余方偉 王神云 張偉 王紅 于利 李建斌
摘要:由蛋白激酶和蛋白磷酸酶調(diào)控的蛋白質(zhì)可逆磷酸化是一種重要的蛋白質(zhì)翻譯后修飾,它在信號(hào)轉(zhuǎn)導(dǎo)、細(xì)胞周期、基因轉(zhuǎn)錄、代謝調(diào)控等過(guò)程中起到至關(guān)重要的作用。本研究以蕓薹根腫菌e3菌株的基因組為試驗(yàn)數(shù)據(jù)來(lái)源,采用生物信息學(xué)方法對(duì)蕓薹根腫菌全基因組蛋白磷酸酶進(jìn)行了鑒定和表達(dá)分析。 基于隱馬爾可夫模型(Hidden markov model,HMM)搜索與SMART分析相結(jié)合,本研究在蕓薹根腫菌基因組中共鑒定出54個(gè)蛋白磷酸酶基因。編碼的54個(gè)蛋白磷酸酶可以進(jìn)一步被分成4類(lèi),包括10個(gè)磷酸化蛋白磷酸酶(PPP),21個(gè)金屬離子依賴(lài)型蛋白磷酸酶(PPM),19個(gè)酪氨酸蛋白磷酸酶(PTP),4個(gè)基于天冬氨酸的蛋白磷酸酶(APP)。這54個(gè)蛋白磷酸酶的相對(duì)分子質(zhì)量為10 780~125 140,等電點(diǎn)為4.43~10.45。通過(guò)信號(hào)肽和跨膜結(jié)構(gòu)域分析發(fā)現(xiàn)在這54個(gè)蛋白磷酸酶中,PBRA_007461存在信號(hào)肽,PBRA_003636、PBRA_004449、PBRA_004464、PBRA_005270、 PBRA_006854和PBRA_007201存在跨膜結(jié)構(gòu)域。轉(zhuǎn)錄組分析結(jié)果表明這54個(gè)蛋白磷酸酶基因在不同時(shí)期差異表達(dá),值得一提的是在休眠孢子萌發(fā)期和休眠孢子成熟期,金屬離子依賴(lài)型蛋白磷酸酶基因PBRA_001085的表達(dá)量最高,說(shuō)明該磷酸酶在休眠孢子發(fā)育中起到重要作用。綜上所述,本研究可為蕓薹根腫菌蛋白磷酸酶功能研究和根腫病防治靶標(biāo)選擇提供理論基礎(chǔ)。
關(guān)鍵詞:根腫病;蕓薹根腫菌;蛋白磷酸酶
中圖分類(lèi)號(hào):Q814文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1000-4440(2020)02-0318-07
Abstract:Reversible phosphorylation of proteins, regulated by protein kinases and protein phosphatases is an important post-translational modification, which plays a vital role in signal transduction, cell cycle, gene transcription and metabolic regulation. In this study, bioinformatics tools were used to analyze the protein sequences from Plasmodiophora brassicae e3 strain, and the identified protein phosphatase genes were further subjected to expression profiling analysis. Based on the combination of hidden markov model (HMM) search and SMART analysis, a total of 54 protein phosphatase genes were identified in the genome of P. brassicae. These 54 protein phosphatases could be further classified into four categories, including 10 phosphoprotein phosphatases (PPP), 21 metal ion-dependent protein phosphatases (PPM), 19 protein tyrosine phosphatases (PTP), four aspartate-based protein phosphatases (APP). The molecular weights of these 54 protein phosphatases ranged from 10 780 to 125 140, and the isoelectric points ranged from 4.43 to 10.45. The results of signal peptide and transmembrane domain analysis revealed that among 54 candidate protein phosphatases, PBRA_007461 had a signal peptide, and there were transmembrane domains in PBRA_003636, PBRA_004449, PBRA_004464, PBRA_005270, PBRA_006854 and PBRA_007201. Transcriptome analysis results showed that these 54 protein phosphatases genes were differentially expressed at different stages. Notably, the expression of the metal ion-dependent protein phosphatase gene PBRA_001085 was highest during the resting spore germination and the spore maturation period, indicating that it played an important role in resting spore development. In conclusion, this study can provide a theoretical basis for the characterization of protein phosphatases and development of novel strategies against clubroot.
Key words:clubroot;Plasmodiophora brassicae;protein phosphatase
由蕓薹根腫菌(Plasmodiophora brassicae Woronin)引起的根腫病對(duì)全世界十字花科作物的生產(chǎn)構(gòu)成越來(lái)越大的威脅[1-3]。僅在中國(guó),每年大約有3.20×106~4.00×106hm2的十字花科作物受到根腫病的影響,造成20%~30%的產(chǎn)量損失[3]。盡管選育抗病品種是控制根腫病最經(jīng)濟(jì)有效的方法[4],但新型致病小種的出現(xiàn)也極大地?fù)p害了抗病品種的推廣應(yīng)用[5-7]。因此,根腫病防治新策略的研究迫在眉睫。
蛋白質(zhì)可逆磷酸化是生物體內(nèi)信號(hào)傳導(dǎo)的主要形式和重要的調(diào)控機(jī)制[8-10]。蛋白質(zhì)磷酸化過(guò)程由蛋白激酶(PKs)控制?,F(xiàn)有研究結(jié)果表明,蛋白質(zhì)可以在9個(gè)氨基酸(酪氨酸、絲氨酸、蘇氨酸、半胱氨酸、精氨酸、賴(lài)氨酸、天冬氨酸、谷氨酸和組氨酸)位點(diǎn)上發(fā)生磷酸化[11],但絲氨酸、蘇氨酸和酪氨酸磷酸化在真核細(xì)胞中占主導(dǎo)地位并發(fā)揮關(guān)鍵調(diào)控作用[12]。對(duì)2 244種人類(lèi)蛋白質(zhì)上6 600個(gè)磷酸化位點(diǎn)的蛋白質(zhì)組學(xué)分析結(jié)果表明,磷酸化絲氨酸(pSer)、磷酸化蘇氨酸(pThr)和磷酸化酪氨酸(pTyr)分別占磷酸化氨基酸的86.4%、11.8%和1.8%[13]。對(duì)禾谷鐮刀菌(Fusarium graminearum) 2 902個(gè)磷酸化肽分析發(fā)現(xiàn),pSer、pThr和pTyr分別占磷酸化氨基酸的87.0%,26.0%和2.4%[14]。在白色念珠菌中(Candida albicans),對(duì)2 896個(gè)蛋白質(zhì)的15 906個(gè)特異磷酸化位點(diǎn)鑒定分析發(fā)現(xiàn),pSer、pThr和pTyr分別占磷酸化氨基酸的80.01%,18.11%和1.81%[15] 。在黃曲霉(Aspergillus flavus)中,對(duì)293個(gè)磷酸化蛋白的598個(gè)磷酸化位點(diǎn)進(jìn)行分析發(fā)現(xiàn),pSer、pThr和pTyr分別占磷酸化氨基酸的81.1%,16.4%和2.5%[16] 。蛋白質(zhì)去磷酸化過(guò)程由蛋白磷酸酶(PP)控制。根據(jù)蛋白質(zhì)底物特異性、結(jié)構(gòu)和催化機(jī)制不同,PP可分為2個(gè)主要的大家族:蛋白酪氨酸磷酸酶(PTP)和絲氨酸/蘇氨酸磷酸酶(PSP)。 PTP成員主要催化磷酸酪氨酸的去磷酸化,包括經(jīng)典PTP,雙特異性磷酸酶(DSP),Cdc25型磷酸酶和低分子量磷酸酶[17]。 PSP包含3個(gè)主要家族:磷酸化蛋白磷酸酶(PPP),金屬依賴(lài)性蛋白磷酸酶(PPM)和基于天冬氨酸的蛋白磷酸酶(APP)[18]。已有的結(jié)果表明磷酸酶基因家族成員在不同物種中數(shù)目不同,且其生物學(xué)功能各異。如在構(gòu)巢曲霉(Aspergillus nidulans)中已鑒定出28個(gè)PP,其中8個(gè)是正常生長(zhǎng)或有絲分裂所必需的[19]。反向遺傳分析結(jié)果表明,禾谷鐮刀菌的磷酸酶參與菌絲生長(zhǎng)、分生孢子形成、致病和產(chǎn)毒等過(guò)程[20-21]。
因?yàn)镻P的功能多樣性和重要性,本研究擬采用生物信息學(xué)分析方法挖掘鑒定蕓薹根腫菌的蛋白磷酸酶,對(duì)其理化性質(zhì)、跨膜結(jié)構(gòu)域、信號(hào)肽進(jìn)行分析,并通過(guò)轉(zhuǎn)錄組學(xué)分析這些磷酸酶在不同階段的表達(dá)變化,為后續(xù)蕓薹根腫菌磷酸酶的功能研究及根腫病新的防治策略研究提供借鑒。
1材料與方法
1.1蕓薹根腫菌基因組序列
以蕓薹根腫菌e3菌株的基因組為起始序列,進(jìn)行后續(xù)生物信息學(xué)分析,序列下載自公共數(shù)據(jù)庫(kù)NCBI(ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/049/375/GCA_001049375.1_pbe3.h15) 。
1.2生物信息學(xué)分析
從Pfam數(shù)據(jù)庫(kù)(http://pfam.xfam.org/)中下載pfam文件(表1),利用HMMER 3.0 軟件[22]搜索蕓薹根腫菌的蛋白質(zhì)氨基酸序列。用SMART(http://smart.embl-heidelberg.de/)對(duì)獲得的氨基酸序列進(jìn)行結(jié)構(gòu)域分析,剔除不含磷酸酶催化結(jié)構(gòu)域的氨基酸序列,再進(jìn)一步剔除不完整的氨基酸序列,最后剩下的序列即為候選蛋白磷酸酶氨基酸序列。采用SignalP 4.0[23] 和TMHMM 2.0 [24]分別對(duì)候選蛋白質(zhì)的信號(hào)肽和跨膜結(jié)構(gòu)域進(jìn)行分析。
1.3表達(dá)量分析
蕓薹根腫菌的轉(zhuǎn)錄組數(shù)據(jù)源自Schwelm等[25]的報(bào)道:將-20 ℃保存的分離純化后的休眠孢子置于4 ℃解凍48 h后,再轉(zhuǎn)移到含有400 ng/ml特美汀的滅菌水中室溫孵育24 h,以此樣品提取RNA進(jìn)行轉(zhuǎn)錄組學(xué)分析,獲得的數(shù)據(jù)即為休眠孢子萌發(fā)期數(shù)據(jù);蕓薹根腫菌侵染油菜(Brassica napus)栽培種Westar 35 d后,從油菜病根中分離原生質(zhì)團(tuán),提取原生質(zhì)團(tuán)的RNA進(jìn)行轉(zhuǎn)錄組學(xué)分析,獲得的數(shù)據(jù)即為原生質(zhì)團(tuán)時(shí)期數(shù)據(jù);從蕓薹根腫菌侵染35 d后的白菜(B.rapa)栽培種 Granaat病根中分離休眠孢子,以此休眠孢子提取RNA進(jìn)行轉(zhuǎn)錄組學(xué)分析,獲得的數(shù)據(jù)為休眠孢子成熟期數(shù)據(jù);白菜栽培種Granaat、油菜栽培種Dc119 Giant rape和結(jié)球甘藍(lán)(B. oleracea var. capitata) Jersey Queen接種蕓薹根腫菌35 d后,分別取病根進(jìn)行表面消毒后提取總RNA進(jìn)行轉(zhuǎn)錄組學(xué)分析,以此獲得的數(shù)據(jù)即為不同寄主的數(shù)據(jù)來(lái)源。根據(jù)Trapnell等[26]報(bào)道的方法將數(shù)據(jù)換算成FPKM(Fragments per kilobase of transcript per million mapped reads)。蛋白磷酸酶基因的表達(dá)量換算成Log2(FPKM+1)值后,利用R語(yǔ)言中的pheatmap包繪制熱圖。
2結(jié)果與分析
2.1蕓薹根腫菌蛋白磷酸酶的鑒定
以Pfam文件為種子序列搜索蕓薹根腫菌的蛋白質(zhì)庫(kù),再結(jié)合SMART結(jié)構(gòu)域分析,本研究從蕓薹根腫菌基因組中鑒定到了57個(gè)蛋白磷酸酶基因,經(jīng)過(guò)序列分析發(fā)現(xiàn),其中3個(gè)蛋白磷酸酶基因(PBRA_000895、PBRA_000081 和PBRA_000766)的序列不完整,剔除以上3個(gè)基因后,最終選擇剩余的54個(gè)蛋白磷酸酶基因(表2)。
2.2蕓薹根腫菌蛋白磷酸酶理化特性分析
根據(jù)結(jié)構(gòu)域預(yù)測(cè)分析結(jié)果,這54個(gè)蛋白磷酸酶可以進(jìn)一步被分成4類(lèi),包括10個(gè)磷酸化蛋白磷酸酶,21個(gè)金屬離子依賴(lài)型蛋白磷酸酶,19個(gè)酪氨酸蛋白磷酸酶, 4 個(gè)基于天冬氨酸的蛋白磷酸酶(表2)。如表2所示,這54個(gè)蛋白磷酸酶的氨基酸殘基數(shù)目為92~1 111 aa,其中氨基酸殘基數(shù)目最少的為酪氨酸磷酸酶PBRA_008356,氨基酸殘基數(shù)目最多的為磷酸化蛋白磷酸酶PBRA_004449。這54個(gè)蛋白磷酸酶的相對(duì)分子質(zhì)量為10 780 ~125 140,其中相對(duì)分子質(zhì)量最低的為酪氨酸磷酸酶PBRA_008356,相對(duì)分子質(zhì)量最大的為磷酸化蛋白磷酸酶PBRA_004449。 這54個(gè)蛋白磷酸酶的理論等電點(diǎn)為4.43~10.45,其中理論等電點(diǎn)最低的為金屬離子依賴(lài)性磷酸酶PBRA_008437,理論等電點(diǎn)最高的為酪氨酸蛋白磷酸酶PBRA_009167。
2.3蕓薹根腫菌蛋白磷酸酶信號(hào)肽和跨膜結(jié)構(gòu)域的預(yù)測(cè)分析
對(duì)這54個(gè)蛋白磷酸酶進(jìn)行信號(hào)肽分析發(fā)現(xiàn),PBRA_007461存在信號(hào)肽,且在第19~20位氨基酸殘基處存在信號(hào)肽切割位點(diǎn),說(shuō)明該蛋白質(zhì)是一個(gè)潛在外泌蛋白質(zhì)。通過(guò)TMHMM2.0分析發(fā)現(xiàn),PBRA_003636、PBRA_004449、PBRA_004464、PBRA_005270、 PBRA_006854和PBRA_007201存在跨膜結(jié)構(gòu)域(PBRA_004449有5個(gè)跨膜結(jié)構(gòu)域,其他均為1個(gè)),說(shuō)明這些磷酸酶可能是膜定位。
2.4蕓薹根腫菌蛋白磷酸酶基因在不同階段表達(dá)動(dòng)態(tài)變化
通過(guò)轉(zhuǎn)錄組分析對(duì)這54個(gè)蛋白磷酸酶基因在不同時(shí)期的表達(dá)進(jìn)行分析。如圖1所示,有21個(gè)磷酸酶基因(PBRA_005571、PBRA_006854、 PBRA_007271、 PBRA_005957、 PBRA_005771、 PBRA_002157、PBRA_000495、PBRA_003208、PBRA_002428、PBRA_000135、PBRA_003636、 PBRA_003461、PBRA_002692、PBRA_008437、PBRA_006030、PBRA_007543、PBRA_001085、 PBRA_000278、 PBRA_002029、 PBRA_004449、 PBRA_003042)在各個(gè)階段的表達(dá)量均較高,8個(gè)磷酸酶基因(PBRA_008821、PBRA_007906、 PBRA_000995、 PBRA_001432、 PBRA_005270、PBRA_008356、PBRA_005841、 PBRA_009167)在各個(gè)階段的表達(dá)量均較低,其余基因在不同階段差異表達(dá)。在孢子萌發(fā)階段,表達(dá)量最高的磷酸酶基因?yàn)镻BRA_001085,在原生質(zhì)團(tuán)階段,表達(dá)量最高的磷酸酶基因?yàn)镻BRA_000278,在孢子成熟階段,表達(dá)量最高的磷酸酶基因?yàn)镻BRA_001085。
3討論
由蕓薹根腫菌導(dǎo)致的根腫病嚴(yán)重威脅十字花科作物的可持續(xù)生產(chǎn),這種病也被稱(chēng)為植物的“癌癥”。蕓薹根腫菌是細(xì)胞內(nèi)活體營(yíng)養(yǎng)型病原物,因?yàn)槠錈o(wú)法在人工合成培養(yǎng)基上生長(zhǎng),缺乏穩(wěn)定的遺傳轉(zhuǎn)化體系,因此常規(guī)的反向遺傳操作難以在蕓薹根腫菌中得到應(yīng)用。隨著高通量測(cè)序技術(shù)的快速發(fā)展,采用生物信息學(xué)方法進(jìn)行蕓薹根腫菌基因挖掘和分析已成為現(xiàn)實(shí)。本研究通過(guò)生物信息學(xué)分析方法從蕓薹根腫菌基因組中鑒定到54個(gè)蛋白磷酸酶基因。目前研究結(jié)果表明,人和擬南芥(Arabidopsis thaliana)中分別存在148和150個(gè)蛋白磷酸酶基因[27],水稻(Oryza sativa)中有132個(gè)蛋白磷酸酶基因[28],玉米(Zea mays)中有159個(gè)蛋白磷酸酶基因[29],原生生物瘧原蟲(chóng)(Plasmodium falciparum)中有67個(gè)蛋白磷酸酶基因[30]。蕓薹根腫菌在分類(lèi)上屬于原生生物,因此其蛋白磷酸酶基因的數(shù)目與同為原生生物的惡性瘧原蟲(chóng)較為接近。越來(lái)越多的研究結(jié)果表明蛋白磷酸酶在病原物生長(zhǎng)和致病等生物進(jìn)程中起到重要作用。禾谷鐮刀菌的磷酸酶在菌絲生長(zhǎng)、細(xì)胞分裂、分生孢子形成、致病性和外界脅迫響應(yīng)等過(guò)程中發(fā)揮重要作用[20-21]。核盤(pán)菌(Sclerotinia sclerotiorum)的鈣調(diào)磷酸酶在其菌核發(fā)育和致病性中起到重要作用[31]。弓形蟲(chóng)(Toxoplasma gondii)可以分泌蛋白磷酸酶2c來(lái)操縱寄主細(xì)胞[32]。在這54個(gè)蛋白磷酸酶中,PBRA_007461是一個(gè)潛在的外泌蛋白,它也可能通過(guò)與弓形蟲(chóng)相類(lèi)似的機(jī)理來(lái)發(fā)揮效應(yīng)因子的功能,當(dāng)然這需要后續(xù)更多的試驗(yàn)證據(jù)來(lái)佐證。蛋白磷酸酶在病原物生長(zhǎng)和侵染中扮演著重要的角色,這也為病害的防治提供了潛在的靶標(biāo)[33]。有研究結(jié)果表明,MAPKK激酶抑制劑 U0126可以有效降低根腫病的發(fā)病程度[34]。受此啟發(fā),挖掘蕓薹根腫菌生長(zhǎng)和致病關(guān)鍵蛋白磷酸酶的特異性抑制劑可望為根腫病防治提供新的思路和切入點(diǎn)。
參考文獻(xiàn):
[1]DIXON G R. The occurrence and economic impact of Plasmodiophora brassicae and clubroot disease [J]. Journal of Plant Growth Regulation, 2009, 28(3): 194-202.
[2]HWANG S F, STRELKOV S E, FENG J, et al. Plasmodiophora brassicae: a review of an emerging pathogen of the Canadian canola (Brassica napus) crop [J]. Molecular Plant Pathology, 2012, 13(2): 105-113.
[3]CHAI A L, XIE X W, SHI Y X, et al. Research status of clubroot (Plasmodiophora brassicae) on cruciferous crops in China [J]. Canadian Journal of Plant Pathology, 2014, 36(1): 142-153.
[4]DIEDERICHSEN E, FRAUEN M, LINDERS E G A, et al. Status and perspectives of clubroot resistance breeding in crucifer crops [J]. Journal of Plant Growth Regulation, 2009, 28(3): 265-281.
[5]KUGINUKI Y, YOSHIKAWA H, HIRAI M. Variation in virulence of Plasmodiophora brassicae in Japan tested with clubroot-resistant cultivars of Chinese cabbage (Brassica rapa L. ssp. pekinensis) [J]. European Journal of Plant Pathology, 1999, 105(4): 327-332.
[6]STRELKOV S E, HWANG S F, MANOLII V P, et al. Emergence of new virulence phenotypes of Plasmodiophora brassicae on canola (Brassica napus) in Alberta, Canada [J]. European Journal of Plant Pathology, 2016, 145(3): 517-529.
[7]JIANG J, FREDUA-AGYEMAN R, STRELKOV S E, et al. Suppression of canola (Brassica napus) resistance by virulent isolates of Plasmodiophora brassicae (clubroot) during primary infection [J]. Plant Disease, 2020,104(2): 430-437.
[8]SACCO F, PERFETTO L, CASTAGNOLI L, et al. The human phosphatase interactome: an intricate family portrait [J]. FEBS Letters, 2012, 586(17): 2732-2739.
[9]COHEN P. The regulation of protein function by multisite phosphorylation-a 25 year update [J]. Trends in Biochemical Sciences, 2000, 25(12): 596-601.
[10]ARDITO F, GIULIANI M, PERRONE D, et al. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy [J]. International Journal of Molecular Medicine, 2017, 40(2): 271-280.
[11]MOORHEAD G B G, DE WEVER V, TEMPLETON G, et al. Evolution of protein phosphatases in plants and animals [J]. Biochemical Journal, 2008, 417(2): 401-409.
[12]MANNING G, PLOWMAN G D, HUNTER T, et al. Evolution of protein kinase signaling from yeast to man [J]. Trends in Biochemical Sciences, 2002, 27(10): 514-520.
[13]OLSEN J V, BLAGOEV B, GNAD F, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks [J]. Cell, 2006, 127(3): 635-648.
[14]RAMPITSCH C, TINKER N A, SUBRAMANIAM R, et al. Phosphoproteome profile of Fusarium graminearum grown in vitro under nonlimiting conditions [J]. Proteomics, 2012, 12(7): 1002-1005.
[15]WILLGER S D, LIU Z, OLARTE R A, et al. Analysis of the Candida albicans phosphoproteome [J]. Eukaryotic Cell, 2015, 14(5): 474-485.
[16]REN S, YANG M, LI Y, et al. Global phosphoproteomic analysis reveals the involvement of phosphorylation in aflatoxins biosynthesis in the pathogenic fungus Aspergillus flavus [J]. Scientific Reports, 2016, 6: 34078.
[17]ALONSO A, PULIDO R. The extended human PTP ome: a growing tyrosine phosphatase family [J]. The FEBS Journal, 2016, 283(8): 1404-1429.
[18]SHI Y. Serine/threonine phosphatases: mechanism through structure [J]. Cell, 2009, 139(3): 468-484.
[19]SON S, OSMANI S A. Analysis of all protein phosphatase genes in Aspergillus nidulans identifies a new mitotic regulator, fcp1 [J]. Eukaryotic Cell, 2009, 8(4): 573-585.
[20]YU F, GU Q, YUN Y, et al. The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum [J]. New Phytologist, 2014, 203(1): 219-232.
[21]YUN Y, LIU Z, YIN Y, et al. Functional analysis of the Fusarium graminearum phosphatome [J]. New Phytologist, 2015, 207(1): 119-134.
[22]FINN R D, CLEMENTS J, EDDY S R. HMMER web server: interactive sequence similarity searching [J]. Nucleic Acids Research, 2011, 39(S2): 29-37.
[23]PETERSEN T N, BRUNAK S, VON HEIJNE G, et al. SignalP 4.0: discriminating signal peptides from transmembrane regions [J]. Nature Methods, 2011, 8(10): 785-786.
[24]KROGH A, LARSSON B , VON HEIJNE G, et al. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes [J]. Journal of Molecular Biology, 2001, 305(3): 567-580.
[25]SCHWELM A, FOGELQVIST J, KNAUST A, et al. The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases [J]. Scientific Reports, 2015, 5: 11153.
[26]TRAPNELL C, WILLIAMS B A, PERTEA G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation [J]. Nature Biotechnology, 2010, 28(5): 511-515.
[27]KERK D, TEMPLETON G, MOORHEAD G B G. Evolutionary radiation pattern of novel protein phosphatases revealed by analysis of protein data from the completely sequenced genomes of humans, green algae, and higher plants [J]. Plant Physiology, 2008, 146(2): 351-367.
[28]SINGH A, GIRI J, KAPOOR S, et al. Protein phosphatase complement in rice: genome-wide identification and transcriptional analysis under abiotic stress conditions and reproductive development [J]. BMC Genomics, 2010, 11(1): 435.
[29]WEI K, PAN S. Maize protein phosphatase gene family: identification and molecular characterization [J]. BMC Genomics, 2014, 15(1): 773.
[30]PANDEY R, MOHMMED A, PIERROT C, et al. Genome wide in silico analysis of Plasmodium falciparum phosphatome [J]. BMC Genomics, 2014, 15(1): 1024.
[31]HAREL A, BERCOVICH S, YARDEN O. Calcineurin is required for sclerotial development and pathogenicity of Sclerotinia sclerotiorum in an oxalic acid-independent manner [J]. Molecular Plant-Microbe Interactions, 2006, 19(6): 682-693.
[32]GILBERT L A, RAVINDRAN S, TURETZKY J M, et al. Toxoplasma gondii targets a protein phosphatase 2C to the nuclei of infected host cells [J]. Eukaryotic Cell, 2007, 6(1): 73-83.
[33]CAMPBELL C O, SANTIAGO D N, GUIDA W C, et al. In silico characterization of an atypical MAPK phosphatase of Plasmodium falciparum as a suitable target for drug discovery [J]. Chemical Biology & Drug Design, 2014, 84(2): 158-168.
[34]CHEN T, BI K, ZHAO Y, et al. MAPKK inhibitor U0126 inhibits Plasmodiophora brassicae development [J]. Phytopathology, 2018, 108(6): 711-720.
(責(zé)任編輯:陳海霞)