• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient Nanostructuring of Isotropic Gas-Atomized MnAl Powder by Rapid Milling (30 s)

    2020-05-22 08:02:10RialPalmeroBollero
    Engineering 2020年2期

    J. Rial, E.M. Palmero, A. Bollero*

    Division of Permanent Magnets and Applications, IMDEA Nanoscience, Campus Universidad Autónoma de Madrid, Madrid 28049, Spain

    Keywords:

    A B S T R A C T An unprecedentedly short milling time of 30 s was applied to gas-atomized MnAl powder in order to develop permanent magnet properties and,in particular,coercivity.It is shown that such a short processing time followed by annealing results in efficient nanostructuring and controlled phase transformation.The defects resulting from the microstrain induced during milling, together with the creation of the βphase during post-annealing,act as pinning centers resulting in an enhanced coercivity.This study shows the importance of finding a balance between the formation of the ferromagnetic τ-MnAl phase and the βphase in order to establish a compromise between magnetization and coercivity. A coercivity as high as 4.2 kOe(1 Oe=79.6 A·m-1) was obtained after milling(30 s)and annealing,which is comparable to values previously reported in the literature for milling times exceeding 20 h. This reduction of the postannealing temperature by 75°C for the as-milled powder and a 2.5-fold increase in coercivity, while maintaining practically unchanged the remanence of the annealed gas-atomized material, opens a new path for the synthesis of isotropic MnAl-based powder.

    1. Introduction

    Numerous present and emerging technologies require the use of permanent magnets (PMs), resulting in an increasing yearly need for rare-earth (RE) elements as constituents of the strongest(NdFeB- and SmCo-based) technological PMs [1,2]. Economic and environmental considerations have attracted the interest of research groups and industry in the search for RE-free PM alternatives [3], which should result in diversification of the PM sector according to the requirements of the final application. Ferrites are low-cost PMs with widely abundant constituent elements;however,the reduced maximum energy product,(BH)max,of about 5 megagauss-oersteds(MGOe,1 MGOe=7.958 kJ·m-3)is a limiting factor for applications requiring a high magnetic performance.

    MnAl is a promising RE-free PM candidate with a high uniaxial magnetocrystalline anisotropy (K ≈1.5×106J·m-3) and a theoretical (BH)maxof 12 MGOe [4,5]. These values, in combination with a low density (5.2 g·cm-3) in comparison with that of Nd2Fe14B(7.4 g·cm-3), would result in a high-energy product per unit weight—that is,in high-performance light magnets.MnAl has only one ferromagnetic phase, the τ-MnAl phase. This is a metastable phase that can be obtained by annealing from the most stable εphase. The annealing process develops the ferromagnetic τ-phase and, therefore, the magnetization of the sample. However, the coercivity (Hc) of the annealed powder is typically below 2 kOe(1 Oe=79.6 A·m-1) [6-8]. The ball-milling process is a suitable technique to increase the Hcof the material through controlled nanostructuring [7,9-11]. The literature reports that a typical milling time of several hours is necessary to develop Hc[7-12];however, it has recently been demonstrated that milling times as short as a few minutes can lead to comparable Hc[13,14]. In this work, an extremely short milling time of 30 s, which is sufficient for nanostructuring without inducing amorphization, was applied to study the evolution of the magnetic properties of gasatomized MnAl powder.

    2. Experimental details

    Fig. 1. (a) X-ray diffraction (XRD) patterns of the gas-atomized and the as-milled (30 s) powders. Scanning electron microscope (SEM) images of the (b) gas-atomized and(c) as-milled powders.

    Gas-atomized powder with a composition of Mn54Al46(±0.4 at%)was used as the starting material. Details about preparation and composition have been published elsewhere [8]. The gasatomized powder showed approximately spherical particles with a diameter less than 10 μm (Fig. 1). The gas-atomized powder was surfactant-assisted (oleic acid) ball milled for 30 s, in order to reduce possible oxidation and avoid welding.The ball-milling process was performed with tungsten carbide vials and balls, with a typical rotation speed of 900 r·min-1. The powder-to-oleic acid ratio was 5:1, and the ball-to-powder mass was 40:1. The loading and sealing of the vials were performed in an argon(Ar)-controlled atmosphere glove box to prevent oxidation.The particles morphology was determined using a Zeiss-EVO scanning electron microscope(SEM). A differential scanning calorimeter (DSC)—namely, TA Instruments model SDT Q600—was used to determine the crystallographic transition temperatures. MnAl powders were annealed under a nitrogen (N2) flow of 100 mL·min-1up to 700°C, using a temperature ramp of 10 K·min-1.X-ray diffraction(XRD)measurements were carried out using a Panalytical X’Pert PRO theta/2theta diffractometer with Cu-Kα radiation (λ=0.1541 nm). The crystallite size and microstrain were determined by the Scherrer method.Details on the quantitative phase analysis of milled and postannealed powders are provided elsewhere [13]. As-atomized and milled powders were annealed under N2flow with a ramp rate of 10°C·min-1at temperatures (Tanneal) of 340-450°C for 10 min.Room-temperature hysteresis loops were measured using a Lakeshore 7400 series vibrating sample magnetometer (VSM) with a maximum applied field of 20 kOe. These measurements allowed for the determination of the magnetization measured at a maximum applied field of 20 kOe (M20kOe), the remanence (Mr), and the Hc.

    3. Results and discussion

    Fig. 1(a) shows the XRD patterns measured for the gasatomized powder in the as-prepared state and after milling for 30 s. The gas-atomized powder consisted of the ε-phase with a minor content of the γ2-phase. The crystallite size determined from the XRD pattern for the ε-phase was 110 nm. Milling for 30 s was sufficient to produce breakage of the particles, but there was no significant change in the average particle size in comparison with that of the starting powder (Fig. 1). The mean crystallite size was clearly reduced, as may be directly inferred from the broader diffraction peaks measured after milling (Fig. 1(a)). In addition, and not reported to date by other milling methods, formation of the τ-MnAl phase was already observed in the asmilled state—that is, prior to annealing the powder—due to the reported high impact energy exerted during the process when milling with a high-density milling media (tungsten carbide)[14].It is precisely the combination of a high impact energy(inducing microstrain) and the application of an extremely short milling time (avoiding the high temperature achieved during long milling times—i.e., undesired relaxation effects) that probably eases the beginning of the ε-to-τ phase transformation through a displacive shear mechanism already occurring in the as-milled state. Fig. 2 shows the DSC heating curve measured for the starting gasatomized powder and for the powder milled for 30 s.The measured exothermic peak corresponds to the ε-to-τ phase transformation[13], with a maximum at 440 and 390°C for the gas-atomized powder and as-milled powder, respectively. Thus, milling for such a short time resulted in a decreased transformation temperature,which is of interest in view of possible powder manufacturing.This decreased temperature was a direct consequence of the microstructural refinement produced during the milling process in combination with the defects introduced in the particles,which decreased the energy barrier to produce the τ-MnAl phase [14].

    Both samples (i.e., the gas-atomized and as-milled powders)were annealed in the temperature range of 340-450°C to check the evolution of the magnetic properties with Tanneal(Fig. 3). No morphological transformation was observed in the samples after annealing, so the same particle size was maintained.

    Fig. 2. DSC curves of the gas-atomized and as-milled (30 s) powders.

    Fig. 3. Evolution of the magnetic properties for gas-atomized and as-milled (30 s)powders: (a) Mr and M20kOe; (b) Hc.

    The magnetization values Mrand M20kOeshowed the same tendency with increasing Tanneal, as shown in Fig. 3(a). However, a remarkable difference in the Tannealneeded to achieve maximum magnetization values was observed, with 75°C less needed for the as-milled powder (Tanneal=375°C) to achieve the maximum value, in comparison with the gas-atomized powder (Tanneal=450°C).This finding is of technological significance when considering the potential industrial implementation of the process. This fact is clearly illustrated in Fig. 4, where selected hysteresis loops are displayed for the gas-atomized and as-milled powders after annealing at 365 and 450°C (Figs. 4(a) and (b), respectively). As may be observed, Tanneal=365°C was insufficient to develop adequate PM properties in the gas-atomized powder, whereas Tanneal=450°C guaranteed full development of the magnetic properties. Although this temperature of 450°C was not the optimum one to be applied to the as-milled powder, it is worth remarking that the Mrremained approximately the same while the Hcwas 2.5 times higher for the milled and annealed powder,thereby proving the efficiency of this method in nanostructuring and improving the magnetic properties.

    Fig. 4. Room-temperature hysteresis loops measured for the gas-atomized and asmilled powders after annealing at (a) 365°C and (b) 450°C.

    Fig. 5. XRD patterns of the (a) gas-atomized and (b) as-milled powders, in the asprepared state and after annealing at 365, 400, and 450°C.

    Table 1 Evolution of the β/τ ratio, mean crystallite size, mean strain induced during milling, and Hc with the annealing temperature for the as-atomized and milled (30 s) powder.

    The evolution of the magnetization with annealing temperature can be understood by looking at the phase evolution of the gasatomized and as-milled powders with Tanneal(Fig. 5). The gasatomized powder required Tanneal>365°C to initiate the formation of the τ-phase. At 400°C, the ε-to-τ transformation was incomplete; thus, both phases were co-existing. The ε-to-τ transformation was only concluded at 450°C, when the τ-phase was observed together with a minor content of the β-phase.In comparison, milling for 30 s was sufficient to generate the τ-phase in the as-milled state—that is, with no need for a post-annealing treatment.Further annealing was required to enhance the τ-phase content and, consequently, the magnetization (Fig. 3(a)). It is worth noting that while annealing at 365°C did not result in appreciable nucleation of the τ-phase in the XRD pattern of the starting powder,the same temperature applied to the powder milled for 30 s promoted almost the full transformation of the ε-phase into the τ-MnAl phase; at 400°C, there was nothing reminiscent of the diffraction peaks of theε-phase.The significantly decreased temperature needed for the ε-to-τ phase transformation in the case of the as-milled powder is in good agreement with the DSC results(Fig. 2). Consequently, the evolution of the magnetization values(Mrand M20kOe)with Tannealis fully consistent with the evolution of the ferromagnetic τ-phase content.The lower magnetization values measured for the milled and annealed powder are a direct consequence of the higher β/τ fraction content (Table 1). It is worth remarking that enhanced magnetization values might be obtained in both the gas-atomized and the milled and annealed powder by starting from an ε single-phase gas-atomized powder(i.e.,by avoiding the presence of secondary phases in the starting material).

    Additional factors should be taken into account in order to understand the behavior of the Hcwith increasing Tanneal(Fig. 3(b)).Previous studies [7,14] have shown that the β/τ fraction content and the strain induced during milling are the main factors determining Hcin MnAl powder. Table 1 summarizes these values for the samples under study after annealing at different temperatures.Annealing of the gas-atomized and the as-milled powders resulted in an increased mean crystallite size with increasing Tanneal, which remained below 65 nm. For the same Tanneal, the crystallite size was smaller in all cases for the milled and annealed powder.

    Milling of the gas-atomized powder resulted in a decreased mean crystallite size in combination with the microstrain induced during the milling process. The novelty of the approach followed in this study, in comparison with previous results reported by the same authors on milling times ranging from 90 to 270 s[14],is that those times weresufficient to begin amorphization of the MnAl.It was proventhat post-annealingof theas-milledpowderfavors recrystallizationinto the β-phase,whichis beneficialto some extent(providedan adequate β/τ ratio)to increase Hcbut detrimental to the magnetization by reducing the overall τ-phase content.In the present study,milling for 30 s resulted in microstructural refinement without initiating amorphization of the powder.

    The maximum Hcof 1.8 and 4.2 kOe obtained for the annealed gas-atomized powder and as-milled powder, respectively, was a consequence of the combined effect of the reduced mean crystallite size, induced strain, and enhanced β/τ ratio. The formation of defects during milling and the creation of the β-phase played an important role as pinning centers in the magnetization reversal mechanism by increasing Hc. Annealing the powder resulted in grain growth and relaxation effects (Table 1), thus reducing the Hcwith increasing Tanneal(Fig. 3(b)). This combination of gas atomization and flash milling(30 s)offers a new route for the fabrication of isotropic nanocrystalline MnAl powder, with potential applications in emerging technologies such as 3D printing [15].

    4. Conclusions

    The milling of gas-atomized MnAl powder for an unprecedentedly short time of 30 s made Hcdevelopment possible,with a maximum value of 4.2 kOe after post-annealing in comparison with 1.8 kOe obtained for the starting material.This result was a consequence of nanostructuring without the initiation of amorphization,and a control on the β/τ ratio during the process. A short milling time of 30 s avoids the high temperature typically achieved when milling for a long time, and thus avoids undesired relaxation and phase-transformation effects. The annealing temperature required to achieve the best combination of magnetic properties in the asmilled powder was 75°C lower than that of the gas-atomized powder.The reduced ε-to-τ phase-transformation temperature and the possibility of developing Hcabout 2.5 times greater than those of the gas-atomized powder while maintaining Mrmake this route a promising one for the fabrication of nanocrystalline MnAl powder.

    Acknowledgements

    Gas-atomized powder was provided by Prof. Ian Baker (Dartmouth College) and Prof. Laura H. Lewis (Northeastern University,Boston) (Energy (ARPA-E), REACT DE-AR0000188). The authors acknowledge financial support from MINECO through NEXMAG(M-era.Net, PCIN-2015-126) and 3D-MAGNETOH (MAT2017-89960-R) projects; and from the Regional Government of Madrid through the NANOMAGCOST (P2018/NMT-4321) project. IMDEA Nanociencia is supported by the ‘‘Severo Ochoa” Programme for Centres of Excellence in R&D, MINECO (SEV-2016-0686).

    Compliance with ethics guidelines

    J. Rial, E.M. Palmero, and A. Bollero declare that they have no conflict of interest or financial conflicts to disclose.

    亚洲精品aⅴ在线观看| 少妇的逼好多水| 国产欧美亚洲国产| 少妇精品久久久久久久| 国产成人欧美| 国产精品国产三级国产专区5o| 一级黄片播放器| 久久国内精品自在自线图片| 国产成人91sexporn| 日本午夜av视频| 亚洲欧美成人精品一区二区| 啦啦啦啦在线视频资源| 人妻少妇偷人精品九色| 大香蕉97超碰在线| 亚洲精品日本国产第一区| 国产精品久久久久久av不卡| 视频区图区小说| 全区人妻精品视频| 免费人成在线观看视频色| a 毛片基地| 精品少妇久久久久久888优播| 精品久久久久久电影网| 亚洲国产精品一区二区三区在线| 国产又色又爽无遮挡免| 免费黄网站久久成人精品| 亚洲四区av| 欧美少妇被猛烈插入视频| 亚洲色图 男人天堂 中文字幕 | 免费观看在线日韩| 精品人妻在线不人妻| 蜜桃国产av成人99| 久久人人爽人人片av| 99九九在线精品视频| 黑人欧美特级aaaaaa片| 久久久久精品久久久久真实原创| 欧美xxⅹ黑人| 久久av网站| 亚洲成人一二三区av| 你懂的网址亚洲精品在线观看| av在线老鸭窝| 国产又爽黄色视频| 免费看不卡的av| 欧美人与善性xxx| 欧美日韩综合久久久久久| 国产免费福利视频在线观看| 交换朋友夫妻互换小说| 日本-黄色视频高清免费观看| 尾随美女入室| 久久久精品免费免费高清| 热99久久久久精品小说推荐| 国产成人一区二区在线| 波野结衣二区三区在线| 日本免费在线观看一区| 大陆偷拍与自拍| 十八禁网站网址无遮挡| 欧美激情 高清一区二区三区| 欧美+日韩+精品| 欧美精品高潮呻吟av久久| 高清在线视频一区二区三区| 少妇精品久久久久久久| 国产不卡av网站在线观看| 亚洲在久久综合| 亚洲国产日韩一区二区| 亚洲国产毛片av蜜桃av| 99热这里只有是精品在线观看| 婷婷色综合www| 黄色怎么调成土黄色| 亚洲精品乱久久久久久| 91aial.com中文字幕在线观看| 国产有黄有色有爽视频| 色5月婷婷丁香| 国产免费又黄又爽又色| 中文字幕免费在线视频6| a 毛片基地| 午夜老司机福利剧场| 国产精品女同一区二区软件| 亚洲成国产人片在线观看| 国产 一区精品| 边亲边吃奶的免费视频| 国产在线免费精品| 少妇被粗大的猛进出69影院 | 丁香六月天网| 婷婷色av中文字幕| 亚洲av综合色区一区| av国产精品久久久久影院| 卡戴珊不雅视频在线播放| 美国免费a级毛片| 国产黄色视频一区二区在线观看| 啦啦啦啦在线视频资源| 国产在线一区二区三区精| 国产亚洲精品第一综合不卡 | av免费在线看不卡| 伦理电影免费视频| 精品第一国产精品| av又黄又爽大尺度在线免费看| 免费观看a级毛片全部| 视频区图区小说| 精品午夜福利在线看| 亚洲情色 制服丝袜| 最近手机中文字幕大全| 久久久久久久精品精品| 男女国产视频网站| 久久97久久精品| 久久热在线av| 人人妻人人添人人爽欧美一区卜| 午夜91福利影院| 99热全是精品| 国产色爽女视频免费观看| 亚洲成av片中文字幕在线观看 | 免费在线观看黄色视频的| 边亲边吃奶的免费视频| 成年动漫av网址| 丰满饥渴人妻一区二区三| 啦啦啦在线观看免费高清www| 日本与韩国留学比较| 天天操日日干夜夜撸| 亚洲人成77777在线视频| 在线天堂中文资源库| 国产成人一区二区在线| 国产又色又爽无遮挡免| 日韩精品免费视频一区二区三区 | 91精品三级在线观看| 免费看不卡的av| 日韩精品免费视频一区二区三区 | 永久免费av网站大全| 天天操日日干夜夜撸| 午夜福利网站1000一区二区三区| 亚洲精品美女久久av网站| 久久精品国产亚洲av涩爱| 满18在线观看网站| 99热网站在线观看| 亚洲av电影在线观看一区二区三区| 国产成人aa在线观看| 如何舔出高潮| 久久婷婷青草| 成人亚洲欧美一区二区av| 亚洲精品自拍成人| 久久人人爽人人爽人人片va| 久久97久久精品| 国产精品99久久99久久久不卡 | 性高湖久久久久久久久免费观看| 人人妻人人爽人人添夜夜欢视频| 人人妻人人澡人人爽人人夜夜| 亚洲精品乱码久久久久久按摩| 欧美日韩精品成人综合77777| 国产男人的电影天堂91| 日本爱情动作片www.在线观看| 亚洲欧美日韩卡通动漫| 大片免费播放器 马上看| 最近2019中文字幕mv第一页| 九九爱精品视频在线观看| 在线观看www视频免费| 在线亚洲精品国产二区图片欧美| 青春草视频在线免费观看| 成年人免费黄色播放视频| 日本黄大片高清| 又大又黄又爽视频免费| 一边亲一边摸免费视频| 国产欧美另类精品又又久久亚洲欧美| 99热网站在线观看| 国产一区二区在线观看av| 国产欧美日韩综合在线一区二区| av福利片在线| 人人妻人人澡人人看| 又大又黄又爽视频免费| 国产一区二区在线观看av| freevideosex欧美| 久久免费观看电影| 亚洲av男天堂| 亚洲,一卡二卡三卡| 丝袜脚勾引网站| 精品亚洲乱码少妇综合久久| 伦精品一区二区三区| av网站免费在线观看视频| 少妇人妻 视频| 亚洲 欧美一区二区三区| 久久精品夜色国产| 一个人免费看片子| 赤兔流量卡办理| 国产成人午夜福利电影在线观看| 人人妻人人澡人人爽人人夜夜| 伊人亚洲综合成人网| 国产成人91sexporn| 色视频在线一区二区三区| 国产精品久久久久久精品电影小说| 日韩制服丝袜自拍偷拍| 欧美变态另类bdsm刘玥| 少妇被粗大的猛进出69影院 | 一区二区三区精品91| 七月丁香在线播放| 国产成人免费观看mmmm| 国产国拍精品亚洲av在线观看| 毛片一级片免费看久久久久| 亚洲人与动物交配视频| av在线老鸭窝| 亚洲成人av在线免费| 最近最新中文字幕大全免费视频 | 大香蕉久久网| 欧美日韩综合久久久久久| 精品熟女少妇av免费看| 边亲边吃奶的免费视频| 视频在线观看一区二区三区| 亚洲美女黄色视频免费看| 男人操女人黄网站| 亚洲欧美成人综合另类久久久| 亚洲av男天堂| 少妇的逼好多水| 男女国产视频网站| 综合色丁香网| 人妻少妇偷人精品九色| 亚洲第一av免费看| videosex国产| 免费观看a级毛片全部| 欧美少妇被猛烈插入视频| 亚洲av免费高清在线观看| 丝瓜视频免费看黄片| 亚洲成av片中文字幕在线观看 | 日本欧美视频一区| 少妇的逼水好多| 久久女婷五月综合色啪小说| 亚洲精品久久久久久婷婷小说| 日韩av免费高清视频| 久久国内精品自在自线图片| 亚洲图色成人| 久久鲁丝午夜福利片| 天天操日日干夜夜撸| 日韩中字成人| 最近中文字幕高清免费大全6| 国产成人欧美| 亚洲,欧美,日韩| 国产精品国产三级专区第一集| 日本猛色少妇xxxxx猛交久久| 综合色丁香网| 欧美人与性动交α欧美软件 | av播播在线观看一区| 久久ye,这里只有精品| 亚洲精品成人av观看孕妇| 国产精品久久久av美女十八| 欧美日本中文国产一区发布| 97超碰精品成人国产| av视频免费观看在线观看| 国产成人一区二区在线| 久久久久久久久久人人人人人人| 精品福利永久在线观看| 丝袜人妻中文字幕| 人人妻人人澡人人看| 亚洲内射少妇av| av国产精品久久久久影院| 夜夜骑夜夜射夜夜干| 国产精品国产三级国产专区5o| 丝瓜视频免费看黄片| 成人午夜精彩视频在线观看| 国产成人精品福利久久| 亚洲国产精品一区二区三区在线| 国产黄色免费在线视频| 国产精品秋霞免费鲁丝片| 有码 亚洲区| 在线观看免费高清a一片| 国产黄色视频一区二区在线观看| 纯流量卡能插随身wifi吗| 久久精品国产亚洲av涩爱| av在线观看视频网站免费| 国产精品免费大片| 国产精品99久久99久久久不卡 | 欧美精品国产亚洲| 美女福利国产在线| 亚洲伊人色综图| 女人久久www免费人成看片| 最近最新中文字幕大全免费视频 | 国产 一区精品| 色视频在线一区二区三区| 乱人伦中国视频| 在线天堂最新版资源| 亚洲精品乱久久久久久| 黄色怎么调成土黄色| 97精品久久久久久久久久精品| 久久这里有精品视频免费| 国产黄色免费在线视频| 爱豆传媒免费全集在线观看| 欧美性感艳星| 亚洲欧美一区二区三区国产| 成人午夜精彩视频在线观看| 制服丝袜香蕉在线| 在线观看三级黄色| 国产成人aa在线观看| 欧美变态另类bdsm刘玥| 成人亚洲精品一区在线观看| 美女大奶头黄色视频| 日韩不卡一区二区三区视频在线| 精品午夜福利在线看| 天堂8中文在线网| 国产精品熟女久久久久浪| 欧美日韩亚洲高清精品| 久久久精品免费免费高清| 久久久国产精品麻豆| 国产黄色免费在线视频| 女人精品久久久久毛片| 国产综合精华液| 国产精品久久久久成人av| 欧美日韩亚洲高清精品| 久久久精品免费免费高清| 欧美日韩综合久久久久久| 日韩av在线免费看完整版不卡| 久久这里只有精品19| 国产亚洲最大av| 一级毛片我不卡| 美女视频免费永久观看网站| 午夜免费观看性视频| 色94色欧美一区二区| 日产精品乱码卡一卡2卡三| 女人精品久久久久毛片| 在线 av 中文字幕| av视频免费观看在线观看| 汤姆久久久久久久影院中文字幕| 人人妻人人添人人爽欧美一区卜| 女人被躁到高潮嗷嗷叫费观| 免费观看av网站的网址| √禁漫天堂资源中文www| 黄网站色视频无遮挡免费观看| 久久鲁丝午夜福利片| 少妇人妻久久综合中文| 大香蕉97超碰在线| 熟女av电影| 国产极品粉嫩免费观看在线| av国产久精品久网站免费入址| 激情视频va一区二区三区| 免费看不卡的av| 久久99蜜桃精品久久| 久久久久久久精品精品| 中文字幕亚洲精品专区| 国产白丝娇喘喷水9色精品| 七月丁香在线播放| 午夜福利影视在线免费观看| 欧美成人精品欧美一级黄| 国产在线视频一区二区| 国产一区二区在线观看av| 夜夜骑夜夜射夜夜干| 亚洲精品一区蜜桃| 亚洲中文av在线| 亚洲综合色网址| 麻豆精品久久久久久蜜桃| 欧美激情国产日韩精品一区| 最新中文字幕久久久久| 亚洲精品国产av成人精品| 18+在线观看网站| 亚洲精品自拍成人| 在线观看三级黄色| 亚洲国产最新在线播放| 晚上一个人看的免费电影| 一级毛片黄色毛片免费观看视频| 最新的欧美精品一区二区| 久久热在线av| 色婷婷久久久亚洲欧美| 国产色爽女视频免费观看| 老司机影院毛片| 国产国语露脸激情在线看| 久久精品久久精品一区二区三区| 99热这里只有是精品在线观看| 日韩一区二区视频免费看| 欧美亚洲日本最大视频资源| 精品人妻在线不人妻| 中文天堂在线官网| 一级片'在线观看视频| 老司机影院成人| 久久久久久久亚洲中文字幕| 熟女电影av网| 草草在线视频免费看| 大片免费播放器 马上看| 久久久久久久大尺度免费视频| 国产av一区二区精品久久| 亚洲av欧美aⅴ国产| 少妇的逼好多水| 国产亚洲精品久久久com| tube8黄色片| 99国产综合亚洲精品| 欧美亚洲 丝袜 人妻 在线| 中文字幕最新亚洲高清| 日韩 亚洲 欧美在线| 青春草视频在线免费观看| 国产精品 国内视频| av一本久久久久| 久久久久久人妻| 亚洲av欧美aⅴ国产| 亚洲 欧美一区二区三区| 午夜福利乱码中文字幕| 欧美bdsm另类| av女优亚洲男人天堂| 九草在线视频观看| 在线观看三级黄色| 另类精品久久| 日本-黄色视频高清免费观看| 黑人欧美特级aaaaaa片| 亚洲精品一区蜜桃| 日韩av在线免费看完整版不卡| 午夜91福利影院| 久久久欧美国产精品| 成人手机av| 大片免费播放器 马上看| 欧美97在线视频| 国产一区二区三区av在线| 国产精品嫩草影院av在线观看| 欧美+日韩+精品| 国产成人91sexporn| 最近2019中文字幕mv第一页| 亚洲中文av在线| 色哟哟·www| 欧美丝袜亚洲另类| 国产白丝娇喘喷水9色精品| 久久人人爽人人爽人人片va| 飞空精品影院首页| 久久99一区二区三区| 国产亚洲午夜精品一区二区久久| 51国产日韩欧美| 欧美最新免费一区二区三区| 日本猛色少妇xxxxx猛交久久| 如何舔出高潮| 亚洲国产精品一区二区三区在线| 看免费av毛片| 日韩视频在线欧美| 又大又黄又爽视频免费| 国产在视频线精品| 巨乳人妻的诱惑在线观看| 亚洲精品aⅴ在线观看| av一本久久久久| 黄色 视频免费看| 免费av不卡在线播放| 大码成人一级视频| 国产精品99久久99久久久不卡 | 大话2 男鬼变身卡| 欧美精品国产亚洲| 中文字幕亚洲精品专区| 精品人妻偷拍中文字幕| videossex国产| 尾随美女入室| 大片电影免费在线观看免费| 国产爽快片一区二区三区| 久久免费观看电影| 亚洲高清免费不卡视频| 熟女av电影| 大片电影免费在线观看免费| 亚洲精品国产av蜜桃| 一区二区三区精品91| 国产精品嫩草影院av在线观看| av有码第一页| 日本猛色少妇xxxxx猛交久久| 99热6这里只有精品| 黄色配什么色好看| 国产国拍精品亚洲av在线观看| 18禁动态无遮挡网站| 国产成人精品久久久久久| xxxhd国产人妻xxx| 日韩电影二区| 国产欧美日韩综合在线一区二区| 午夜老司机福利剧场| 精品亚洲成a人片在线观看| 天天躁夜夜躁狠狠久久av| 丝袜美足系列| 精品一品国产午夜福利视频| 午夜av观看不卡| 国产片特级美女逼逼视频| 日韩熟女老妇一区二区性免费视频| 国产亚洲最大av| 乱码一卡2卡4卡精品| 制服诱惑二区| 大片免费播放器 马上看| 成年女人在线观看亚洲视频| 91国产中文字幕| 伦理电影免费视频| 亚洲精品456在线播放app| 尾随美女入室| 男女免费视频国产| 夫妻性生交免费视频一级片| 永久网站在线| av卡一久久| 久久久欧美国产精品| 各种免费的搞黄视频| 九九爱精品视频在线观看| 在线观看免费日韩欧美大片| 97精品久久久久久久久久精品| 亚洲经典国产精华液单| 精品午夜福利在线看| 91成人精品电影| 国产精品久久久久久久电影| 热re99久久国产66热| 欧美激情国产日韩精品一区| 欧美精品av麻豆av| 青春草视频在线免费观看| 极品人妻少妇av视频| 一边摸一边做爽爽视频免费| 成年美女黄网站色视频大全免费| 亚洲av电影在线观看一区二区三区| 在线天堂中文资源库| 久久人人爽人人爽人人片va| 久久精品国产亚洲av天美| 人成视频在线观看免费观看| 毛片一级片免费看久久久久| 国产毛片在线视频| 狂野欧美激情性xxxx在线观看| 久久久久久久国产电影| 美女主播在线视频| 国产69精品久久久久777片| 美女大奶头黄色视频| 国内精品宾馆在线| 99国产综合亚洲精品| 99久久综合免费| 女性生殖器流出的白浆| 黑人欧美特级aaaaaa片| 99久久人妻综合| 亚洲精品久久久久久婷婷小说| 亚洲精品国产av成人精品| 在线精品无人区一区二区三| 亚洲国产欧美在线一区| 天天躁夜夜躁狠狠躁躁| 这个男人来自地球电影免费观看 | 日本欧美视频一区| 最新中文字幕久久久久| 亚洲五月色婷婷综合| 国产精品久久久久久久电影| 欧美性感艳星| 日韩电影二区| 国产一区二区在线观看av| 国产69精品久久久久777片| 1024视频免费在线观看| 日本欧美国产在线视频| videosex国产| 人人妻人人添人人爽欧美一区卜| 亚洲欧美成人精品一区二区| 黑人猛操日本美女一级片| 少妇精品久久久久久久| 桃花免费在线播放| av黄色大香蕉| 亚洲国产精品专区欧美| 中文字幕亚洲精品专区| 日本午夜av视频| 亚洲精品456在线播放app| 91国产中文字幕| 韩国高清视频一区二区三区| 国产黄频视频在线观看| 国产日韩欧美视频二区| 婷婷色麻豆天堂久久| 最近的中文字幕免费完整| 大话2 男鬼变身卡| 精品国产国语对白av| 欧美激情极品国产一区二区三区 | 久久婷婷青草| 2018国产大陆天天弄谢| 国产免费又黄又爽又色| 777米奇影视久久| 亚洲第一av免费看| 亚洲av福利一区| 国产精品麻豆人妻色哟哟久久| 国产精品秋霞免费鲁丝片| 国产欧美日韩一区二区三区在线| 国产精品无大码| 另类精品久久| 免费观看a级毛片全部| 国产一级毛片在线| 日韩伦理黄色片| 蜜桃国产av成人99| 国产精品国产三级专区第一集| 曰老女人黄片| 欧美精品一区二区大全| a 毛片基地| 2022亚洲国产成人精品| 啦啦啦啦在线视频资源| 香蕉国产在线看| 国产欧美日韩一区二区三区在线| 最黄视频免费看| 三上悠亚av全集在线观看| 国产国语露脸激情在线看| 国产爽快片一区二区三区| 一区在线观看完整版| 国产69精品久久久久777片| 亚洲av国产av综合av卡| 亚洲国产色片| 亚洲欧美一区二区三区黑人 | 天美传媒精品一区二区| 久久亚洲国产成人精品v| 男女边吃奶边做爰视频| 亚洲三级黄色毛片| 自拍欧美九色日韩亚洲蝌蚪91| 久久久国产欧美日韩av| av片东京热男人的天堂| 亚洲伊人色综图| www.色视频.com| 乱人伦中国视频| 极品人妻少妇av视频| 99久久人妻综合| 亚洲国产av新网站| 久久精品国产a三级三级三级| 视频区图区小说| 九九爱精品视频在线观看| 久久精品国产自在天天线| 在线亚洲精品国产二区图片欧美| 欧美人与性动交α欧美精品济南到 | 国产不卡av网站在线观看| 男女国产视频网站| 亚洲人成网站在线观看播放| 丰满乱子伦码专区| 18+在线观看网站| 国产精品一区二区在线不卡| 久久久欧美国产精品| 亚洲av电影在线观看一区二区三区| 亚洲性久久影院| 视频中文字幕在线观看| 精品人妻熟女毛片av久久网站| 丰满迷人的少妇在线观看| 成年人免费黄色播放视频| 嫩草影院入口| 亚洲第一区二区三区不卡| 少妇 在线观看| 国产黄频视频在线观看| 国产爽快片一区二区三区| av免费在线看不卡| 日韩精品免费视频一区二区三区 |