• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tunable In-Plane Anisotropy in Amorphous Sm-Co Films Grown on(011)-Oriented Single-Crystal Substrates

    2020-05-22 08:02:02WenhuiLiangHouboZhouJiefuXiongFengxiaHuJiaLiJianZhangJingWangJirongSunBaogenShen
    Engineering 2020年2期

    Wenhui Liang, Houbo Zhou, Jiefu Xiong, Fengxia Hu,c,*, Jia Li, Jian Zhang, Jing Wang,e,*,Jirong Sun,c, Baogen Shen,c

    Keywords:

    A B S T R A C T Amorphous Sm-Co films with uniaxial in-plane anisotropy have great potential for application in information-storage media and spintronic materials. The most effective method to produce uniaxial inplane anisotropy is to apply an in-plane magnetic field during deposition.However,this method inevitably requires more complex equipment. Here, we report a new way to produce uniaxial in-plane anisotropy by growing amorphous Sm-Co films onto (011)-cut single-crystal substrates in the absence of an external magnetic field.The tunable anisotropy constant,kA,is demonstrated with variation in the lattice parameter of the substrates. A kA value as high as about 3.3×104 J·m-3 was obtained in the amorphous Sm-Co film grown on a LaAlO3(011) substrate. Detailed analysis indicated that the preferential seeding and growth of ferromagnetic(FM)domains caused by the anisotropic strain of the substrates,along with the formed Sm-Co, Co-Co directional pair ordering, exert a substantial effect. This work provides a new way to obtain in-plane anisotropy in amorphous Sm-Co films.

    1. Introduction

    Amorphous Sm-Co thin films with uniaxial in-plane anisotropy have great potential for application in information storage [1] and spintronics[2].To be specific,the high coercivity of such thin films ensures high density storage, the lesser grain boundaries in the amorphous state ensure a high signal-to-noise ratio, and the smoothness of the film surface makes contact magnetic recording possible. Furthermore, the uniaxial in-plane anisotropy allows a good recording performance [1]. To date, the magnetic properties[1,3-6]—especially the anisotropy [2,7-11]—of amorphous Sm-Co thin films have been studied extensively. It has been found that various factors can affect the in-plane anisotropy, such as composition [9], film thickness [1], growth temperature [3,7], and pressure [10]; nevertheless, the most effective method to produce uniaxial in-plane anisotropy is to apply an in-plane magnetic field during deposition [2]. Nanoscale amorphous Sm-Co thin films are usually prepared through magnetron sputtering deposition[2,5,6,11] due to the advantages of this method, which include a high rate of film formation, easy control over conditions, and idealized film composition.During sputtering,the role of the magnetic field provided by the magnets behind the target is to control the moving path of the electrons; this magnetic field is approximately 400-800 Oe (1 Oe = 79.6 A·m-1) around the erosion track and decays to zero at a distance less than 60 mm. The magnetic field has no influence on the deposition of film,given that the distance from the substrate to the target (130 mm in this paper) is much greater than the scope of 60 mm.Thus,it is usually necessary to install an additional magnet next to the substrate[2]in order to realize uniaxial in-plane magnetic anisotropy in amorphous Sm-Co thin films.This method inevitably requires a more complex setup.Hence,finding a new way to obtain uniaxial in-plane anisotropy without an applied magnetic field remains as an important challenge.

    It is notable that the amorphous Sm-Co thin films reported in the literature were mainly grown on amorphous [7] or polycrystal[8-10]substrates.There have also been a few cases involving the use of single-crystal substrates[2,5,6],but a buffer of amorphous layer was usually introduced to allow the amorphous growth of Sm-Co thin films. Accordingly, the growth environment provided by the substrate or buffer layer in previous studies was mainly isotropic.Here,we report the growthof amorphousSm-Co thinfilms withuniaxial in-plane anisotropy on (011)-oriented single-crystal substrates.The anisotropic strain,which comes from the difference in lattice constants(a)along the two in-plane directions,leads to the possibly preferential seeding and growth of ferromagnetic (FM)domains and hence to in-plane magnetic anisotropy of the amorphousSm-Cothinfilms.Theanisotropyconstantcanbetunablewith variation of the lattice parameters of the substrates due to the possibly directional pair ordering caused by the local environment.

    2. Material and methods

    Amorphous Sm-Co thin films with a thickness of 50 nm were deposited by means of magnetron sputtering onto anisotropic(011)-oriented LaAlO3(LAO), SrTiO3(STO), and Pb(Mg1/3Nb2/3)O3-0.3PbTiO3(PMN-PT) substrates, and onto isotropic (001)-oriented LAO and STO substrates (aLAO= 3.792 ?, aSTO= 3.905 ?,aPMN-PT= 4.017 ?)in an argon (Ar)atmosphere.The base pressure was less than 10-6Pa,and the dimensions of the commercial substrate were 5 mm×5 mm.A Sm-Co target with a samarium(Sm)concentration of 18 at%was used to obtain the film.In this context,the term anisotropic means that for (011)-oriented substrates, the lattice parameters along the two in-plane directions are different—that is,a01-1[ ] = ■■■2■a100[];hence,an anisotropic growth environment can be provided. The term isotropic in this context indicates that the lattice parameters along the in-plane[100]and[010]directions are equivalent for (001)-oriented substrates. A 50 nm thick capping layer of chromium(Cr)was deposited to protect the amorphous Sm-Co layer from oxidation.The exact thickness of each layer was determined by the deposition rate and the growth time. The thickness of different materials at different sputtering powers and different sputtering pressures was measured by the step meter,and the deposition rate was calculated. The deposition times of the Sm-Co layer and Cr layer were 4 min 34 s and 9 min, respectively. During sputtering, the operated Ar pressures of the Sm-Co layer and Cr layer were 0.45 and 0.35 Pa,respectively.A direct current(DC)sputtering power of 100 and 70 W was used for the Sm-Co layer and the Cr layer,respectively.The substrate-to-target distance was fixed at about 130 mm.A commercial Cr target with a thickness of 6 mm and a SmCo5target made in-house with a thickness of 5 mm were used in our experiment.Both targets were 60 mm in diameter.All of the films were fabricated at room temperature,and no magnetic field was applied during deposition.The structure of the films was identified by X-ray diffraction(XRD)and gracing-incidence Xray diffraction (GIXRD) using Cu-Kα radiation, and the magnetic properties were determined by the Quantum Design superconducting quantum interference devices(SQUID-VSM).The initial magnetization curves were measured after alternating current (AC)demagnetization. The composition of the films was analyzed by energy dispersive X-ray spectrometric microanalysis (EDX). The obtained Sm and cobalt(Co)concentrations in the Sm-Co film were about 23 at% and 77 at%, respectively. The small deviation of the compositions from the target was probably due to the different deposition rates of the Sm and Co elements.

    3. Results and discussion

    3.1. Analysis of structure

    Fig. 1. Sketch of the Cr/amorphous Sm-Co/substrate heterostructure.

    Fig.1 shows a sketch of the heterostructure and the representative directions of the x, y, and z axes in differently oriented substrates. As shown in the figure, there is no buffer layer between the substrate and the Sm-Co layer, which guarantees the direct transference of the strain from the substrate to the films.As a representative display,the XRD patterns of the films grown on STO(011)and LAO(011)are shown in Figs.2(a)and(b),respectively.There are no stray peaks aside from the peaks from the substrates, which implies that the films are in an amorphous state with no impurity phases.GIXRD was also collected in order to confirm the amorphicity of the Sm-Co films; the results for the corresponding films are shown in Figs. 2(c) and (d), respectively. No peak is visible in the samples grown on the STO(011) and LAO(011) substrates. The absence of the crystal peak indicates the amorphicity of the Sm-Co films,and the lack of the typical broad peak is related to the Sm content.Previous research[2]has demonstrated that the broad peak increases in width with an increase of the Sm content, and will be invisible when the Sm content is high enough. It should be noted that the XRD patterns shown here were selected arbitrarily; all of the films demonstrated the amorphous nature to a similar degree.

    3.2. Analysis of composition

    The sample has two layers, a Sm-Co layer and a Cr layer, each with a thickness of 50 nm. Cross-sectional scanning electron microscopy(SEM)images are shown in Fig.3.The images in Figs.3(a) and (b) were taken from different areas of the same sample.Since the sample was not placed completely vertically,the surface can be seen in addition to the interface and the substrate.It is clear that the film surface is quite smooth,while the cross-section of the substrate is corrugated. The latter is due to the ‘‘breaking off”action during the preparation process. The thickness of the film is about 100 nm in total. The boundary between the two layers(i.e.,the Sm-Co layer and Cr layer)cannot be clearly seen,probably due to the amorphous nature of both layers, given that they were both deposited at room temperature.

    The exact chemical composition of the multilayer film was measured by EDX. Several points were randomly selected at positions close to the substrate in the cross-section of the film. The Sm and Co contents corresponding to different measuring points are listed in Table 1. It was found that the ratios of the Sm and Co elements did not change much among different points. The average Sm and Co concentrations in the film were about 23 at%and 77 at%,respectively, which roughly align with the nominal composition of the target SmCo5. The small deviation of the compositions from the target was probably due to the different deposition rate of Sm and Co elements.

    Fig.2. XRD patterns of the films grown on(a)STO(011)and(b)LAO(011),and GIXRD patterns of the films grown on(c)STO(011)and(d)LAO(011),where a logarithmic scale was adopted for the y axis.

    Fig. 3. Cross-sectional SEM images of (a) one arbitrary point and (b) another arbitrary point of the same sample.

    3.3. Analysis of anisotropy

    Figs. 4(a-c) illustrate the hysteresis loops of the Cr(50 nm)/amorphous Sm-Co(50 nm) films grown on (011)-oriented PMNPT, STO, and LAO, respectively, measured with a magnetic fieldalong the in-plane [100] and [01-1] directions (H//[100] and H//[01-1]).It is notable that the squareness ratio of the hysteresis loops along the in-plane [01-1] direction is much better and the corresponding coercive field is relatively lower than those along the in-plane [100] direction. Furthermore, the remanent magnetization along the [01-1] direction is obviously higher than that along the [100] direction. In other words, the amorphous Sm-Co films grown on the (011)-cut substrates are obviously magnetic anisotropic. The easy axis of magnetization is along the [01-1] direction,and the hard axis lies in the[100]direction.A similar phenomenon has also been observed in amorphous Co40Fe40B20grown on PMN-PT(011) [12]. As mentioned above, for the (011)-oriented single-crystal substrates, the lattice constants along the two in-plane directions were different—namely, a01-1[ ] = ■■■2■a100[]. For example, a01-1[ ] was approximately equal to 5.363 ?, while a[100]was approximately equal to 3.792 ? for the LAO(011) substrate.Thus, for the (011)-oriented substrates, anisotropic strain would be brought about by the difference in lattice constants along the two in-plane directions. It is reasonable to expect the anisotropic residual strain to lead to preferential seeding and growth of FM domains; hence, in-plane magnetic anisotropy appears in the amorphous Sm-Co films.

    Table 1 Chemical composition of Sm-Co film measured at randomly selected points near the substrate by means of EDX.

    Fig. 4. Hysteresis loops of the amorphous Sm-Co films grown on (a) PMN-PT(011), (b) STO(011), and (c) LAO(011), and initial M-H curves of the amorphous Sm-Co films grown on (d) PMN-PT(011), (e) STO(011), and (f) LAO(011). Emu: electromagnetic unit; M: magnetization; MS: saturation magnetization; H: magnetic field.

    Previous studies have indicated that the strain environment provided by substrates can significantly affect the growth of FM domains [13-15]. Ward et al. [13] demonstrated that the ferromagnetic-metal (FMM) domains in La5/8-xPrxCa3/8MnO3(x = 0.3) film grown on a NdGaO3(101) substrate tend to elongate along the direction with greater tensile strain. Hence, the easy magnetization axis lies in the relatively longer in-plane [01-1]direction due to the static anisotropy strain field provided by the NdGaO3(101) substrate. Later on, Zhao et al. [14] found that the in-plane anisotropy strain field dynamically promoted by the electric field can enhance the in-plane magnetic anisotropy in (011)-Pr0.7Sr0.3MnO3/PMN-PT. For the (011)-cut PMN-PT substrate, the in-plane long axis [01-1] is further elongated, while the short axis[100] is compressed as an electric field is applied along the outplane[011]direction.As a result,the in-plane magnetic anisotropy of Pr0.7Sr0.3MnO3is promoted due to the further preferential growth of FM domains along the[01-1]direction with tensile strain.Using magnetic force microscopy,Zhou et al.[15]directly observed the strip-shape preferential growth of the domains in La0.67Ca0.33-MnO3/NdGaO3(001), where the high orthorhombicity of the substrate supplies in-plane anisotropic strain, and strongly favors the growth of FMM domains along the longer axis. Specifically, in our case, the lattice parameter along the [01-1] direction of the(011)-oriented LAO,STO,and PMN-PT substrates is just the longer one.Hence,the FM domains preferentially seed and elongate along the[01-1]direction,and the easy axis lies in this direction.This vital fact indicates that the effect of the anisotropic strain provided by the (011)-oriented single-crystal substrates is essential for the occurrence of uniaxial in-plane anisotropy in amorphous Sm-Co films.

    On the basis of the initial M-H curves(i.e.,magnetization M as a function of magnetic field H)illustrated in Figs.4(d-f),we obtained the anisotropy constants (kA) of the amorphous Sm-Co films deposited onto different substrates according to the following formula:

    where MiH/MiErepresents the initial magnetization along the inplane hard/easy axis, and H represents the in-plane magnetic field.This formula is normally used to calculate the kAof films [9]. The results are listed in Table 2.Every initial M-H curve was successfully measured after AC demagnetization to zero.As the lattice parameter of the substrate decreased, the kAof the corresponding films increased. In particular, the anisotropy constant of the amorphous Sm-Co film grown on the(011)-oriented LAO reached a value as high as kA≈3.3×104J·m-3.Here,it should be noted that there are several routes to approach kAbesides Eq.(1),such as the following[8,9]:

    where MSrepresents the saturation magnetization and HAis the in-plane anisotropy field. In Eqs. (2) and (3), the acquisition of HAis necessary for the computation of kA. However, the HAvalue is determined by extrapolating from the origin to the saturation along the middle of the hard axis. This is applicable for cases in which the M-H curve has a fully square hysteresis loop along the easy axis, which is not the case in the present work. In Eq. (1), kAis determined from the area enclosed between the initial M-H curves of the easy and hard axes,which is appropriate for our case.Table 2 provides the kAresults of the Sm-Co films, which vary on different substrates.

    Fig. 5. Hysteresis loops of the Sm-Co films grown on (a) STO(001) and (b) LAO(001).

    The different kAcan be understood by considering the Sm-Co,Co-Co directional pair ordering,which can also be the physical origin of the in-plane anisotropy of amorphous films,according to the literature [10,16,17]. Corb et al. [17] demonstrated that the structural short-range order in Co80Nb14B6amorphous alloys can build clusters with different symmetries and anisotropies, such as near-trigonal symmetry with high local magnetic anisotropy, and near-octahedral symmetry with low local magnetic anisotropy,crucially depending on the growth environments and temperature.These factors affect atomic diffusion and nucleation. Moreover,Suran et al. [16] reported that the probability of the occurrence of specific clusters also depends on the growth pressures, and the kAvalue varies with the sputtering pressure. Specific to our samples, local anisotropy may be produced due to the formation of various clusters,where the structural short-range ordering—that is, the Sm-Co, Co-Co directional pair ordering—depends on the local environments provided by different substrates.Clusters with trigonal-like/octahedral-like symmetry (high/low local magnetic anisotropy) may be easy to form when the lattice parameter of the slab is relatively small/large, such as LAO/PMN-PT. Furthermore,the strain field provided by the substrate may also play a role in the orientation of clusters, thus ensuring that the total energy acting on the film reaches a minimum. It is also possible that the trigonal-like clusters in all the films are the main part, and the probability of the occurrence of trigonal-like clusters increases with the decrement of the lattice parameter of the substrate,given the different local environments provided by the slabs. Thus, this reasoning explains why the kAwas enhanced as the lattice parameter of the substrate decreased. Here, the two theories of ‘‘the directional pair ordering” and ‘‘the preferential growth of FM domains” are not contradictory, but are instead complementary to each other. The preferential growth of FM domains can lead to in-plane anisotropy of the amorphous Sm-Co films,while the tunability of kAis closely related to the formation of specific clusters caused by directional pair ordering of the structure due to the different local environments provided by the slabs.

    3.4. Analysis of isotropy

    Figs. 5(a) and (b) illustrate the hysteresis loops of the Cr(50 nm)/amorphous Sm-Co(50 nm) films grown on STO(001) andLAO(001), respectively, measured with the magnetic field along the in-plane [100] and [010] directions. As shown in the figures,for the (001)-oriented substrates, there is no difference between the lattice parameters along the two in-plane directions. Hence,the growth environment provided by the(001)-cut substrate is isotropic,and the preferential growth of domains will not occur.It can be observed that the hysteresis loops along the two in-plane directions almost coincide with each other.The appearance of the small anomaly in the loops for the film on STO(Fig.5(a))might be caused by oxidation during film deposition [18]. This result proves that uniaxial in-plane anisotropy in amorphous Sm-Co films cannot be induced by an isotropic substrate.The flagrant contrast between Fig. 4(b)/Fig. 4(c) and Fig. 5(a)/Fig. 5(b) validates our point. The small difference in the hysteresis loops between the [100] and[010] directions for the film on either STO(001) or LAO(001)(Figs. 5(a) and (b)) may be relative to the shape anisotropy of the film, given that the film dimensions are 2.5 mm × 3.0 mm.

    Table 2 Lattice parameters of the substrates and the corresponding anisotropic constant of amorphous Sm-Co films grown on (011)-cut substrates.

    4. Conclusions

    In summary,the structural properties associated with the magnetic anisotropy of amorphous Sm-Co films have been investigated. Tunable uniaxial in-plane magnetic anisotropy was produced by growing amorphous Sm-Co films onto (011)-cut single-crystal substrates in the absence of an external magnetic field. The in-plane anisotropic strain provided by the substrates strongly favors the growth of FM domains along the longer axis;hence, uniaxial in-plane anisotropy is produced. Variation of the lattice parameters of the substrates may affect the directional pair ordering, resulting in tunability of the anisotropy constant. The evaluated anisotropy constant, kA, was as high as about 3.3 ×104J·m-3in the amorphous Sm-Co film grown on LAO(011). The present work provides a new way to obtain in-plane anisotropy in amorphous Sm-Co films.A more remarkable uniaxial anisotropy could be anticipated if a more significant anisotropy stress field was constructed by introducing a buffer or choosing a substrate with a lower in-plane structural symmetry.

    Acknowledgements

    This work was supported by the National Key Research and Development Program of China (2017YFB0702702, 2018YFA03 05704, 2016YFB700903, 2017YFA0303601, and 2017YFA020 6300), the National Natural Sciences Foundation of China(51531008, 51771223, 51590880, 11674378, 51971240, U1832 219, and 11934016), the Inner Mongolia Science and Technology Major Project of China 2016,and the Strategic Priority Research Program(B)and Key Program of the Chinese Academy of Sciences(CAS).

    Compliance with ethics guidelines

    Wenhui Liang, Jiefu Xiong, Fengxia Hu, Jia Li, Jian Zhang, Jing Wang,Jirong Sun,and Baogen Shen declare that they have no conflict of interest or financial conflicts to disclose.

    又紧又爽又黄一区二区| 一进一出抽搐动态| 亚洲国产精品成人综合色| 免费看美女性在线毛片视频| 18禁在线播放成人免费| 制服丝袜大香蕉在线| 免费看美女性在线毛片视频| 亚洲精华国产精华精| 禁无遮挡网站| 男人和女人高潮做爰伦理| 国产麻豆成人av免费视频| 一级黄片播放器| 亚洲第一欧美日韩一区二区三区| 尤物成人国产欧美一区二区三区| 亚洲在线自拍视频| 国产精品野战在线观看| 在线十欧美十亚洲十日本专区| 小说图片视频综合网站| 91字幕亚洲| 国内揄拍国产精品人妻在线| 中文字幕人妻丝袜一区二区| or卡值多少钱| 夜夜爽天天搞| 99riav亚洲国产免费| 操出白浆在线播放| www国产在线视频色| 尤物成人国产欧美一区二区三区| 亚洲国产欧洲综合997久久,| 亚洲真实伦在线观看| 国产探花极品一区二区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲中文字幕日韩| 一进一出抽搐gif免费好疼| 国产精品影院久久| 国产成人系列免费观看| 午夜免费观看网址| 久久精品影院6| 国产欧美日韩精品亚洲av| 少妇人妻一区二区三区视频| 色在线成人网| 日韩欧美三级三区| 淫秽高清视频在线观看| 最近最新中文字幕大全免费视频| 在线观看午夜福利视频| 免费观看的影片在线观看| 99精品久久久久人妻精品| 操出白浆在线播放| 久久草成人影院| 欧洲精品卡2卡3卡4卡5卡区| 国产高清三级在线| 国产av麻豆久久久久久久| 色综合婷婷激情| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成人免费电影在线观看| 97碰自拍视频| 国产91精品成人一区二区三区| 亚洲av成人av| 精品免费久久久久久久清纯| 国产亚洲精品久久久com| 午夜激情福利司机影院| 午夜激情福利司机影院| 法律面前人人平等表现在哪些方面| 国产探花在线观看一区二区| 51国产日韩欧美| 在线免费观看不下载黄p国产 | 在线观看舔阴道视频| 欧美日韩瑟瑟在线播放| 成人特级黄色片久久久久久久| 嫩草影视91久久| 男女做爰动态图高潮gif福利片| 麻豆国产97在线/欧美| 母亲3免费完整高清在线观看| 毛片女人毛片| 成年免费大片在线观看| 国产精品永久免费网站| 看片在线看免费视频| 白带黄色成豆腐渣| 99久久久亚洲精品蜜臀av| 午夜福利欧美成人| 国产国拍精品亚洲av在线观看 | 国产精品久久久久久久久免 | 国产精品久久电影中文字幕| 波多野结衣巨乳人妻| 成人特级黄色片久久久久久久| 亚洲国产精品sss在线观看| 久久中文看片网| 俄罗斯特黄特色一大片| 好男人在线观看高清免费视频| 欧美一级毛片孕妇| 国产伦精品一区二区三区四那| 免费av不卡在线播放| 国产精品久久久久久亚洲av鲁大| 色吧在线观看| 国产高清有码在线观看视频| 国产亚洲av嫩草精品影院| 首页视频小说图片口味搜索| 一级毛片女人18水好多| 天天一区二区日本电影三级| 亚洲精品亚洲一区二区| 黄色女人牲交| 香蕉丝袜av| 99在线视频只有这里精品首页| 欧美中文综合在线视频| 少妇的逼水好多| 又紧又爽又黄一区二区| 人人妻,人人澡人人爽秒播| 一进一出好大好爽视频| 舔av片在线| 午夜精品在线福利| 精品午夜福利视频在线观看一区| xxx96com| 无限看片的www在线观看| 三级国产精品欧美在线观看| av国产免费在线观看| 亚洲熟妇熟女久久| 两个人视频免费观看高清| 国产中年淑女户外野战色| 中文在线观看免费www的网站| 国产免费男女视频| 日本免费一区二区三区高清不卡| 3wmmmm亚洲av在线观看| 国产国拍精品亚洲av在线观看 | 91麻豆av在线| 国产探花在线观看一区二区| 欧美日韩瑟瑟在线播放| 国产精品久久久久久亚洲av鲁大| 久久久久久久久久黄片| 免费观看人在逋| 成人av在线播放网站| 日本在线视频免费播放| 在线国产一区二区在线| 老司机在亚洲福利影院| 在线观看av片永久免费下载| 男女做爰动态图高潮gif福利片| 91av网一区二区| 国产av不卡久久| 女人十人毛片免费观看3o分钟| 午夜激情福利司机影院| 淫妇啪啪啪对白视频| 欧美日韩综合久久久久久 | 久久精品影院6| 欧美成人性av电影在线观看| 黄色片一级片一级黄色片| 国产成人啪精品午夜网站| 久久久久久久久中文| 成年女人看的毛片在线观看| 搡女人真爽免费视频火全软件 | 中亚洲国语对白在线视频| 亚洲第一欧美日韩一区二区三区| 在线播放无遮挡| 日本免费一区二区三区高清不卡| 免费av毛片视频| 午夜福利在线观看吧| 久久久国产成人精品二区| 成人欧美大片| 麻豆久久精品国产亚洲av| 丰满的人妻完整版| а√天堂www在线а√下载| 国产视频内射| 国产色婷婷99| 欧美区成人在线视频| 3wmmmm亚洲av在线观看| 男女之事视频高清在线观看| 无人区码免费观看不卡| 最新美女视频免费是黄的| 真人做人爱边吃奶动态| 99国产精品一区二区三区| 日韩精品青青久久久久久| 深夜精品福利| 色播亚洲综合网| 国产单亲对白刺激| 久久久久免费精品人妻一区二区| 亚洲人成网站在线播放欧美日韩| 国产一区在线观看成人免费| 舔av片在线| 一级作爱视频免费观看| 级片在线观看| 又紧又爽又黄一区二区| 一区福利在线观看| 亚洲av一区综合| aaaaa片日本免费| 亚洲国产日韩欧美精品在线观看 | 男插女下体视频免费在线播放| 欧美一级毛片孕妇| 国产免费男女视频| 2021天堂中文幕一二区在线观| 欧美一区二区国产精品久久精品| 亚洲五月婷婷丁香| 高清在线国产一区| 亚洲最大成人中文| 国产野战对白在线观看| 久久久精品欧美日韩精品| 亚洲成人久久爱视频| 亚洲av成人精品一区久久| 国语自产精品视频在线第100页| 一级a爱片免费观看的视频| 精品免费久久久久久久清纯| 亚洲第一欧美日韩一区二区三区| 精品久久久久久久人妻蜜臀av| 亚洲成人久久性| 美女高潮喷水抽搐中文字幕| 欧美成人一区二区免费高清观看| 女人被狂操c到高潮| 国产午夜精品论理片| 日韩欧美精品v在线| 日本免费a在线| 亚洲一区高清亚洲精品| 亚洲一区二区三区不卡视频| 久久久久亚洲av毛片大全| 国产av不卡久久| 在线观看日韩欧美| 亚洲欧美日韩高清在线视频| 亚洲国产高清在线一区二区三| 免费电影在线观看免费观看| a在线观看视频网站| 内地一区二区视频在线| 757午夜福利合集在线观看| 97人妻精品一区二区三区麻豆| 欧美性猛交╳xxx乱大交人| 精品无人区乱码1区二区| 真人做人爱边吃奶动态| 国产爱豆传媒在线观看| 亚洲熟妇熟女久久| 狂野欧美白嫩少妇大欣赏| 一本综合久久免费| 色噜噜av男人的天堂激情| 久久久久久久精品吃奶| 国产aⅴ精品一区二区三区波| 女同久久另类99精品国产91| 99久久精品热视频| 99riav亚洲国产免费| 99热这里只有是精品50| 999久久久精品免费观看国产| 女生性感内裤真人,穿戴方法视频| 欧美色欧美亚洲另类二区| 无限看片的www在线观看| av国产免费在线观看| 国产高清有码在线观看视频| 老司机午夜福利在线观看视频| 欧美乱码精品一区二区三区| 精品人妻1区二区| 久久久久久久午夜电影| 成人性生交大片免费视频hd| 国产精品电影一区二区三区| 日韩免费av在线播放| 中文在线观看免费www的网站| 国产高清三级在线| 午夜两性在线视频| 亚洲激情在线av| 俺也久久电影网| 男女那种视频在线观看| 成人特级黄色片久久久久久久| 变态另类丝袜制服| 在线免费观看不下载黄p国产 | 亚洲黑人精品在线| 亚洲av不卡在线观看| 成人国产综合亚洲| 黄色女人牲交| 久久午夜亚洲精品久久| 怎么达到女性高潮| 小蜜桃在线观看免费完整版高清| 国产极品精品免费视频能看的| 中文字幕人妻丝袜一区二区| 麻豆成人午夜福利视频| 国产伦精品一区二区三区四那| 好男人电影高清在线观看| 女生性感内裤真人,穿戴方法视频| 99热6这里只有精品| 特级一级黄色大片| eeuss影院久久| 亚洲精品影视一区二区三区av| 久久久久精品国产欧美久久久| 亚洲成人免费电影在线观看| 欧美黄色片欧美黄色片| 美女cb高潮喷水在线观看| 国产激情偷乱视频一区二区| 成人特级av手机在线观看| 无人区码免费观看不卡| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲美女视频黄频| 99riav亚洲国产免费| 国产高清三级在线| 国产乱人视频| 两个人视频免费观看高清| 国内久久婷婷六月综合欲色啪| 国产精品98久久久久久宅男小说| 日韩欧美精品v在线| 狠狠狠狠99中文字幕| 精品人妻一区二区三区麻豆 | 国产99白浆流出| 久久久久久大精品| 精品一区二区三区视频在线 | 午夜久久久久精精品| ponron亚洲| 日本免费a在线| 精品久久久久久久久久久久久| 白带黄色成豆腐渣| 国内揄拍国产精品人妻在线| 毛片女人毛片| 看黄色毛片网站| 日韩成人在线观看一区二区三区| 日本免费一区二区三区高清不卡| 国产91精品成人一区二区三区| 99精品久久久久人妻精品| 内射极品少妇av片p| 亚洲欧美日韩无卡精品| 国产精品 国内视频| 国内精品久久久久精免费| 久久久久久人人人人人| 日韩欧美免费精品| 亚洲国产精品久久男人天堂| 国产免费一级a男人的天堂| 有码 亚洲区| 亚洲一区高清亚洲精品| 老司机在亚洲福利影院| 亚洲av免费在线观看| 亚洲人与动物交配视频| 熟妇人妻久久中文字幕3abv| 婷婷六月久久综合丁香| 午夜精品在线福利| 真人做人爱边吃奶动态| 亚洲美女黄片视频| 久久精品91无色码中文字幕| 国产精品一区二区免费欧美| 日韩精品青青久久久久久| 99国产精品一区二区蜜桃av| 精品国内亚洲2022精品成人| 97碰自拍视频| 51午夜福利影视在线观看| 法律面前人人平等表现在哪些方面| 动漫黄色视频在线观看| 成年女人永久免费观看视频| 色视频www国产| 欧美绝顶高潮抽搐喷水| 美女黄网站色视频| 热99re8久久精品国产| 免费看光身美女| 免费av毛片视频| 少妇人妻精品综合一区二区 | 亚洲无线在线观看| 校园春色视频在线观看| 国产99白浆流出| 偷拍熟女少妇极品色| 成人亚洲精品av一区二区| 国产一级毛片七仙女欲春2| 亚洲av电影在线进入| 免费看日本二区| 亚洲av二区三区四区| 女生性感内裤真人,穿戴方法视频| 亚洲第一欧美日韩一区二区三区| 麻豆成人av在线观看| 亚洲熟妇熟女久久| 国产精品久久电影中文字幕| 国产一区二区三区视频了| 最近视频中文字幕2019在线8| 法律面前人人平等表现在哪些方面| 欧美一区二区精品小视频在线| 欧美性感艳星| 日本三级黄在线观看| 成人av一区二区三区在线看| 免费大片18禁| 观看免费一级毛片| 久久精品人妻少妇| 国产精品久久久久久人妻精品电影| 男女那种视频在线观看| 精品人妻偷拍中文字幕| 日本a在线网址| 国产成人a区在线观看| av天堂在线播放| 免费搜索国产男女视频| 看免费av毛片| 18禁黄网站禁片免费观看直播| 麻豆成人午夜福利视频| 免费无遮挡裸体视频| 最新中文字幕久久久久| 亚洲av电影在线进入| 日韩欧美在线二视频| 日韩精品中文字幕看吧| 日韩欧美一区二区三区在线观看| 男人和女人高潮做爰伦理| 免费看光身美女| 欧美黑人欧美精品刺激| 99热6这里只有精品| 在线天堂最新版资源| 天美传媒精品一区二区| 亚洲在线自拍视频| 中文字幕人成人乱码亚洲影| 国产亚洲精品久久久com| 亚洲一区二区三区不卡视频| 亚洲av美国av| 国产69精品久久久久777片| 亚洲成人免费电影在线观看| 亚洲狠狠婷婷综合久久图片| 最近最新中文字幕大全电影3| 日韩欧美精品v在线| 男人的好看免费观看在线视频| 国产亚洲精品一区二区www| 精品乱码久久久久久99久播| 狂野欧美激情性xxxx| 麻豆久久精品国产亚洲av| 亚洲av熟女| 一区二区三区国产精品乱码| 色综合亚洲欧美另类图片| av片东京热男人的天堂| 国产午夜福利久久久久久| 少妇裸体淫交视频免费看高清| 久久6这里有精品| e午夜精品久久久久久久| 国产精品亚洲一级av第二区| 天天添夜夜摸| 日韩欧美国产在线观看| 免费看a级黄色片| 成年人黄色毛片网站| 激情在线观看视频在线高清| 长腿黑丝高跟| 蜜桃久久精品国产亚洲av| 精品人妻1区二区| 99在线视频只有这里精品首页| 成人高潮视频无遮挡免费网站| 床上黄色一级片| 丰满人妻熟妇乱又伦精品不卡| 午夜福利在线在线| 哪里可以看免费的av片| 最新在线观看一区二区三区| 久久精品91蜜桃| а√天堂www在线а√下载| 国产精品av视频在线免费观看| 一夜夜www| 在线播放无遮挡| 国产欧美日韩一区二区三| 老司机福利观看| 久久人人精品亚洲av| 国产成人av教育| 在线观看免费视频日本深夜| 亚洲av熟女| 久久精品国产综合久久久| 19禁男女啪啪无遮挡网站| 久久国产精品人妻蜜桃| 国产主播在线观看一区二区| 蜜桃亚洲精品一区二区三区| 此物有八面人人有两片| 欧美乱妇无乱码| 日本成人三级电影网站| 69人妻影院| 国产亚洲精品av在线| 99在线人妻在线中文字幕| 真实男女啪啪啪动态图| 美女大奶头视频| 国产97色在线日韩免费| 人妻夜夜爽99麻豆av| 毛片女人毛片| 免费av不卡在线播放| 99国产精品一区二区蜜桃av| 国产精品亚洲美女久久久| 叶爱在线成人免费视频播放| 看片在线看免费视频| 美女高潮喷水抽搐中文字幕| 亚洲男人的天堂狠狠| 3wmmmm亚洲av在线观看| 两人在一起打扑克的视频| 日韩人妻高清精品专区| 一本一本综合久久| 欧美日韩综合久久久久久 | 久久人妻av系列| 国产欧美日韩一区二区三| 熟女少妇亚洲综合色aaa.| 色在线成人网| 桃色一区二区三区在线观看| 国产高清视频在线播放一区| www.www免费av| 国产精品乱码一区二三区的特点| 天天添夜夜摸| 日日夜夜操网爽| 88av欧美| 在线播放国产精品三级| 国产三级在线视频| 亚洲人与动物交配视频| 国产精品综合久久久久久久免费| 男插女下体视频免费在线播放| 国产精品99久久99久久久不卡| 岛国在线免费视频观看| 国产午夜精品论理片| 国产精品爽爽va在线观看网站| 午夜视频国产福利| 天堂√8在线中文| 人妻丰满熟妇av一区二区三区| 宅男免费午夜| 国产精品永久免费网站| 午夜a级毛片| 国产精品久久电影中文字幕| 久久国产乱子伦精品免费另类| 两人在一起打扑克的视频| 在线观看av片永久免费下载| 麻豆国产av国片精品| 久久香蕉精品热| 国产高清有码在线观看视频| 欧美+日韩+精品| 免费看美女性在线毛片视频| 真人做人爱边吃奶动态| 亚洲国产欧美人成| 欧美一级a爱片免费观看看| 十八禁网站免费在线| svipshipincom国产片| 99国产极品粉嫩在线观看| 黄色片一级片一级黄色片| 日韩人妻高清精品专区| 久9热在线精品视频| 不卡一级毛片| 1024手机看黄色片| 欧美三级亚洲精品| 久久精品91无色码中文字幕| 一个人看的www免费观看视频| 亚洲精华国产精华精| 亚洲色图av天堂| av在线天堂中文字幕| 亚洲一区二区三区不卡视频| 国产成人福利小说| 看免费av毛片| 国产一区二区在线av高清观看| 中文字幕人妻熟人妻熟丝袜美 | 午夜老司机福利剧场| 少妇熟女aⅴ在线视频| 91麻豆精品激情在线观看国产| 久久精品国产99精品国产亚洲性色| 欧美+亚洲+日韩+国产| 精品无人区乱码1区二区| 国产男靠女视频免费网站| 桃色一区二区三区在线观看| 国产三级中文精品| 国产美女午夜福利| 好男人电影高清在线观看| 一级黄片播放器| 日本五十路高清| 老司机午夜十八禁免费视频| 91久久精品电影网| 操出白浆在线播放| 精品人妻偷拍中文字幕| 99在线视频只有这里精品首页| 亚洲国产高清在线一区二区三| 免费看十八禁软件| 中文亚洲av片在线观看爽| 国产成人影院久久av| 成年女人看的毛片在线观看| 亚洲av免费高清在线观看| 国内精品美女久久久久久| tocl精华| 午夜福利在线观看免费完整高清在 | 九九热线精品视视频播放| 成人精品一区二区免费| 黄片小视频在线播放| 日韩欧美国产在线观看| 亚洲,欧美精品.| 人妻丰满熟妇av一区二区三区| 亚洲精品国产精品久久久不卡| 啦啦啦韩国在线观看视频| 欧美黄色片欧美黄色片| 亚洲在线观看片| 久久久久久久午夜电影| 成人精品一区二区免费| 国产一区二区三区在线臀色熟女| 亚洲无线观看免费| 制服丝袜大香蕉在线| 欧美日韩瑟瑟在线播放| 啪啪无遮挡十八禁网站| 波野结衣二区三区在线 | 久久人妻av系列| 国产av不卡久久| 中文字幕高清在线视频| 偷拍熟女少妇极品色| 欧美激情久久久久久爽电影| 日本 欧美在线| 国产午夜福利久久久久久| 熟女人妻精品中文字幕| 久久久久亚洲av毛片大全| 性欧美人与动物交配| 啦啦啦免费观看视频1| 亚洲av电影不卡..在线观看| 香蕉久久夜色| 国产精品女同一区二区软件 | 熟女人妻精品中文字幕| 国产精品久久久久久亚洲av鲁大| 成人鲁丝片一二三区免费| av欧美777| 制服人妻中文乱码| 天堂动漫精品| 成年人黄色毛片网站| 精品一区二区三区人妻视频| 女警被强在线播放| 亚洲国产精品999在线| 一卡2卡三卡四卡精品乱码亚洲| 精品国产美女av久久久久小说| 怎么达到女性高潮| 久久久精品欧美日韩精品| 搞女人的毛片| 一个人观看的视频www高清免费观看| 亚洲中文字幕日韩| 三级毛片av免费| 日韩 欧美 亚洲 中文字幕| 中文在线观看免费www的网站| www.999成人在线观看| 国产亚洲精品av在线| 男女视频在线观看网站免费| 国产一区二区三区视频了| 国产中年淑女户外野战色| 欧美在线黄色| 国产又黄又爽又无遮挡在线| 成年女人永久免费观看视频| 伊人久久精品亚洲午夜| 久久久久国内视频| 精品一区二区三区人妻视频| 97超级碰碰碰精品色视频在线观看| 最新中文字幕久久久久| 精品久久久久久久久久免费视频| 久久久国产精品麻豆| 日韩精品中文字幕看吧|