜喷水一区|