• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient Nanostructuring of Isotropic Gas-Atomized MnAl Powder by Rapid Milling (30 s)

    2020-05-22 08:02:10RialPalmeroBollero
    Engineering 2020年2期

    J. Rial, E.M. Palmero, A. Bollero*

    Division of Permanent Magnets and Applications, IMDEA Nanoscience, Campus Universidad Autónoma de Madrid, Madrid 28049, Spain

    Keywords:

    A B S T R A C T An unprecedentedly short milling time of 30 s was applied to gas-atomized MnAl powder in order to develop permanent magnet properties and,in particular,coercivity.It is shown that such a short processing time followed by annealing results in efficient nanostructuring and controlled phase transformation.The defects resulting from the microstrain induced during milling, together with the creation of the βphase during post-annealing,act as pinning centers resulting in an enhanced coercivity.This study shows the importance of finding a balance between the formation of the ferromagnetic τ-MnAl phase and the βphase in order to establish a compromise between magnetization and coercivity. A coercivity as high as 4.2 kOe(1 Oe=79.6 A·m-1) was obtained after milling(30 s)and annealing,which is comparable to values previously reported in the literature for milling times exceeding 20 h. This reduction of the postannealing temperature by 75°C for the as-milled powder and a 2.5-fold increase in coercivity, while maintaining practically unchanged the remanence of the annealed gas-atomized material, opens a new path for the synthesis of isotropic MnAl-based powder.

    1. Introduction

    Numerous present and emerging technologies require the use of permanent magnets (PMs), resulting in an increasing yearly need for rare-earth (RE) elements as constituents of the strongest(NdFeB- and SmCo-based) technological PMs [1,2]. Economic and environmental considerations have attracted the interest of research groups and industry in the search for RE-free PM alternatives [3], which should result in diversification of the PM sector according to the requirements of the final application. Ferrites are low-cost PMs with widely abundant constituent elements;however,the reduced maximum energy product,(BH)max,of about 5 megagauss-oersteds(MGOe,1 MGOe=7.958 kJ·m-3)is a limiting factor for applications requiring a high magnetic performance.

    MnAl is a promising RE-free PM candidate with a high uniaxial magnetocrystalline anisotropy (K ≈1.5×106J·m-3) and a theoretical (BH)maxof 12 MGOe [4,5]. These values, in combination with a low density (5.2 g·cm-3) in comparison with that of Nd2Fe14B(7.4 g·cm-3), would result in a high-energy product per unit weight—that is,in high-performance light magnets.MnAl has only one ferromagnetic phase, the τ-MnAl phase. This is a metastable phase that can be obtained by annealing from the most stable εphase. The annealing process develops the ferromagnetic τ-phase and, therefore, the magnetization of the sample. However, the coercivity (Hc) of the annealed powder is typically below 2 kOe(1 Oe=79.6 A·m-1) [6-8]. The ball-milling process is a suitable technique to increase the Hcof the material through controlled nanostructuring [7,9-11]. The literature reports that a typical milling time of several hours is necessary to develop Hc[7-12];however, it has recently been demonstrated that milling times as short as a few minutes can lead to comparable Hc[13,14]. In this work, an extremely short milling time of 30 s, which is sufficient for nanostructuring without inducing amorphization, was applied to study the evolution of the magnetic properties of gasatomized MnAl powder.

    2. Experimental details

    Fig. 1. (a) X-ray diffraction (XRD) patterns of the gas-atomized and the as-milled (30 s) powders. Scanning electron microscope (SEM) images of the (b) gas-atomized and(c) as-milled powders.

    Gas-atomized powder with a composition of Mn54Al46(±0.4 at%)was used as the starting material. Details about preparation and composition have been published elsewhere [8]. The gasatomized powder showed approximately spherical particles with a diameter less than 10 μm (Fig. 1). The gas-atomized powder was surfactant-assisted (oleic acid) ball milled for 30 s, in order to reduce possible oxidation and avoid welding.The ball-milling process was performed with tungsten carbide vials and balls, with a typical rotation speed of 900 r·min-1. The powder-to-oleic acid ratio was 5:1, and the ball-to-powder mass was 40:1. The loading and sealing of the vials were performed in an argon(Ar)-controlled atmosphere glove box to prevent oxidation.The particles morphology was determined using a Zeiss-EVO scanning electron microscope(SEM). A differential scanning calorimeter (DSC)—namely, TA Instruments model SDT Q600—was used to determine the crystallographic transition temperatures. MnAl powders were annealed under a nitrogen (N2) flow of 100 mL·min-1up to 700°C, using a temperature ramp of 10 K·min-1.X-ray diffraction(XRD)measurements were carried out using a Panalytical X’Pert PRO theta/2theta diffractometer with Cu-Kα radiation (λ=0.1541 nm). The crystallite size and microstrain were determined by the Scherrer method.Details on the quantitative phase analysis of milled and postannealed powders are provided elsewhere [13]. As-atomized and milled powders were annealed under N2flow with a ramp rate of 10°C·min-1at temperatures (Tanneal) of 340-450°C for 10 min.Room-temperature hysteresis loops were measured using a Lakeshore 7400 series vibrating sample magnetometer (VSM) with a maximum applied field of 20 kOe. These measurements allowed for the determination of the magnetization measured at a maximum applied field of 20 kOe (M20kOe), the remanence (Mr), and the Hc.

    3. Results and discussion

    Fig. 1(a) shows the XRD patterns measured for the gasatomized powder in the as-prepared state and after milling for 30 s. The gas-atomized powder consisted of the ε-phase with a minor content of the γ2-phase. The crystallite size determined from the XRD pattern for the ε-phase was 110 nm. Milling for 30 s was sufficient to produce breakage of the particles, but there was no significant change in the average particle size in comparison with that of the starting powder (Fig. 1). The mean crystallite size was clearly reduced, as may be directly inferred from the broader diffraction peaks measured after milling (Fig. 1(a)). In addition, and not reported to date by other milling methods, formation of the τ-MnAl phase was already observed in the asmilled state—that is, prior to annealing the powder—due to the reported high impact energy exerted during the process when milling with a high-density milling media (tungsten carbide)[14].It is precisely the combination of a high impact energy(inducing microstrain) and the application of an extremely short milling time (avoiding the high temperature achieved during long milling times—i.e., undesired relaxation effects) that probably eases the beginning of the ε-to-τ phase transformation through a displacive shear mechanism already occurring in the as-milled state. Fig. 2 shows the DSC heating curve measured for the starting gasatomized powder and for the powder milled for 30 s.The measured exothermic peak corresponds to the ε-to-τ phase transformation[13], with a maximum at 440 and 390°C for the gas-atomized powder and as-milled powder, respectively. Thus, milling for such a short time resulted in a decreased transformation temperature,which is of interest in view of possible powder manufacturing.This decreased temperature was a direct consequence of the microstructural refinement produced during the milling process in combination with the defects introduced in the particles,which decreased the energy barrier to produce the τ-MnAl phase [14].

    Both samples (i.e., the gas-atomized and as-milled powders)were annealed in the temperature range of 340-450°C to check the evolution of the magnetic properties with Tanneal(Fig. 3). No morphological transformation was observed in the samples after annealing, so the same particle size was maintained.

    Fig. 2. DSC curves of the gas-atomized and as-milled (30 s) powders.

    Fig. 3. Evolution of the magnetic properties for gas-atomized and as-milled (30 s)powders: (a) Mr and M20kOe; (b) Hc.

    The magnetization values Mrand M20kOeshowed the same tendency with increasing Tanneal, as shown in Fig. 3(a). However, a remarkable difference in the Tannealneeded to achieve maximum magnetization values was observed, with 75°C less needed for the as-milled powder (Tanneal=375°C) to achieve the maximum value, in comparison with the gas-atomized powder (Tanneal=450°C).This finding is of technological significance when considering the potential industrial implementation of the process. This fact is clearly illustrated in Fig. 4, where selected hysteresis loops are displayed for the gas-atomized and as-milled powders after annealing at 365 and 450°C (Figs. 4(a) and (b), respectively). As may be observed, Tanneal=365°C was insufficient to develop adequate PM properties in the gas-atomized powder, whereas Tanneal=450°C guaranteed full development of the magnetic properties. Although this temperature of 450°C was not the optimum one to be applied to the as-milled powder, it is worth remarking that the Mrremained approximately the same while the Hcwas 2.5 times higher for the milled and annealed powder,thereby proving the efficiency of this method in nanostructuring and improving the magnetic properties.

    Fig. 4. Room-temperature hysteresis loops measured for the gas-atomized and asmilled powders after annealing at (a) 365°C and (b) 450°C.

    Fig. 5. XRD patterns of the (a) gas-atomized and (b) as-milled powders, in the asprepared state and after annealing at 365, 400, and 450°C.

    Table 1 Evolution of the β/τ ratio, mean crystallite size, mean strain induced during milling, and Hc with the annealing temperature for the as-atomized and milled (30 s) powder.

    The evolution of the magnetization with annealing temperature can be understood by looking at the phase evolution of the gasatomized and as-milled powders with Tanneal(Fig. 5). The gasatomized powder required Tanneal>365°C to initiate the formation of the τ-phase. At 400°C, the ε-to-τ transformation was incomplete; thus, both phases were co-existing. The ε-to-τ transformation was only concluded at 450°C, when the τ-phase was observed together with a minor content of the β-phase.In comparison, milling for 30 s was sufficient to generate the τ-phase in the as-milled state—that is, with no need for a post-annealing treatment.Further annealing was required to enhance the τ-phase content and, consequently, the magnetization (Fig. 3(a)). It is worth noting that while annealing at 365°C did not result in appreciable nucleation of the τ-phase in the XRD pattern of the starting powder,the same temperature applied to the powder milled for 30 s promoted almost the full transformation of the ε-phase into the τ-MnAl phase; at 400°C, there was nothing reminiscent of the diffraction peaks of theε-phase.The significantly decreased temperature needed for the ε-to-τ phase transformation in the case of the as-milled powder is in good agreement with the DSC results(Fig. 2). Consequently, the evolution of the magnetization values(Mrand M20kOe)with Tannealis fully consistent with the evolution of the ferromagnetic τ-phase content.The lower magnetization values measured for the milled and annealed powder are a direct consequence of the higher β/τ fraction content (Table 1). It is worth remarking that enhanced magnetization values might be obtained in both the gas-atomized and the milled and annealed powder by starting from an ε single-phase gas-atomized powder(i.e.,by avoiding the presence of secondary phases in the starting material).

    Additional factors should be taken into account in order to understand the behavior of the Hcwith increasing Tanneal(Fig. 3(b)).Previous studies [7,14] have shown that the β/τ fraction content and the strain induced during milling are the main factors determining Hcin MnAl powder. Table 1 summarizes these values for the samples under study after annealing at different temperatures.Annealing of the gas-atomized and the as-milled powders resulted in an increased mean crystallite size with increasing Tanneal, which remained below 65 nm. For the same Tanneal, the crystallite size was smaller in all cases for the milled and annealed powder.

    Milling of the gas-atomized powder resulted in a decreased mean crystallite size in combination with the microstrain induced during the milling process. The novelty of the approach followed in this study, in comparison with previous results reported by the same authors on milling times ranging from 90 to 270 s[14],is that those times weresufficient to begin amorphization of the MnAl.It was proventhat post-annealingof theas-milledpowderfavors recrystallizationinto the β-phase,whichis beneficialto some extent(providedan adequate β/τ ratio)to increase Hcbut detrimental to the magnetization by reducing the overall τ-phase content.In the present study,milling for 30 s resulted in microstructural refinement without initiating amorphization of the powder.

    The maximum Hcof 1.8 and 4.2 kOe obtained for the annealed gas-atomized powder and as-milled powder, respectively, was a consequence of the combined effect of the reduced mean crystallite size, induced strain, and enhanced β/τ ratio. The formation of defects during milling and the creation of the β-phase played an important role as pinning centers in the magnetization reversal mechanism by increasing Hc. Annealing the powder resulted in grain growth and relaxation effects (Table 1), thus reducing the Hcwith increasing Tanneal(Fig. 3(b)). This combination of gas atomization and flash milling(30 s)offers a new route for the fabrication of isotropic nanocrystalline MnAl powder, with potential applications in emerging technologies such as 3D printing [15].

    4. Conclusions

    The milling of gas-atomized MnAl powder for an unprecedentedly short time of 30 s made Hcdevelopment possible,with a maximum value of 4.2 kOe after post-annealing in comparison with 1.8 kOe obtained for the starting material.This result was a consequence of nanostructuring without the initiation of amorphization,and a control on the β/τ ratio during the process. A short milling time of 30 s avoids the high temperature typically achieved when milling for a long time, and thus avoids undesired relaxation and phase-transformation effects. The annealing temperature required to achieve the best combination of magnetic properties in the asmilled powder was 75°C lower than that of the gas-atomized powder.The reduced ε-to-τ phase-transformation temperature and the possibility of developing Hcabout 2.5 times greater than those of the gas-atomized powder while maintaining Mrmake this route a promising one for the fabrication of nanocrystalline MnAl powder.

    Acknowledgements

    Gas-atomized powder was provided by Prof. Ian Baker (Dartmouth College) and Prof. Laura H. Lewis (Northeastern University,Boston) (Energy (ARPA-E), REACT DE-AR0000188). The authors acknowledge financial support from MINECO through NEXMAG(M-era.Net, PCIN-2015-126) and 3D-MAGNETOH (MAT2017-89960-R) projects; and from the Regional Government of Madrid through the NANOMAGCOST (P2018/NMT-4321) project. IMDEA Nanociencia is supported by the ‘‘Severo Ochoa” Programme for Centres of Excellence in R&D, MINECO (SEV-2016-0686).

    Compliance with ethics guidelines

    J. Rial, E.M. Palmero, and A. Bollero declare that they have no conflict of interest or financial conflicts to disclose.

    女的被弄到高潮叫床怎么办| 青春草亚洲视频在线观看| 成人黄色视频免费在线看| kizo精华| 男人爽女人下面视频在线观看| 亚洲国产精品专区欧美| 久久久久国产网址| 欧美成人午夜免费资源| 欧美日韩国产mv在线观看视频 | 亚洲精品日韩av片在线观看| 亚洲无线观看免费| 午夜精品国产一区二区电影| 国产精品一二三区在线看| 亚洲国产精品专区欧美| 国产成人a区在线观看| 免费观看性生交大片5| 男的添女的下面高潮视频| 亚洲精品乱码久久久v下载方式| 亚洲,一卡二卡三卡| 哪个播放器可以免费观看大片| 边亲边吃奶的免费视频| 国产精品麻豆人妻色哟哟久久| 搡老乐熟女国产| 国产高潮美女av| 免费看不卡的av| 亚洲国产色片| 亚洲一级一片aⅴ在线观看| 永久网站在线| 国产伦精品一区二区三区四那| 国产免费又黄又爽又色| 狂野欧美激情性bbbbbb| 一级毛片 在线播放| 全区人妻精品视频| 99久久精品一区二区三区| 少妇熟女欧美另类| 中国国产av一级| av播播在线观看一区| 久久久精品免费免费高清| 国产精品国产三级国产专区5o| 免费观看性生交大片5| 大片电影免费在线观看免费| 七月丁香在线播放| 高清午夜精品一区二区三区| 亚洲av成人精品一区久久| 最近手机中文字幕大全| 亚洲伊人久久精品综合| 99热这里只有精品一区| 卡戴珊不雅视频在线播放| 国产精品免费大片| 亚洲精品国产成人久久av| 街头女战士在线观看网站| 2022亚洲国产成人精品| 天天躁夜夜躁狠狠久久av| 一个人看的www免费观看视频| 最近最新中文字幕大全电影3| 婷婷色综合www| 97在线视频观看| 汤姆久久久久久久影院中文字幕| 免费人成在线观看视频色| 亚洲人成网站在线观看播放| av在线老鸭窝| 亚洲国产成人一精品久久久| 欧美成人午夜免费资源| 97在线人人人人妻| 亚洲丝袜综合中文字幕| 97在线人人人人妻| 亚洲人成网站在线观看播放| 日韩,欧美,国产一区二区三区| 亚洲精华国产精华液的使用体验| 熟妇人妻不卡中文字幕| 亚洲欧美中文字幕日韩二区| 亚洲va在线va天堂va国产| 最近手机中文字幕大全| 日本爱情动作片www.在线观看| 一级二级三级毛片免费看| 日本色播在线视频| 国产精品久久久久久久电影| 色5月婷婷丁香| 精品亚洲成a人片在线观看 | 国产日韩欧美在线精品| 日韩亚洲欧美综合| 日本爱情动作片www.在线观看| 男女边吃奶边做爰视频| 亚洲自偷自拍三级| 国产国拍精品亚洲av在线观看| 国内揄拍国产精品人妻在线| 纵有疾风起免费观看全集完整版| 国产在线男女| 国产亚洲av片在线观看秒播厂| 欧美精品亚洲一区二区| 亚洲,一卡二卡三卡| 亚洲国产欧美在线一区| 亚洲精品日韩av片在线观看| 久久人妻熟女aⅴ| 欧美区成人在线视频| 91久久精品电影网| 欧美+日韩+精品| 婷婷色综合www| 嫩草影院入口| 在线观看国产h片| 色吧在线观看| 国产免费福利视频在线观看| 色综合色国产| 免费大片黄手机在线观看| 色综合色国产| 国产黄片美女视频| 久久鲁丝午夜福利片| 国产色爽女视频免费观看| 中文字幕亚洲精品专区| 女性被躁到高潮视频| 黄色怎么调成土黄色| 精品久久久久久电影网| 99热国产这里只有精品6| 三级国产精品欧美在线观看| 免费观看在线日韩| 成人亚洲欧美一区二区av| 久久这里有精品视频免费| 精品国产乱码久久久久久小说| 久久精品国产亚洲av涩爱| 极品少妇高潮喷水抽搐| 美女视频免费永久观看网站| 一级黄片播放器| 欧美精品亚洲一区二区| 中文字幕免费在线视频6| 亚洲精品乱码久久久v下载方式| 99久久人妻综合| 成人美女网站在线观看视频| 亚洲精品中文字幕在线视频 | 一区在线观看完整版| 国产永久视频网站| 插逼视频在线观看| 亚洲成色77777| 国产精品人妻久久久久久| 久久精品国产鲁丝片午夜精品| 九色成人免费人妻av| 亚洲怡红院男人天堂| 日韩精品有码人妻一区| 日日撸夜夜添| 黑人猛操日本美女一级片| 亚洲高清免费不卡视频| 美女福利国产在线 | 黄色视频在线播放观看不卡| 久久精品国产鲁丝片午夜精品| 亚洲丝袜综合中文字幕| 精品亚洲成a人片在线观看 | av网站免费在线观看视频| 亚洲欧美一区二区三区黑人 | 在线观看三级黄色| 又大又黄又爽视频免费| 色吧在线观看| 伦理电影免费视频| 少妇的逼好多水| 亚洲精品色激情综合| 午夜福利在线观看免费完整高清在| 不卡视频在线观看欧美| 免费看光身美女| 久热这里只有精品99| 免费少妇av软件| 高清在线视频一区二区三区| 久久精品国产鲁丝片午夜精品| 国产高清三级在线| 少妇精品久久久久久久| 午夜精品国产一区二区电影| 国产淫片久久久久久久久| 中文字幕精品免费在线观看视频 | 26uuu在线亚洲综合色| 天堂中文最新版在线下载| 久久久久国产网址| 人人妻人人爽人人添夜夜欢视频 | 精品久久久精品久久久| 国产片特级美女逼逼视频| 免费观看无遮挡的男女| 久久人人爽av亚洲精品天堂 | 久久久久久久国产电影| 人妻系列 视频| 大香蕉97超碰在线| 狂野欧美激情性xxxx在线观看| 久久久精品94久久精品| 黄色怎么调成土黄色| 六月丁香七月| 欧美成人a在线观看| 日本欧美国产在线视频| 亚洲,一卡二卡三卡| 一级毛片电影观看| 久久ye,这里只有精品| a级毛片免费高清观看在线播放| 亚洲精品乱久久久久久| 一区二区三区精品91| 汤姆久久久久久久影院中文字幕| 深夜a级毛片| 99久久中文字幕三级久久日本| 免费久久久久久久精品成人欧美视频 | 国产久久久一区二区三区| 性色av一级| 99久久中文字幕三级久久日本| 日日啪夜夜撸| 亚洲一区二区三区欧美精品| 亚洲天堂av无毛| 精品午夜福利在线看| 久久久久人妻精品一区果冻| 深爱激情五月婷婷| 久久99蜜桃精品久久| 日本与韩国留学比较| 汤姆久久久久久久影院中文字幕| 黑丝袜美女国产一区| 99国产精品免费福利视频| 久久久久久久久久人人人人人人| 国产高清不卡午夜福利| 亚洲精品亚洲一区二区| 久久久久精品久久久久真实原创| 一区二区av电影网| 久久精品久久久久久噜噜老黄| 久久久久久久久大av| 亚洲国产av新网站| 日日撸夜夜添| 有码 亚洲区| 丰满迷人的少妇在线观看| 国产国拍精品亚洲av在线观看| 国产精品av视频在线免费观看| 99九九线精品视频在线观看视频| 校园人妻丝袜中文字幕| 中文字幕精品免费在线观看视频 | 久久99蜜桃精品久久| 麻豆国产97在线/欧美| 美女cb高潮喷水在线观看| 久久人人爽人人片av| 亚洲av综合色区一区| 久久久久久久久久久丰满| 免费黄频网站在线观看国产| 国产在线男女| 亚洲人成网站在线观看播放| 日韩一区二区视频免费看| 亚洲av二区三区四区| 亚洲av中文av极速乱| 亚洲国产精品专区欧美| 欧美一区二区亚洲| 国产免费视频播放在线视频| 欧美成人一区二区免费高清观看| 日韩 亚洲 欧美在线| 国产v大片淫在线免费观看| av在线app专区| 精品一品国产午夜福利视频| 国产在线男女| 久久亚洲国产成人精品v| 女人久久www免费人成看片| .国产精品久久| 欧美日韩在线观看h| 99久久中文字幕三级久久日本| 天天躁日日操中文字幕| 国产中年淑女户外野战色| 国产亚洲一区二区精品| 91精品国产九色| 亚洲国产毛片av蜜桃av| 80岁老熟妇乱子伦牲交| 伦精品一区二区三区| 亚洲,欧美,日韩| 麻豆成人av视频| 国产有黄有色有爽视频| 99久久中文字幕三级久久日本| 嫩草影院入口| 中文字幕亚洲精品专区| 少妇的逼水好多| 亚洲电影在线观看av| 国产黄频视频在线观看| 我的女老师完整版在线观看| 搡老乐熟女国产| 久久国产亚洲av麻豆专区| 99久国产av精品国产电影| 国产91av在线免费观看| 秋霞伦理黄片| 国产白丝娇喘喷水9色精品| 91久久精品电影网| 精品一区二区免费观看| 舔av片在线| 欧美日韩视频高清一区二区三区二| 91精品伊人久久大香线蕉| 最近2019中文字幕mv第一页| 免费黄网站久久成人精品| 欧美+日韩+精品| 一区在线观看完整版| 国产亚洲午夜精品一区二区久久| 超碰av人人做人人爽久久| 久久韩国三级中文字幕| 国产精品嫩草影院av在线观看| 欧美3d第一页| h视频一区二区三区| 在线天堂最新版资源| 午夜日本视频在线| 亚洲av男天堂| 久久综合国产亚洲精品| 欧美精品亚洲一区二区| 特大巨黑吊av在线直播| 观看免费一级毛片| 人妻 亚洲 视频| 精品国产一区二区三区久久久樱花 | 欧美老熟妇乱子伦牲交| 2022亚洲国产成人精品| 少妇的逼好多水| 18禁裸乳无遮挡免费网站照片| 精品人妻熟女av久视频| 国产深夜福利视频在线观看| 欧美+日韩+精品| 精品国产露脸久久av麻豆| av网站免费在线观看视频| 亚洲国产欧美在线一区| 91精品伊人久久大香线蕉| 亚洲人成网站在线播| 中文精品一卡2卡3卡4更新| 日韩大片免费观看网站| 啦啦啦视频在线资源免费观看| 婷婷色av中文字幕| 国产成人一区二区在线| 久久99精品国语久久久| 激情 狠狠 欧美| 国产成人aa在线观看| 精品亚洲成a人片在线观看 | 精品人妻偷拍中文字幕| 99久久中文字幕三级久久日本| 精品一区在线观看国产| 亚洲欧美中文字幕日韩二区| 久久精品国产亚洲av天美| 在线观看免费视频网站a站| 国产熟女欧美一区二区| 免费高清在线观看视频在线观看| 亚洲精品国产成人久久av| 久久久久精品性色| 赤兔流量卡办理| 在线天堂最新版资源| 亚洲av欧美aⅴ国产| 视频区图区小说| 精品少妇久久久久久888优播| 在现免费观看毛片| 女人高潮潮喷娇喘18禁视频| 欧美黄色片欧美黄色片| 欧美精品一区二区免费开放| 夫妻午夜视频| 老司机亚洲免费影院| 国产日韩欧美亚洲二区| 大陆偷拍与自拍| 欧美精品一区二区免费开放| 久久ye,这里只有精品| 国产精品一二三区在线看| 亚洲男人天堂网一区| 亚洲人成电影观看| 青青草视频在线视频观看| 国产一级毛片在线| 两个人免费观看高清视频| 最近最新中文字幕大全免费视频 | 国产在视频线精品| 国产高清视频在线播放一区 | 亚洲欧美激情在线| 男女午夜视频在线观看| videosex国产| 亚洲人成电影免费在线| 一区二区三区四区激情视频| 免费在线观看影片大全网站 | 亚洲av日韩精品久久久久久密 | 国产成人91sexporn| 亚洲欧洲日产国产| 最近手机中文字幕大全| 一个人免费看片子| 老汉色av国产亚洲站长工具| 免费人妻精品一区二区三区视频| 在线观看免费午夜福利视频| 欧美黄色淫秽网站| 亚洲国产精品一区三区| 亚洲熟女毛片儿| 国产伦理片在线播放av一区| 一区二区三区精品91| 亚洲av电影在线观看一区二区三区| 好男人视频免费观看在线| 好男人电影高清在线观看| 九草在线视频观看| 亚洲熟女精品中文字幕| 人人妻人人添人人爽欧美一区卜| 又黄又粗又硬又大视频| 欧美在线黄色| 天堂中文最新版在线下载| 啦啦啦在线观看免费高清www| 中文字幕精品免费在线观看视频| 青春草视频在线免费观看| 国产黄频视频在线观看| 高清欧美精品videossex| 国产淫语在线视频| 这个男人来自地球电影免费观看| 国产免费视频播放在线视频| 精品人妻在线不人妻| 色精品久久人妻99蜜桃| 婷婷色综合www| 九草在线视频观看| 久久午夜综合久久蜜桃| 精品亚洲乱码少妇综合久久| 亚洲激情五月婷婷啪啪| 国产精品一区二区免费欧美 | 激情视频va一区二区三区| 国产精品九九99| 2018国产大陆天天弄谢| 一级黄片播放器| 国产成人精品在线电影| 色综合欧美亚洲国产小说| 欧美成人午夜精品| 精品人妻熟女毛片av久久网站| 操美女的视频在线观看| 午夜两性在线视频| 满18在线观看网站| 国产片内射在线| 免费黄频网站在线观看国产| 国产熟女午夜一区二区三区| 欧美 亚洲 国产 日韩一| 国产一区二区三区综合在线观看| e午夜精品久久久久久久| 亚洲av在线观看美女高潮| 永久免费av网站大全| 国精品久久久久久国模美| 巨乳人妻的诱惑在线观看| 日韩伦理黄色片| 日韩中文字幕欧美一区二区 | 最黄视频免费看| 在线 av 中文字幕| 五月开心婷婷网| 亚洲国产精品一区三区| 国产主播在线观看一区二区 | 建设人人有责人人尽责人人享有的| 亚洲精品美女久久av网站| 午夜久久久在线观看| 在线观看一区二区三区激情| 日本一区二区免费在线视频| 日本欧美国产在线视频| 99国产精品免费福利视频| 久久热在线av| 在线观看免费视频网站a站| 婷婷色综合大香蕉| 国产日韩欧美视频二区| 永久免费av网站大全| 黄片播放在线免费| 亚洲精品国产av成人精品| 国产av一区二区精品久久| 两人在一起打扑克的视频| 美女视频免费永久观看网站| 精品福利永久在线观看| 99久久综合免费| 亚洲精品美女久久久久99蜜臀 | 搡老岳熟女国产| 亚洲伊人久久精品综合| 丝袜在线中文字幕| 最新的欧美精品一区二区| 久久精品亚洲熟妇少妇任你| 亚洲成色77777| xxxhd国产人妻xxx| 国产精品久久久人人做人人爽| 少妇的丰满在线观看| 久久久久国产一级毛片高清牌| 下体分泌物呈黄色| 亚洲黑人精品在线| 中文字幕高清在线视频| 男女之事视频高清在线观看 | 男人添女人高潮全过程视频| 亚洲综合色网址| 久久久欧美国产精品| 日本猛色少妇xxxxx猛交久久| av天堂在线播放| 波多野结衣一区麻豆| 日韩一区二区三区影片| 天天操日日干夜夜撸| 91精品国产国语对白视频| 赤兔流量卡办理| 亚洲成国产人片在线观看| 中文字幕制服av| 婷婷色麻豆天堂久久| 热99国产精品久久久久久7| 19禁男女啪啪无遮挡网站| 青青草视频在线视频观看| 另类亚洲欧美激情| 一级片'在线观看视频| 精品亚洲成国产av| 精品国产乱码久久久久久小说| 热re99久久精品国产66热6| 大话2 男鬼变身卡| 男男h啪啪无遮挡| 中文字幕人妻丝袜一区二区| 亚洲情色 制服丝袜| 欧美精品高潮呻吟av久久| 这个男人来自地球电影免费观看| 女人爽到高潮嗷嗷叫在线视频| 国产又色又爽无遮挡免| 日韩制服骚丝袜av| 婷婷色av中文字幕| 国产精品成人在线| 午夜两性在线视频| 视频在线观看一区二区三区| 9热在线视频观看99| 亚洲欧美精品自产自拍| 黄色怎么调成土黄色| 午夜免费男女啪啪视频观看| 欧美中文综合在线视频| 十八禁高潮呻吟视频| 亚洲av成人精品一二三区| www.自偷自拍.com| 国产黄频视频在线观看| a 毛片基地| 色94色欧美一区二区| www.熟女人妻精品国产| 欧美精品高潮呻吟av久久| 菩萨蛮人人尽说江南好唐韦庄| 免费看av在线观看网站| 女性生殖器流出的白浆| 午夜久久久在线观看| 晚上一个人看的免费电影| 久久人妻熟女aⅴ| 无限看片的www在线观看| 成年人免费黄色播放视频| 十分钟在线观看高清视频www| 亚洲中文字幕日韩| 亚洲一码二码三码区别大吗| 不卡av一区二区三区| 黑丝袜美女国产一区| 亚洲色图综合在线观看| 日韩欧美一区视频在线观看| 性少妇av在线| 久久人人97超碰香蕉20202| 精品熟女少妇八av免费久了| 午夜两性在线视频| 男女之事视频高清在线观看 | 又紧又爽又黄一区二区| 久久人妻福利社区极品人妻图片 | 亚洲男人天堂网一区| 伦理电影免费视频| 热99久久久久精品小说推荐| av网站在线播放免费| 精品亚洲成a人片在线观看| 亚洲欧美成人综合另类久久久| 丝袜在线中文字幕| 国产精品一国产av| 免费在线观看视频国产中文字幕亚洲 | 亚洲熟女毛片儿| 两性夫妻黄色片| 日韩一区二区三区影片| 一级片免费观看大全| 天天躁日日躁夜夜躁夜夜| 90打野战视频偷拍视频| 欧美精品av麻豆av| 日韩视频在线欧美| 中文精品一卡2卡3卡4更新| 国产亚洲精品第一综合不卡| 人人妻人人澡人人看| 欧美亚洲日本最大视频资源| 麻豆国产av国片精品| 免费在线观看影片大全网站 | 亚洲欧洲精品一区二区精品久久久| 亚洲欧美色中文字幕在线| 中文字幕色久视频| 精品亚洲乱码少妇综合久久| 精品福利永久在线观看| 波多野结衣一区麻豆| 男人爽女人下面视频在线观看| 午夜福利免费观看在线| 国产人伦9x9x在线观看| 成年动漫av网址| 国产男人的电影天堂91| www.自偷自拍.com| 日本av免费视频播放| 欧美精品啪啪一区二区三区 | 欧美亚洲日本最大视频资源| 电影成人av| 一级毛片我不卡| 欧美人与善性xxx| 青青草视频在线视频观看| 考比视频在线观看| 男女边吃奶边做爰视频| 国产日韩欧美在线精品| 少妇人妻 视频| 午夜两性在线视频| 永久免费av网站大全| 午夜免费鲁丝| 国产真人三级小视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 午夜免费成人在线视频| 亚洲国产av新网站| 国产亚洲一区二区精品| 欧美日韩视频精品一区| 国产成人欧美| 国产一区二区在线观看av| 国产精品久久久av美女十八| 国产麻豆69| 91国产中文字幕| 97精品久久久久久久久久精品| 亚洲国产欧美一区二区综合| 亚洲专区国产一区二区| 国产成人精品久久二区二区91| 午夜91福利影院| 岛国毛片在线播放| 一区二区三区四区激情视频| 久久av网站| 高清不卡的av网站| 一二三四社区在线视频社区8| 在线观看免费高清a一片| 夫妻性生交免费视频一级片| 午夜福利影视在线免费观看| 久久99一区二区三区| 国产精品熟女久久久久浪| 人成视频在线观看免费观看| 国产亚洲av高清不卡| 亚洲精品日韩在线中文字幕| 麻豆乱淫一区二区| 欧美精品一区二区免费开放| 免费在线观看影片大全网站 | 99久久精品国产亚洲精品| 国产日韩欧美亚洲二区| 777米奇影视久久| 一区二区日韩欧美中文字幕| 成人影院久久| 久久鲁丝午夜福利片| 久久午夜综合久久蜜桃| 人人妻人人爽人人添夜夜欢视频| 天堂8中文在线网|