肖政 徐艷琴 羅念 周銀
摘 要: 植物原生質(zhì)體是去除了細胞壁的裸露細胞,其具有細胞全能性,現(xiàn)廣泛應(yīng)用于植物分子細胞生物學(xué)的研究中,可以大大縮減實驗周期,并有助于得到體內(nèi)實驗的實時檢測數(shù)據(jù)。該文除了介紹植物原生質(zhì)體的提取和純化方法外,還對國內(nèi)外利用各種植物的原生質(zhì)體進行細胞瞬時轉(zhuǎn)化、亞細胞定位、細胞融合和大分子復(fù)合物相互作用等試驗進行了總結(jié)和討論。植物原生質(zhì)體還可用于基因表達模式的實時檢測,并作為生物反應(yīng)器的受體細胞進行代謝物的體外生產(chǎn)。此外,還對當前該技術(shù)所面臨的瓶頸進行了分析,為植物原生質(zhì)體在分子細胞生物學(xué)領(lǐng)域的應(yīng)用提供幫助,為技術(shù)的優(yōu)化和推廣提供參考。
關(guān)鍵詞: 植物原生質(zhì)體, 瞬時轉(zhuǎn)化, 亞細胞定位, 細胞融合, 實時檢測
中圖分類號: Q942 ?文獻標識碼: A
文章編號: 1000-3142(2020)04-0576-07
Abstract: Plant protoplasts are naked cells without cell walls. They have been extensively applied in the researches of plant molecular and cell biology for their totipotency, which could greatly shorten the experimental periods and help to get massive effective and real-time experimental detection data in vivo. In this article, in addition to introduce the purification of plant protoplasts, we mainly summarized the application of plant protoplasts in the respects of transient transformation, subcellular localization, cell fusion and macromolecular complex interaction. Plant protoplasts could also be used to survey the expression pattern of gene in real-time detection, as well as the target cells for the production of metabolites in bioreactors. Furthermore, we have compared the advantages and disadvantages of plant protoplasts in the current research, which provides new insights into the researches on plant molecular and cell biology. We have also analyzed the difficulties in the application of plant protoplasts, which provides the reference for the optimization and promotion of this technology.
Key words: plant protoplasts, transient transformation, subcellular localization, cell fusion, real-time detection
植物原生質(zhì)體是指通過酶解或者機械的方式去除植物細胞壁所獲得的細胞。植物原生質(zhì)體具有全能性,有再分化、重新進入細胞周期、進行有絲分裂甚至分化為組織或器官的潛能(Eeckhaut et al., 2013)。植物原生質(zhì)體的結(jié)構(gòu)和生理特性在某種程度上與動物細胞的結(jié)構(gòu)比較類似,經(jīng)過外源添加物處理和外源基因轉(zhuǎn)化后的植物原生質(zhì)體能迅速進行反應(yīng)、代謝和反饋,縮短了實驗的周期,并能幫助獲得有效的體內(nèi)實驗數(shù)據(jù),因此目前被廣泛應(yīng)用于植物分子和細胞生物學(xué)的研究中。不同的植物來源,原生質(zhì)體的提取、純化和包裝步驟大致相同,轉(zhuǎn)化效率有所差別,本文將不同植物原生質(zhì)體提取、純化和活性檢測的方法進行了概括。并重點論述了近幾年植物原生質(zhì)體在分子細胞生物學(xué)中的應(yīng)用,為利用植物原生質(zhì)體進行研究和育種提供了參考。
1 植物原生質(zhì)體的提取、純化和包裝
植物原生質(zhì)體的來源、數(shù)量和質(zhì)量將很大程度上影響后續(xù)實驗的成功與失敗?,F(xiàn)在普遍利用酶解法提取植物原生質(zhì)體,常用的酶為日本Yakult公司的纖維素酶和離析酶。若酶濃度低,酶解時間短,則原生質(zhì)體數(shù)量不夠;若酶濃度和酶解時間延長,則原生質(zhì)體受到酶的毒害作用易破裂,致使具有活力的原生質(zhì)體數(shù)量減少。利用懸浮培養(yǎng)細胞來提取原生質(zhì)體,可短時間酶解得到大量具有活力的原生質(zhì)體(Raimundo et al., 2018)。
原生質(zhì)體的純化方法可分為漂浮法和沉淀法,其中常用的為漂浮法,利用15%~25%的蔗糖、Percoll或Ficoll即可實現(xiàn)(Gupta & Durzan, 1986; Pindel, 2007; Fesenko et al., 2015)。而沉淀法獲得的植物原生質(zhì)體雖然數(shù)量較多,但是質(zhì)量較差,很大程度上影響后續(xù)實驗結(jié)果的準確度。
植物原生質(zhì)體的數(shù)量和密度檢測一般通過在顯微鏡下用血球計數(shù)板進行計數(shù),密度為每毫升1×106~1×107個原生質(zhì)體較適宜。而質(zhì)量檢測一般通過二乙酸熒光素染色法(fluorescein diacetate, FDA)進行鑒定,F(xiàn)DA可自由透過活細胞的細胞膜并對細胞進行示蹤,最大激發(fā)波長和發(fā)射波長分別為490和526 nm,在熒光顯微鏡下可觀察到活細胞中呈現(xiàn)綠色熒光(Huang et al., 2013; Wang et al., 2015; Li et al., 2018)。除此之外,原生質(zhì)體的數(shù)量和質(zhì)量控制還可以通過流式細胞術(shù)進行檢測。流式細胞術(shù)廣泛應(yīng)用于植物細胞DNA含量和倍性分析、核型分析和輔助育種等(Zhai et al., 2018),植物原生質(zhì)體是進行流式細胞術(shù)檢測的優(yōu)選試驗材料,在原生質(zhì)體細胞中轉(zhuǎn)化進入帶有熒光標記的特異目的蛋白,利用流式細胞術(shù)進行分選,后續(xù)可對其進行代謝譜或表達譜分析等(Birnbaum et al., 2005; Petersson et al., 2015)。
由于原生質(zhì)體失去了細胞壁,在后續(xù)實驗操作中非常容易發(fā)生破裂和凝聚,因此一些研究學(xué)者通過各種有效的方法使原生質(zhì)體固定包裝,如:硅膠/藻酸鹽、瓊脂糖、結(jié)冷膠等,形成統(tǒng)一均質(zhì)的薄層,從而利于實驗操作和顯微鏡觀察(Lei et al., 2015)。
木本植物由于其生長周期長,在植物研究中往往處于劣勢,為了縮短實驗周期,保存優(yōu)質(zhì)種質(zhì)資源,大量具有經(jīng)濟價值和研究價值的木本植物則通過快速繁殖手段獲得無菌苗,以無菌苗作為外植體分離純化原生質(zhì)體進行試驗,不失為一種研究策略,并已經(jīng)在花椒(Li et al., 2018)、椪柑(Zhou et al., 2018)、蘋果(Fu et al., 2019)、沙冬青(Nan et al., 2018)等喬木和灌木中進行了研究報道。而活體取樣時,盡量選取幼嫩的葉片、根尖等組織部位,以便充分酶解,保證原生質(zhì)體的數(shù)量和質(zhì)量以進行后續(xù)試驗。
經(jīng)過純化的植物原生質(zhì)體在數(shù)量和質(zhì)量上均達到要求后,可進行下一步實驗應(yīng)用。一般1×103~1×104個原生質(zhì)體足以進行報告酶的活性檢測;1×104~1×105個原生質(zhì)體可用于蛋白標記、免疫共沉淀或Western印跡實驗;大約1×106個原生質(zhì)體可用于微觀檢測實驗(Xing et al., 2017)。
2 植物原生質(zhì)體在分子細胞生物學(xué)中的應(yīng)用
2.1 亞細胞定位檢測
目前經(jīng)過純化的原生質(zhì)體最廣泛應(yīng)用于植物亞細胞定位的檢測中,常用的原生質(zhì)體來源于煙草、擬南芥等,由于原生質(zhì)體細胞圓滑完整,在顯微鏡下對于細胞結(jié)構(gòu)觀察非常清楚,并且排除了活體觀察時細胞間以及組織部位其他結(jié)構(gòu)的背景干擾,結(jié)果分析具有說服力。在植物基因功能驗證時,基本的蛋白定位即采用模式植物的原生質(zhì)體進行亞細胞定位(Sui et al., 2019),并且在許多生物學(xué)背景不清楚、遺傳轉(zhuǎn)化體系不穩(wěn)定或者效率不高的非模式植物中,也廣泛進行原生質(zhì)體的分離、純化和轉(zhuǎn)化,如Li et al. (2018)在蝴蝶蘭雜交種(Phalaenopsis hybrid cultivar “Ruili Beauty”)的葉肉原生質(zhì)體中由PEG4000介導(dǎo)瞬時轉(zhuǎn)化綠色熒光蛋白基因(GFP),轉(zhuǎn)化效率達到41.7%。Huang et al. (2013)在黃瓜原生質(zhì)體中瞬時表達pUC-GFP質(zhì)粒,可以在顯微鏡下明顯觀察到胞液、葉綠體和質(zhì)膜上有綠色熒光,轉(zhuǎn)化效率達到57%。Fu et al. (2018)在玉米原生質(zhì)體中,利用eGFP融合轉(zhuǎn)錄因子ZmWRKY79蛋白,對目的蛋白進行亞細胞定位,直觀影像確定其位于細胞核中。Wang et al. (2015)分離獲得葡萄原生質(zhì)體,并利用GFP融合黃酮類生物合成途徑中的查爾酮合成酶(VvCHS)、查爾酮異構(gòu)酶(VvCHI)、黃酮醇3-O-葡萄糖苷轉(zhuǎn)移酶(VvUFGT)和花青素還原酶(VvANR)蛋白,將它們的亞細胞定位在細胞質(zhì)和細胞核中,瞬時轉(zhuǎn)化效率達到60.1%。Sun et al. (2018)在芥藍(Brassica oleracae var. alboglabra)中分離、純化和轉(zhuǎn)化葉肉細胞的原生質(zhì)體,外源基因的轉(zhuǎn)化效率可達到30%。
2.2 細胞融合培育新品種
植物原生質(zhì)體往往是原生質(zhì)體融合培育新品種,制造“人工種子”的優(yōu)良原始材料,并且原生質(zhì)體融合技術(shù)可以完全或者部分解決自然界種屬間有性繁殖不親和的現(xiàn)象。原生質(zhì)體融合技術(shù)在柑橘的性狀改良方面有著巨大潛力,通過將伏令夏橙(Citrus sinensis)愈傷原生質(zhì)體與葉肉細胞原生質(zhì)體進行融合,獲得了穩(wěn)定的二倍體“cybrids”,胚性愈傷原生質(zhì)體中的線粒體DNA刺激了葉肉原生質(zhì)體細胞的分化和再生(Cai et al., 2017)。Dutt et al. (2018)從柑橘懸浮培養(yǎng)細胞中提取原生質(zhì)體作為初始材料,并將構(gòu)建在胚中特異性表達花青素的基因載體(Dc3啟動子:VvMybA1)轉(zhuǎn)化到柑橘原生質(zhì)體中,在體細胞胚的發(fā)育過程中可以直接通過肉眼觀察到“紫色胚”來進行初步陽性篩選。Yu et al. (2014)將水稻的育性恢復(fù)基因Rf5轉(zhuǎn)化到細胞質(zhì)雄性不育(HL-CMS)紅蓮型水稻的原生質(zhì)體中,在轉(zhuǎn)化后的原生質(zhì)體中檢測到細胞質(zhì)雄性不育蛋白ORFH79的水平顯著降低。Wang et al. (2014)將小麥和中間偃麥草(Thinopyrum intermedium)的原生質(zhì)體細胞進行融合,獲得漸滲系群體,篩選出生命力旺盛并自花授粉可育的后代。原生質(zhì)體培育新品種可以打破物種的限制,但是培育周期較長。
2.3 胞內(nèi)生化反應(yīng)的實時檢測
蛋白酶在催化底物發(fā)生細胞內(nèi)生物化學(xué)反應(yīng)時,植物原生質(zhì)體是非常合適的實驗材料,合理選取一些能發(fā)熒光的底物,即能在顯微鏡下實時觀察反應(yīng)的進程。Rottmann et al. (2018)在研究擬南芥蔗糖轉(zhuǎn)運蛋白時,先利用熒光蔗糖類似物Esculin作為底物,將表達蔗糖轉(zhuǎn)運蛋白的AtSUC基因轉(zhuǎn)化到擬南芥原生質(zhì)體中,再通過調(diào)整激光共聚焦顯微鏡的不同激發(fā)光波段,可以實時觀察到綠色熒光蛋白、紅色葉綠體自發(fā)熒光和轉(zhuǎn)運到胞內(nèi)的湖藍色熒光Esculin分子。Wang et al. (2019)在水稻中研究氨基酸轉(zhuǎn)移酶OsAAP5的功能時,從野生型、該基因超表達及RNAi株系中分離原生質(zhì)體,利用異硫氰酸熒光素(FITC)標記的堿性氨基酸(Lys與Arg)及部分中性氨基酸(Ala與Val)進行底物吸收實驗,結(jié)果發(fā)現(xiàn)在超表達株系原生質(zhì)體中熒光信號顯著強于野生型,干擾株系原生質(zhì)體中熒光信號則弱于野生型,表明OsAAP5在水稻中具有轉(zhuǎn)運堿性氨基酸及部分中性氨基酸的功能,此研究將有助于提高水稻的產(chǎn)量和品質(zhì)。Bienertia sinuspersici是一種進行C4光合作用的陸生植物,有兩種不同類型的亞細胞葉綠體。為了揭示細胞內(nèi)兩種葉綠體的分化機制,Wimmer et al. (2017)將光合作用細胞中相關(guān)蛋白(丙酮酸磷酸雙激酶,PPDK;磷酸丙糖異構(gòu)酶,TPI;腺苷酸激酶,AK)的轉(zhuǎn)導(dǎo)肽進行突變,再瞬時轉(zhuǎn)化到B. sinuspersici原生質(zhì)體中進行亞細胞定位和含量檢測,結(jié)果表明突變的轉(zhuǎn)導(dǎo)肽一定程度上可以使蛋白的選擇性發(fā)生丟失,而人工合成的誘餌mRNA對于蛋白的分選過程作用并不是很關(guān)鍵。
2.4 基因表達模式的實時檢測
由于植物原生質(zhì)體內(nèi)分子水平的基因表達變化迅速,因此可以利用原生質(zhì)體瞬時轉(zhuǎn)化來鑒定不同基因在不同內(nèi)因和外因條件下表達模式的變化水平,為植物穩(wěn)定轉(zhuǎn)化實驗提供輔助證據(jù)。Patra et al. (2018)從長春花(Catharanthus roseus)葉肉細胞中提取其原生質(zhì)體,利用電激的方法分別瞬時轉(zhuǎn)化了眾多參與茉莉酸代謝和長春堿代謝相關(guān)的轉(zhuǎn)錄因子,通過qRT-PCR檢測受各轉(zhuǎn)錄因子調(diào)控的相關(guān)基因的表達模式的變化。Zhang et al. (2011)利用水稻原生質(zhì)體研究植物光學(xué)相關(guān)的細胞生物學(xué)過程,在水稻綠色組織來源的原生質(zhì)體中超表達光相關(guān)的轉(zhuǎn)錄因子OsGLK1,并進行光照和誘導(dǎo)劑達草伏(norflurazon, NF)處理。通過qRT-PCR檢測發(fā)現(xiàn),與光合作用相關(guān)的基因(OsLhcb1, OsLhcp, GADPH和RbcS)的表達量在OsGLK1超表達的原生質(zhì)體中上調(diào)了30~168倍,而在NF處理的原生質(zhì)體中相應(yīng)基因的表達量則降低了30%~75%。Ond rˇej et al. (2010)利用黃瓜的原生質(zhì)體細胞進行抗氧化脅迫研究,結(jié)果表明用抗壞血酸處理的黃瓜原生質(zhì)體細胞,不僅降低了氧化脅迫的水平,還通過qRT-PCR檢測發(fā)現(xiàn)提高了抗壞血酸過氧化物酶和過氧化氫酶的表達水平。而在細胞結(jié)構(gòu)觀察時發(fā)現(xiàn),相比較未處理的原生質(zhì)體細胞,染色質(zhì)的壓縮更加緊密,因此,細胞的抗氧化機理還與細胞增殖有關(guān)。
2.5 蛋白質(zhì)/蛋白質(zhì)或蛋白質(zhì)/DNA互作實驗
由于植物原生質(zhì)體在瞬時轉(zhuǎn)化過程中耗時短,結(jié)果準確性較高,可廣泛用于植物蛋白質(zhì)與蛋白質(zhì),以及蛋白質(zhì)與DNA之間的互作實驗,并且可完成高通量快速檢測。Song et al. (2017)以非洲菊原生質(zhì)體為實驗材料,建立了高效的瞬時轉(zhuǎn)化體系,并且利用雙分子熒光互補系統(tǒng)(BiFC)驗證非洲菊原生質(zhì)體可直接用于蛋白間的相互作用實驗。Zhao et al. (2018)通過建立DNase-seq文庫,獲得大量玉米的DNase I超敏位點(DHSs),為了驗證這些DHSs是否為基因的啟動子或者增強子,并且是否受到轉(zhuǎn)座子(transposable elements, TEs)的影響和調(diào)控,設(shè)計了原生質(zhì)體瞬時轉(zhuǎn)化分析,并快速準確驗證了生物信息學(xué)分析的結(jié)果。染色質(zhì)免疫共沉淀技術(shù)(ChIP)是目前廣泛應(yīng)用于蛋白質(zhì)和DNA互作檢測的實驗手段,而僅僅需要大約5 000個擬南芥原生質(zhì)體即可在細胞內(nèi)釣出與堿性亮氨酸拉鏈蛋白1(bZIP1)有相互作用的DNA片段,該技術(shù)被稱為micro-ChIP(μChIP)(Para et al., 2018)。除此之外,原生質(zhì)體還可用于研究mRNA結(jié)合蛋白復(fù)合體中的mRNA或者蛋白質(zhì)(Zhang et al., 2016)。Patra et al. (2018)在煙草原生質(zhì)體中將各個參與茉莉酸代謝和長春堿代謝相關(guān)的轉(zhuǎn)錄因子與合成途徑中結(jié)構(gòu)基因的啟動子分別進行共轉(zhuǎn),通過報告基因螢火蟲熒光素酶和GUS的活性來確認二者之間的互作關(guān)系,該技術(shù)稱為基于煙草原生質(zhì)體的雙雜交分析。
2.6 作為生物反應(yīng)器的受體細胞
由于原生質(zhì)體的生長和分化可以從單個細胞水平到細胞團,進而分化為組織甚至個體。在細胞生長分化的過程中,可以通過添加不同的化合物,研究其對植物細胞生長和分化的影響。甚至可以以原生質(zhì)體細胞為實驗材料,對初始添加物進行同位素標記,從而追蹤其在細胞內(nèi)的代謝通路。這種以原生質(zhì)體細胞為生物反應(yīng)器,從而獲得重組蛋白的操作被稱為“分子農(nóng)場”(molecular farming)(Davey et al., 2005)。Sasamoto & Ashihara (2014)在萵苣原生質(zhì)體細胞培養(yǎng)時,通過添加不同濃度的葫蘆巴堿、尼克酸和尼克酰胺,以研究它們對原生質(zhì)體的分化和群落生成的影響。并且該團隊還在白云杉細胞中添加14C標記的尼克酸和尼克酰胺,以研究嘧啶核苷酸的代謝通路(Ashihara et al., 2005)。Aoyagi (2011)將長春花(Catharanthus roseus)的原生質(zhì)體細胞用富含古羅糖醛酸的藻酸鹽凝膠固定起來,然后大量生產(chǎn)出吲哚類生物堿,在培養(yǎng)原生質(zhì)體進行代謝物生產(chǎn)時,要添加抑制細胞壁生長的物質(zhì),才能達到較好的分泌效果。
3 植物原生質(zhì)體研究的優(yōu)缺點比較
植物原生質(zhì)體廣泛應(yīng)用于分子細胞生物學(xué)的研究中,其中一大優(yōu)點是無論從單子葉植物還是雙子葉植物中分離、純化和轉(zhuǎn)化原生質(zhì)體的技術(shù)方法都比較統(tǒng)一,減少了實驗操作的繁雜性,當然也有更多的文獻報道對原生質(zhì)體的純化和誘導(dǎo)分化技術(shù)繼續(xù)進行優(yōu)化和簡化。
近年來許多文獻報道利用植物原生質(zhì)體作為實驗材料獲得大量有效數(shù)據(jù),試驗周期短(一般轉(zhuǎn)化2~3 d即可檢測),檢測面廣泛(細胞水平、亞細胞水平和分子水平),而且體內(nèi)實驗結(jié)果準確。尤其對于組織培養(yǎng)比較困難、生長周期比較長的物種來說,純化獲得原生質(zhì)體可以為實驗的開展另辟蹊徑。模式植物擬南芥和煙草的原生質(zhì)體瞬時轉(zhuǎn)化已經(jīng)成為了蛋白亞細胞定位實驗和雙熒光檢測實驗等的常用材料,Martinho et al. (2015)還在擬南芥中建立了原生質(zhì)體-miRNA報告系統(tǒng),用于快速實時檢測植物細胞內(nèi)miRNA系統(tǒng)中各個元件以及miRNA功能缺失的突變體的生物學(xué)功能。除此之外,植物原生質(zhì)體還可以應(yīng)用于植物與微生物、植物與動物的相互作用研究中。自然界的許多微生物和動物寄生于植物體或者以植物體為食,從而導(dǎo)致植物中一些侵染性病蟲害的發(fā)生。以植物原生質(zhì)體為研究材料,篩選和鑒定病原菌的效應(yīng)蛋白,從而提出有效的防病措施(Zheng et al., 2019)。Rao et al. (2019)利用水稻原生質(zhì)體篩選出褐飛虱(brown planthopper)唾液腺分泌蛋白質(zhì)組中能與植物互作的效應(yīng)蛋白,為防治水稻褐飛虱提供了理論基礎(chǔ)。
也正因為植物原生質(zhì)體實驗周期短,實驗數(shù)據(jù)要經(jīng)過多次重復(fù)才能有效并且具有說服力,在瞬時轉(zhuǎn)化的材料中,植物表型并不能維持較長時間,有些瞬時轉(zhuǎn)化的表型并不明顯,只能在轉(zhuǎn)錄水平結(jié)合qRT-PCR技術(shù)對基因的表達模式變化進行檢測,而往往基因的表達最終體現(xiàn)在蛋白水平上,轉(zhuǎn)錄水平的變化對最終的表型影響大小并不一定呈正相關(guān)。
植物原生質(zhì)體的取材一般來源于植物外植體、組培苗或懸浮培養(yǎng)細胞,對于轉(zhuǎn)化體系建立較困難的物種,一般選擇植物外植體作為分離原生質(zhì)體的來源,該操作對植物損傷較大,有些原生質(zhì)體的取材來源于某些生殖器官中,大大限制了原生質(zhì)體的取材來源。
雖然利用植物原生質(zhì)體進行瞬時轉(zhuǎn)化可以快速簡便地獲得大量有效的實驗數(shù)據(jù),但是若利用原生質(zhì)體進行穩(wěn)定轉(zhuǎn)化或細胞融合,獲得新的優(yōu)良品種或者雜交品種,將會花費較長的試驗周期,因為從一個細胞分化為愈傷組織就需要一段較長的時間,如從棕櫚(Elaeis guineensis)的原生質(zhì)體到成苗的獲得大約需要18個月的時間,其中形成愈傷組織就長達9個多月(Masani et al., 2013)。
4 展望
當植物原生質(zhì)體的分離、純化和轉(zhuǎn)化效率達到一定穩(wěn)定水平后,對植物原生質(zhì)體的應(yīng)用和研究將會越來越廣泛。隨著實驗周期的逐漸縮短,實驗數(shù)據(jù)的快速獲得,植物科研工作者們越來越傾向于使用一些快速簡便的瞬時轉(zhuǎn)化方法對實驗結(jié)果進行初探和預(yù)測。并且分子水平高通量實驗技術(shù)的大量使用,也促使植物原生質(zhì)體應(yīng)用在組學(xué)方面的初篩和結(jié)果驗證。Ortiz-Ramírez et al. (2016)利用小立碗蘚不同生長階段、不同發(fā)育時期的組織進行轉(zhuǎn)錄組學(xué)分析(其中包含小立碗蘚的原生質(zhì)體細胞),篩選到PpTCP5轉(zhuǎn)錄因子參與了苔蘚植物的孢子體分枝過程,與其在高等被子植物中的作用類似,同時也為陸生植物的進化和發(fā)育提供了新的思路。隨著基因編輯技術(shù)的廣泛研究,植物原生質(zhì)體也為植物基因的定向編輯提供了優(yōu)良試驗材料(Malnoy et al., 2016; Nadakuduti et al., 2019; Park et al., 2019)。對于植物原生質(zhì)體培養(yǎng)和分化中遇到的困難,也在不斷進行探索和優(yōu)化,以期建立穩(wěn)定高效的原生質(zhì)體轉(zhuǎn)化和再生體系。
參考文獻:
AOYAGI H, 2011. Application of plant protoplasts for the production of useful metabolites [J]. Biochem Eng J, 56: 1-8.
ASHIHARA H, STASOLLA C, YIN Y, et al., 2005. De novo and salvage biosynthetic pathways of pyridine nucleotides and nicotinic acid conjugates in cultured plant cells [J]. Plant Sci, 169: 107-114.
BIRNBAUM K, JUNG JW, WANG JY, et al., 2005. Cell type-specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines [J]. Nat Methods, 2(8): 615-619.
CAI XD, FU J, GUO WW, 2017. Mitochondrial genome of callus protoplast has a role in mesophyll protoplast regeneration in Citrus: Evidence from transgenic GFP somatic homo-fusion [J]. Hortic Plant J, 3(5): 177-182.
DAVEY MR, ANTHONY P, POWER JB, et al., 2005. Plant protoplasts: Status and biotechnological perspectives [J]. Biotechnol Adv, 23: 131-171.
DUTT M, ZAMBON FT, ERPEN L, et al., 2018. Embryo-specific expression of a visual reporter gene as a selection system for citrus transformation [J]. PLoS ONE, 13(1): e0190413.
EECKHAUT T, LAKSHMANAN PS, DERYCKERE D, et al., 2013. Progress in plant protoplast research [J]. Planta, 238(6): 991-1003.
FESENKO IA, ARAPIDI GP, SKRIPNIKOV AY, et al., 2015. Specific pools of endogenous peptides are present in gametophore, protonema, and protoplast cells or the moss Physcomitrella patens [J]. BMC Plant Biol, 15: 87.
FU JY, LIU Q, WANG C, et al., 2018. ZmWRKY79 positively regulates maize phytoalexin biosynthetic gene expression and is involved in stress response [J]. J Exp Bot, 69(3): 497-510.
FU WG, WEI C, WANG X, 2019. Research progress on tissue culture of Malus plant [J]. Mol Plant Breed, 17(4): 1320-1325. [付為國, 韋晨, 王醒, 2019. 蘋果屬植物組織培養(yǎng)的研究進展 [J]. 分子植物育種, 17(4): 1320-1325.]
GUPTA PK, DURZAN DJ, 1986. Isolation and cell regeneration of protoplasts from sugar pine (Pinus lambertiana) [J]. Plant Cell Rep, 5: 346-348.
HUANG HY, WANG ZY, CHENG JT, et al., 2013. An efficient cucumber (Cucumis sativus L.) protoplast isolation and transient expression system [J]. Sci Hortic, 150: 206-212.
LEI R, QIAO WJ, HU F, et al., 2015. A simple and effective method to encapsulate tobacco mesophyll protoplasts to maintain cell viability [J]. MethodsX, 2: 24-32.
LI JL, LIAO XZ, ZHOU SS, et al., 2018. Efficient protoplast isolation and transient gene expression system for Phalaenopsis hybrid cultivar ‘Ruili Beauty [J]. In Vitro Cell Dev Biol-Plant, 54: 87-93.
LI N, YANG XP, ZHOU ZJ, et al., 2018. Protoplast isolation and culture of Zanthoxylum bungeanum [J]. J NW For Univ, 33(6): 100-105. [李南, 楊秀平, 周正君, 等, 2018. 花椒原生質(zhì)體分離與培養(yǎng)研究 [J]. 西北林學(xué)院學(xué)報, 33(6): 100-105.]
MALNOY M, VIOLA R, JUNG MH, et al., 2016. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins [J]. Front Plant Sci, 7: 1904.
MARTINHO C, CONFRARIA A, ELIAS CA, et al., 2015. Dissection of miRNA pathways using Arabidopsis mesophyll protoplasts [J]. Mol Plant, 8(2): 261-275.
MASANI MY, NOLL G, PARVEEZ GK, et al., 2013. Regeneration of viable oil palm plants from protoplasts by optimizing media components, growth regulators and cultivation procedures [J]. Plant Sci, 210: 118-127.
NADAKUDUTI SS, STARKER CG, KO DK, et al., 2019. Evaluation of methods to assess in vivo activity of engineered genome-editing nucleases in protoplasts [J]. Front Plant Sci, 10: 110.
NAN DN, XUE M, TANG KG, et al., 2018. Establishment of the cotyledon protoplast transient expression system of Ammopiptanthus mongolicus and subcellular localization of the AmDREB1 protein [J]. Plant Sci J, 36(4): 562-568. [楠迪娜, 薛敏, 唐寬剛, 等, 2018. 沙冬青子葉原生質(zhì)體瞬時表達體系的建立及其AmDREB1蛋白的亞細胞定位 [J]. 植物科學(xué)學(xué)報, 36(4): 562-568.]
OND REJ V, NAVRTILOV B, PROTIVNKOV I, et al., 2010. Recondensation level of repetitive sequences in the plant protoplast nucleus is limited by oxidative stress [J]. J Exp Bot, 61(9): 2395-2401.
ORTIZ-RAMREZ C, HERNANDEZ-CORONADO M, THAMM A, et al., 2016. A transciptome atlas of Physcomitrella patens provides insights into the evolution and development of land plants [J]. Mol Plant, 9(2): 205-220.
PARA A, LI Y, CORUZZI GM, 2018. μChIP-seq for genome-wide mapping of in vivo TF-DNA interactions in Arabidopsis root protoplasts. Root development: Methods and protocols [M]. Methods in Molecular Biology, Chapter 19. https://doi.org/10.1007/978-1-4939-7747-5_19.
PARK J, CHOI S, PARK S, et al., 2019. DNA-free genome editing via ribonucleoprotein (RNP) delivery of CRISPR/Cas in lettuce [J]. Methods Mol Biol, 1917: 337-354.
PATRA B, PATTANAIK S, SCHLUTTENHOFER C, et al., 2018. A network of jasmonate-responsive bHLH factors modulate monoterpenoid indole alkaloid biosynthesis in Catharanthus roseus [J]. New Phytol, 217: 1566-1581.
PETERSSON SV, LINDEN P, MORITZ T, et al., 2015. Cell-type specific metabolic profiling of Arabidopsis thaliana protoplasts as a tool for plant systems biology [J]. Metabolomics, 11(6): 1679-1689.
PINDEL A, 2007. Optimization of isolation conditions of Cymbidium protoplasts [J]. Folia Hortic, 19(2): 79-88.
RAIMUNDO SC, SRENSEN I, TINAZ B, et al., 2018. Isolation and manipulation of protoplasts from the unicellular green alga Penium margaritaceum [J]. Plant Methods, 14(1): 18.
RAO WW, ZHENG XH, LIU BF, et al., 2019. Secretome analysis and in planta expression of salivary proteins identify candidate effectors from the brown planthopper Nilaparvata lugens [J]. Mol Plant Microbe Interact, 32(2): 227-239.
ROTTMANN TM, FRITZ C, LAUTER A, et al., 2018. Protoplast-esculin assay as a new method to assay plant sucrose transporters: characterization of AtSUC6 and AtSUC7 sucrose uptake activity in Arabidopsis Col-0 ecotype [J]. Front Plant Sci, 9: 430.
SASAMOTO H, ASHIHARA H, 2014. Effect of nicotinic acid, nicotinamide and trigonelline on the proliferation of lettuce cells derived from protoplasts [J]. Phytochemy Lett, 7: 38-41.
SONG AH, ZHANG WB, SUN SL, et al., 2017. Preparation of protoplast and establishment of transient expression system in Gerbera hybrida [J]. Chin Bull Bot, 52(4): 511-519. [宋愛華, 張文斌, 孫姝蘭, 等, 2017. 非洲菊原生質(zhì)體制備及瞬時轉(zhuǎn)化系統(tǒng)的建立 [J]. 植物學(xué)報, 52(4): 511-519.]
SUI ZW, LUO J, YAO RL, et al., 2019. Functional characte-rization and correlation analysis of phenylalanine ammonia-lyase (PAL) in coumarin biosynthesis from Peucedanum praeruptorum Dunn [J]. Phytochemistry, 158: 35-45.
SUN B, ZHANG F, XIAO N, et al., 2018. An efficient mesophyll protoplast isolation, purification and PEG-mediated transient gene expression for subcellular localization in Chinese kale [J]. Sci Hortic, 241: 187-193.
WANG HL, WANG W, ZHAN JC, et al., 2015. An efficient PEG-mediated transient gene expression system in grape protoplasts and its application in subcellular localization studies of flavnoids biosynthesis enzymes [J]. Sci Hortic, 191: 82-89.
WANG J, WU BW, LU K, et al., 2019. The amino acid permease OsAAP5 regulates tiller number and grain yield in rice [J]. Plant Physiol, DOI: https://doi.org/10.1104/pp.19.00034.
WANG MQ, LI CL, CHENG AX, et al., 2014. Fertile introgression products generated via somatic hybridization between wheat and Thinopyrum intermedium [J]. Plant Cell Rep, 33(4): 633-641.
WIMMER D, BOHNHORST P, SHEKHAR V, et al., 2017. Transit peptide elements mediate selective protein targeting to two different types of chloroplasts in the single-cell C4 species Bienertia sinuspersici [J]. Sci Rep, 7: 41187.
XING T, LI XQ, LAROCHE A, et al., 2017. Protoplasts in the analysis of early plant-pathogen interactions: current applications and perspectives [J]. Eur J Plant Pathol, 149(4): 1001-1010.
YU CC, WANG LL, CHEN C, et al., 2014. Protoplast: a more efficient system to study nucleo-cytoplasmic interactions [J]. Biochem Biophys Res Comm, 450(4): 1575-1580.
ZHAI N, XU YL, LIU PP, et al., 2018. Application of flow cytometry in plant and tobacco research [J]. Tobacco Sci Technol, 51(9): 98-104. [翟妞, 許亞龍, 劉萍萍, 等, 2018. 植物研究中的流式細胞術(shù)及其在煙草中的應(yīng)用進展 [J]. 煙草科技, 51(9): 98-104.]
ZHANG Y, SU JB, DUAN S, et al., 2011. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes [J]. Plant Methods, 7: 30.
ZHANG ZC, BOONEN K, FERRARI P, et al., 2016. UV crosslinked mRNA-binding proteins captured from leaf mesophyll protoplasts [J]. Plant Methods, 12(1): 42.
ZHAO HN, ZHANG WL, CHEN LF, et al., 2018. Proliferation of regulatory DNA elements derived from transposable elements in the maize genome [J]. Plant Physiol, 176(4): 2789-2803.
ZHENG XZ, WAGENER N, MCLELLAN H, et al., 2019. Phytophthora infestans RXLR effector SFI5 requires association with calmodulin for PTI/MTI suppressing activity [J]. New Phytol, 219(4): 1433-1446.
ZHOU YP, HE L, LUO L, et al., 2018. Influences of different enzyme combinations on protoplast isolation in ponkan (Citrus reticulata Blanco) [J]. Jiangsu Agric Sci, 46(21): 45-47. [周一鵬, 何麗, 羅麗, 等, 2018. 不同酶液組合對椪柑原生質(zhì)體分離的影響 [J]. 江蘇農(nóng)業(yè)科學(xué), 46(21): 45-47.]
(責(zé)任編輯 周翠鳴)