• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermal and Mechanical Properties Optimization of ABO4 Type EuNbO4 By the B-Site Substitution of Ta

    2020-05-22 08:02:14LinChenJingFeng
    Engineering 2020年2期

    Lin Chen, Jing Feng*

    Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China

    Keywords:

    A B S T R A C T Ferroelastic ABO4 type RETaO4 and RENbO4 ceramics (where RE stands for rare earth) are being investigated as promising thermal barrier coatings (TBCs), and the mechanical properties of RETaO4 have been found to be better than those of RENbO4.In this work,B-site substitution of tantalum(Ta)is used to optimize the thermal and mechanical properties of EuNbO4 fabricated through a solid-state reaction (SSR).The crystal structure is clarified by means of X-ray diffraction (XRD) and Raman spectroscopy; and the surface microstructure is surveyed via scanning electronic microscope (SEM). The Young’s modulus and the thermal expansion coefficient (TEC) of EuNbO4 are effectively increased; with respective maximum values of 169 GPa and 11.2 × 10-6 K-1 (at 1200 °C). The thermal conductivity is reduced to 1.52 W·K-1·m-1 (at 700 °C), and the thermal radiation resistance is improved. The relationship between the phonon thermal diffusivity and temperature was established in order to determine the intrinsic phonon thermal conductivity by eliminating the thermal radiation effects.The results indicate that the thermal and mechanical properties of EuNbO4 can be effectually optimized via the B-site substitution of Ta,and that this proposed material can be applied as a high-temperature structural ceramic in future.

    1. Introduction

    Ferroelastic rare earth tantalates and niobates (RETaO4and RENbO4, where RE stands for rare earth) are being researched for diverse applications, according to their individual properties[1-5]. The investigative fields of RENbO4include protonconducting solid oxide fuel cells, microwave dielectric materials,and shape memory materials [5-8]. The prominent properties of rare earth niobates come from their distinctive crystal structure and the various ligands of niobium (Nb). The crystal structure of RENbO4is dominated by Nb, and RENbO4undergoes a reversible ferroelastic crystal structure transformation with variation of temperature[2,4,5].At high temperatures,RENbO4is in a tetragonal(t)phase, which transforms to a monoclinic (m) phase at room temperature [2,5]. The t-m transformation temperature of RENbO4is between 500 and 800 °C, depending on the rare earth elements[2,5]. Usually, an evident change in unit cell volume is detected during crystal structure transformation; however, such change is not found in RENbO4and RETaO4[2,4,5,8]. Current documents prove that the ferroelastic t-m transformation of RENbO4and RETaO4is a natural second-order transition; no atomic rearrangement is detected. Therefore, volume variation in RENbO4and RETaO4, that is caused by t-m transformation is neglected.

    RETaO4exhibits a crystal structure that is analogous to that of RENbO4. Different crystal structures are found in RETaO4, which is ascribed to decrease in RE3+ionic radius. RETaO4(where RE=Y,Nd-Er)has the m phase,while the rest have the metastable monoclinic (m′) phase [1,8]. Furthermore, RETaO4exhibits a much higher t-m transition temperature than RENbO4. For example, the transition temperature of YTaO4is about 1430 °C, while it is less than 800 °C for RENbO4[2,8]. Ferroelastic toughness is a critical property that allows 6 wt%-8 wt%yttria-stabilized zirconia(6-8YSZ) to be applied as a thermal barrier coating (TBC) [9-12].However, the working temperature limit of yttria-stabilized zirconia (YSZ) is below 1200 °C because of phase transition, which results in a huge volume change. Much effort has been devoted to optimizing the properties of YSZ, and many materials are being investigated as TBCs [13-19]. Herein, ferroelastic RETaO4and RENbO4are studied as TBCs with a higher application temperature to replace 6-8YSZ. RETaO4possesses better thermal and mechanical properties than RENbO4, due to the characteristic properties of tantalum (Ta). In addition, the weak bonding strength of RENbO4produces an inferior hardness and Young’s modulus, which makes it less useful for application as high-temperature TBCs. Nevertheless, lower centrifugal force will be produced when RENbO4is applied as TBCs in comparison with RETaO4,due to the lower density.To modify the properties of RENbO4,the B-site substitution of Ta is attempted for EuNbO4by applying the atomic weight misfit between Ta and Nb and the difference in bond strength between the Ta-O and Nb-O bonds.

    In this paper, EuNb1-XTaXO4(composition parameter X = 0/6,1/6,2/6,3/6,4/6)specimens were fabricated via a solid-state reaction (SSR). The crystal structure was clarified by means of X-ray diffraction(XRD)and Raman spectra.The surface grain size,pores,and cracks were surveyed by means of scanning electronic microscope (SEM). The thermal and mechanical properties (i.e., heat capacity, thermal diffusivity and conductivity, thermal radiation resistance, thermal expansion performance, inharmonic lattice vibration strength, and Young’s modulus) were modified by the B-site substitution of Ta. This work stresses that EuNbO4ceramics are promising TBCs via further property optimization.

    2. Experimental process

    The EuNb1-XTaXO4(X = 0/6, 1/6, 2/6, 3/6, 4/6) bulk specimens were synthesized by SSR. Crude substances included Eu2O3,Ta2O5, and Nb2O5powders and C2H5OH (Shanghai Aladdin Bio-Chem Technology Co., Ltd., China). The weighted substance was ball-milled (720 min, 240 r·min-1) within C2H5OH. The mixture was kept at 90 °C for 840 min to eliminate C2H5OH. The arid mixtures were pressed into a bulk with a radius of 7.5 mm and a thickness of 2 mm. Before sintering, the bulk samples were held at 280 MPa for 8 min, they were then sintered at 1400-1600 °C for 10 h to obtain dense samples.

    The crystal structure was confirmed by means of XRD (Mini-Flex600, Rigaku Corporation, Japan). Raman spectroscopy was employed to research the change in crystal structure, along with XRD. A confocal spectrometer (Horiba-Jobin Yvon, Horiba, Ltd.,USA)was utilized to collect Raman spectra using a He-Ne ion laser(532 nm).SEM(EVO 180,Zeiss,Germany)was employed to survey the superficial morphology, because the grain size, pores, and cracks affected the thermal and mechanical properties.

    The longitudinal (VL) and transverse (VT) acoustic velocities of EuNb1-XTaXO4were calculated by determining the transmission interval through an ultrasonic pulser/receiver instrument (UMS-100, TECLAB, France). Various properties were identified [20]:

    The thermal expansion coefficients (TECs) were determined by means of a thermal expansion rate curve. Thermo-mechanical analysis (TMA 402 F3, NETZSCH, Germany) was employed to test the temperature-dependent thermal expansion rate(100-1200°C).The test was conducted in argon(Ar)gaseous fluid,the specimens were cut to a size of 8 mm×2 mm×1 mm to adapt to the sample holder. The heating speed was 5 K·min-1. The test time lasted for about 5 h, with only one sample being tested each time.

    The bulk specimens were machined into discs with a radius of 3 mm and a thickness of 1 mm to fit the sample holder in order to test the thermal diffusivity (λ). Silver (Ag) and carbon (C) coatings were applied to reduce the thermal radiative conductivity,and ensure to absorption and maximum emissivity. The test was executed under Ar gas protection within a laser flash instrument(LFA 457, NETZSCH, Germany). Three samples were tested each time, and the test lasted for about 12 h. The thermal diffusivity was corrected by means of the ‘‘radiation + pulse” method; three tests were performed at each temperature point and the average value was used. The thermal conductivity (k′) was determined from the λ, CP, and ρ as follows [21]:

    where the specific heat, Cp, was computed using the Neumann-Kopp principle[22], and ρ is the density. The influence of porosity,φ, on thermal conductivity was removed as follows [21]:

    Debye’s principle was employed to investigate the thermal conduction mechanism. The thermal conduction mechanism was related to the propagation of phonons, as heat is transmitted via the phonons in insulators [23]:

    where k is the thermal conductivity of fully dense sample,CVrefers to the specific heat per unit volume, and l refers to the phonon mean free path. The influence of the specific heat on thermal conduction was restricted,as it reached 3kB(where kBis the Boltzmann constant) per atom at high temperatures. Herein, l was obtained:

    The phonon mean free path, l, was typically depressed by diverse scattering procedures,indicating that l and k decrease with an increase in the phonon scattering strength.

    3. Results and discussion

    Fig.1(a)shows that the experimental EuNb1-XTaXO4XRD peaks are consistent with those of standard PDF#22-1099, and that no peak for the precipitated phase is present. EuNb1-XTaXO4crystallizes in the m phase; no crystal structure transition was detected with an increase in the Ta content. Fig. 1(b) shows that the main XRD peaks slightly deviate from those on the standard PDF card,which relates to the sintering temperature. The final sintering temperature of EuNbO4is 1400 °C; it increases with an increase in Ta content, and is 1600 °C for EuNb2/6Ta4/6O4. Similar roomtemperature Raman peaks were found for EuNb1-XTaXO4, as displayed in Fig.1(c).The shift and intensity of each Raman vibration mode are connected to the molecular vibration and bond length.No evident peak deviation was observed in the two strongest Raman vibration modes (V1and V2) of EuNb1-XTaXO4. The results of the Raman spectra align with the situation indicated by XRD;that is no phase transition is detected,indicating that each sample crystallizes in the same m phase.

    Fig.1. Phase characterization of EuNb1-XTaXO4(X=0/6,1/6,2/6,3/6,4/6)ceramics.(a)XRD,25°≤2θ ≤65°;(b)XRD,27°≤2θ ≤31°;(c)room-temperature Raman spectra(25 °C, 532 nm, 100-900 cm-1).

    Fig. 2. Typical surface morphology of EuNb1-XTaXO4 (X = 0/6, 1/6, 2/6, 3/6, 4/6) ceramics. (a) EuNbO4; (b) EuNb5/6Ta1/6O4; (c) EuNb4/6Ta2/6O4; (d) EuNb3/6Ta3/6O4;(e) EuNb2/6Ta4/6O4.

    Fig. 2 shows that the grain size of EuNb1-XTaXO4is less than 20 μm; the EuNb2/6Ta4/6O4displays a minimal grain size, which is ascribed to the highest sintering temperature.The final sintering temperature is related to the melting point. The final sintering temperature of EuNbO4is 1400 °C, and the substance melts at 1600 °C. The final sintering temperature of EuNb2/6Ta4/6O4is 1600 °C; the melting point of EuNbO4has been increased via the B-site substitution of Ta. A higher melting point implies a higher limit application temperature. The grain boundaries are evident,and the grains bond well with each other. The fine grain size and outstanding combination of grains contribute to produce extraordinary thermal and mechanical properties.

    The data presented in Table 1 implies that the B-site substitution of Ta makes a notable difference to the mechanical properties of EuNbO4.The Young’s modulus of EuNbO4is about 76 GPa,so the B-site substitution of Ta has led to an increase in the Young’s modulus. The highest Young’s modulus (169 GPa) is detected in EuNb2/6Ta4/6O4. A similar situation is observed in the bulk modulus, shear modulus, and mean acoustic velocity. The composition dependence of the elastic modulus and acoustic velocity of EuNb1-XTaXO4is depicted in Fig. 3. When X ≤3/6, the increase in the elastic modulus and acoustic velocity of EuNb1-XTaXO4is minute. The Young’s modulus mirrors the bond strength of the chemical bonds. It is clear that the B-site substitution of Ta leads to an increase in the bonding strength. A high Young’s modulus means that EuNb1-XTaXO4can be directly applied as high-temperature structural ceramics.

    The bond strength increases with a decrease in bond length[24].Fig.1 implies that the lattice parameters and unit cell volume of EuNb1-XTaXO4increase with an increase in Ta content, whichleads to an increase in bond length. Therefore, it is believed that the Ta-O bond strength is much greater than that of the Nb-O bond,which results in an increase of the Young’s modulus.Greater bond strength leads to a faster phonon propagation speed, which results in an increase of the thermal conductivity, to a certain extent.However,the factors affecting thermal conduction are complex, and will be discussed in detail.

    Table 1 The mean acoustic velocity, elastic modulus (E, B, and G), Grüneisen parameter (γ), and Poisson’s ratio (ν) of EuNb1-XTaXO4 (X = 0/6, 1/6, 2/6, 3/6, 4/6) ceramics.

    Fig. 3. Composition-dependent acoustic velocity and elastic modulus of EuNb1-XTaXO4 (X = 0/6, 1/6, 2/6, 3/6, 4/6) ceramics. (a) Acoustic velocity; (b) elastic modulus.

    Fig. 4(a) shows that the thermal expansion rate of EuNb1-XTaXO4rapidly increases with an increase in temperature.At 1200 °C, EuNbO4exhibits the lowest thermal expansion rate,while EuNb3/6Ta3/6O4displays the maximal value. Fig. 4(b) shows that EuNbO4exhibits the lowest TEC (10.2 × 10-6K-1, 1200 °C),and the TEC of EuNbO4can be increased by the B-site substitution of Ta.The maximal TEC(11.2×10-6K-1,1200°C)was obtained for EuNb3/6Ta3/6O4, this value is much higher than that of 7YSZ(10.0 × 10-6K-1) and RE2Zr2O7(9.0 × 10-6K-1) [25-27]. A High TEC will contribute to reducing the thermal stress between topcoat ceramics and substrate alloys during operation, and will prolong the lifetime of the TBC. The crystal structure is relaxed via substitution, leading to an increase in TEC. Nevertheless, the TEC(11.0 × 10-6K-1) of EuNb2/6Ta4/6O4is slightly lower than that of EuNb3/6Ta3/6O4, which can be explained by the dramatic increase in the Young’s modulus. The difference in Young’s modulus between EuNbO4and EuNb3/6Ta3/6O4(26 GPa) is much less than that between EuNb3/6Ta3/6O4and EuNb2/6Ta4/6O4(67 GPa). When X ≤3/6, the increase in the TECs of EuNb1-XTaXO4is dominated by crystal structure relaxation, as the Young’s modulus variation is minute.The TEC of EuNb2/6Ta4/6O4is higher than that of EuNbO4,and lower than that of EuNb3/6Ta3/6O4. The increasing bonding strength will lead to a decrease in the TEC, to some extent, when X ≥4/6. Thermal expansion of inorganic ceramics stems from inharmonic atomic vibration around the equilibrium position,which is characterized by the Grüneisen parameter. As shown in Table 1, the Grüneisen parameter of EuNbO4has been increased by the B-site substitution of Ta, which agrees well with the composition-dependent TEC. Thus, it is believed that the TECs of EuNb1-XTaXO4are governed by different factors with the variation of Ta content.

    Fig. 4. Thermal expansion performance of EuNb1-XTaXO4 (X = 0/6, 1/6, 2/6, 3/6, 4/6) ceramics. (a) Thermal expansion rate; (b) TECs.

    As shown in Table 2,the specific heat of EuNb1-XTaXO4increases with an increase in temperature (0.35-0.58 J·K-1·g-1, 25-900 °C).Furthermore, the specific heat of EuNb1-XTaXO4decreases with an increase in Ta concentration. The specific heat decreases with increasing molecular weight, according to the Neumann-Kopp principle. Fig. 5(a) shows that the thermal diffusivity(0.42-1.13 mm2·s-1,25-900°C)of EuNb1-XTaXO4quickly decreases with increase in temperature, the lowest thermal diffusivity(0.42-0.90 mm2·s-1, 25-900 °C) is detected in EuNb3/6Ta3/6O4.Meanwhile,when the temperature is greater than 700°C,an evident increase in the thermal diffusivity of EuNb1-XTaXO4(X = 0/6, 1/6)is observed, which is caused by thermal radiation. No obvious increase of thermal diffusivity is detected in EuNb1-XTaXO4(X = 2/6, 3/6, 4/6), indicating that the B-site substitution of Ta is effective in improving the thermal radiation resistance of EuNbO4.Fig.5(b)shows that the thermal conductivity(1.52-3.28 W·K-1·m-1,25-900°C)of EuNb1-XTaXO4decreases with an increase in temperature, and that EuNb3/6Ta3/6O4exhibits the minimum value(1.52 W·K-1·m-1, 700 °C). The thermal radiation effect causes the thermal conductivity of EuNb1-XTaXO4(X = 0/6, 1/6, 2/6, 3/6) to increase at high temperatures (≥500 °C). No increase in thermal diffusivity or conductivity is detected for EuNb2/6Ta4/6O4, which is attributed to it having the best thermal radiation resistance.

    Thermal transfer is conducted via phonons—that is, lattice vibration—in insulators [28,29]. During phonon propagation, they are scattered via various processes, including Umklapp phononphonon scattering, different point defects scattering, grain boundaries scattering, and the other scattering processes [29-32]. Thephonon mean free path (l), which is restricted by the above processes, consists of different parts [29-32]:

    Table 2 Temperature-dependent specific heat of EuNb1-XTaXO4 (X = 0/6, 1/6, 2/6, 3/6, 4/6) ceramics calculated via the Neumann-Kopp principle.

    Fig. 5. Thermal properties of EuNb1-XTaXO4 (X = 0/6, 1/6, 2/6, 3/6, 4/6) ceramics. (a) Thermal diffusivity; (b) thermal conductivity; (c) composition dependence of thermal conductivity; (d) phonon mean free path.

    where lp, ld, lband lxare the phonon free paths derived from Umklapp phonon-phonon scattering, point defects scattering, grain boundaries scattering, and other processes, respectively [29-32].Figs. 1 and 2 indicate that no phase transformation is detected,and that the grain size (microscale)is dozens of times greater than the size of phonon free path (nanoscale). Furthermore, the phonon scattering intensity caused by the grain boundary decreases with increase in temperature. Therefore, grain boundaries scattering can not decide the phonon mean free path.According to the chemical formula of EuNb1-XTaXO4, no vacancy is induced in EuNbO4by the B-site substitution of Ta,as both Nb and Ta are pentavalent(+5).The Umklapp scattering degree is reflected via inharmonic lattice vibration. The inharmonic lattice vibration of EuNbO4is enhanced by the B-site substitution of Ta,and the lowest value of the Grüneisen parameter is detected in EuNbO4(Table 1). As the Grüneisen parameter increases with an increase in temperature, the thermal conductivity decreases with an increase in temperature. Furthermore, point defects are introduced, which are attributed to the atomic weight difference between Nb (92.9 g·mol-1) and Ta(180.9 g·mol-1). The effective ionic radius of Ta5+and Nb5+with four ligands is equal (0.064 nm); the phonon scattering caused by the ionic radius difference is therefore omitted. Normally, the misfits of atomic weight and ionic radius reach the maximum value when X is 3/6 in the substitution process [25,30,32-34]. Hence,the lowest thermal conductivity of EuNb1-XTaXO4is detected in EuNb3/6Ta3/6O4. The phonon scattering process sketch map of EuNb3/6Ta3/6O4is displayed in Fig. 6, in which Ta atoms are the strongest phonon scattering sources. First, the B-site substitution of Ta causes an atomic weight difference, as Ta atoms are much heavier than Nb atoms. Second, the introduction of Ta increases the total unit cell weight and crystal structure complexity.The work by Clarke[35] proves that the thermal conductivity decreases with an increase in unit cell weight and crystal structure complexity.Third, the Ta and Nb atoms are centered by four O atoms to form TaO4and NbO4tetrahedrons. Phonons are scattered via a cage-like structure to reduce the thermal conductivity, which has been reported in various ceramics [32,36,37]. The complex crystal structure and cage-like structure are important reasons why EuNb1-XTaXO4exhibits a low thermal conductivity.

    The composition dependence of the thermal conductivity can be clearly observed in Fig. 5(c). At the same temperature, the thermal conductivity of EuNb1-XTaXO4decreases with an increasein Ta content, and increases slightly when X is 4/6. The phonon mean free path (0.41-1.56 nm, 25-900 °C) of EuNb1-XTaXO4decreases with an increase in temperature(Fig.5(d)).The temperature dependence of l and k is analogous. The lowest l (0.41 nm,900 °C) was detected in EuNb2/6Ta4/6O4. Eq. (10) indicates that l connects to VMand λ. VMis temperature dependent; therefore,the temperature dependence of l is determined by the thermal diffusivity. In addition, VMof EuNb2/6Ta4/6O4(3022 m·s-1) is much faster than those of the rest of the samples (2246-2393 m·s-1),which results in the lowest l being detected in EuNb2/6Ta4/6O4.

    The thermal radiative conductivity occurs at elevated temperature, and results in an increase of the thermal conductivity. The thermal diffusivity and conductivity, as well as the phonon mean free path, of EuNb1-XTaXO4(X = 0/6, 1/6, 2/6, 3/6) slightly increase at high temperatures. To obtain the intrinsic phonon thermal conductivity of EuNb1-XTaXO4, the thermal radiative conductivity should be removed. In the work of Klemens [30] and Ambegaokar[31], the phonon scattering intensity caused by the point defects and grain boundaries is constant, and the mean phonon free path of the insulator predominantly consists of lp, ld, and lb[33-37].Therefore, the temperature dependence of the thermal diffusivity is decided by the Umklapp phonon-phonon scattering process.The correlation between the temperature T and lpof crystalline ceramics is as follows [36,37]:

    where TDis the Debye temperature, h is the Plank’s constant, kBis the Boltzmann constant, m is the total weight per unit cell, V is the unit cell volume, l0is a parameter before the exponential, T-Dis the revised Debye temperature,and b is a constant set as 2.When the temperature is greater than T-D, l is as follows [36,37]:

    where C and D are parameters.Fig.5(d)shows that the relationship between l and T clearly deviates from l ∝T-1at elevated temperatures due to the thermal radiation effect.To obtain the intrinsic lattice thermal conductivity of EuNb1-XTaXO4, the intrinsic phonon thermal diffusivity should be determined.Based on the relationship between λ and l, λ is determined as follows [36,37]:

    Eq. (16) indicates that the reciprocal thermal diffusivity increases with an increase in temperature, when no thermal radiation effect occurs.Fig.7(a)shows that λ-1follows the relationship expressed in Eq.(16)at low temperature.However,when the temperature is greater than 600°C,λ-1deviates from the λ-1∝T (dotted lines) relationship. The intrinsic phonon thermal diffusivity of EuNb1-XTaXO4is corrected.

    Fig. 7(a) shows that the intrinsic phonon thermal diffusivity monotonously decreases with increasing temperature. A similar temperature dependence of the intrinsic phonon thermal conductivity and the phonon mean free path is observed in Figs. 7(c)and (d). The minimum intrinsic phonon thermal conductivity of EuNb1-XTaXO4is 1.27 W·K-1·m-1(EuNb3/6Ta3/6O4). The variation trend of the thermal conductivity implies that it will decrease further with an increase in temperature,and will approach the theoretical limit value (kmin), which has been derived by Cahill et al.[34-36]:

    Fig. 7. Intrinsic thermal properties of EuNb1-XTaXO4 (X = 0/6, 1/6, 2/6, 3/6, 4/6) ceramics. (a) Reciprocal thermal diffusivity; (b) intrinsic phonon thermal diffusivity;(c) intrinsic phonon thermal conductivity; (d) intrinsic phonon mean free path.

    where n is the atomic number per unit cell. The theoretical minimum thermal conductivity decreases with a decrease in acoustic velocity. As shown in Table 3, kminof EuNbO4is about 0.78 W·K-1·m-1, implying that the experimental k of EuNbO4can be decreased. The ZrO2alloying effects have been applied to reduce the thermal conductivity of rare earth tantalates, and these methods may be effective for EuNbO4[38]. Furthermore, the A-site substitution of other rare earth elements (e.g., Gd, Dy, Ho, Yb, Er,and Lu) with a heavier atomic weight can be attempted. As for the thermal radiation effect, dual layer coatings are effective in blocking the thermal radiative conductivity of LaPO4/La2Zr2O7ceramics[39].EuPO4/EuNbO4dual coatings can be used to attempt to reduce the thermal radiative conductivity of EuNbO4, due to theexcellent thermal radiation resistance of rare earth phosphate(REPO4) [40].

    Table 3 Fitted reciprocal thermal diffusivity (λ-1) and theoretical minimum thermal conductivity (kmin) of EuNb1-XTaXO4 (X = 0/6, 1/6, 2/6, 3/6, 4/6) ceramics.

    4. Conclusion

    The thermal and mechanical properties of EuNbO4synthesized via a SSR have been successfully optimized by the B-site substitution of Ta. The highest TEC reaches 11.2 × 10-6K-1at 1200 °C(EuNb3/6Ta3/6O4), attributed to crystal structure relaxation and the enhancement of inharmonic lattice vibration strength. The highest Young’s modulus (169 GPa) is detected in EuNb2/6Ta4/6O4,as the Ta-O bond strength is much greater than that of the Nb-O bond. The minimum experimental thermal conductivity(1.52 W·K-1·m-1, 700 °C) is found in EuNb3/6Ta3/6O4, due to the maximum misfit of atomic weight between Ta and Nb.The thermal radiation resistance of EuNb1-XTaXO4is improved via the B-site substitution of Ta. The theoretical minimum thermal conductivity(0.78 W·K-1·m-1) of EuNbO4indicates that the experimental thermal conductivity can be reduced further. It is clear that EuNb1-XTaXO4exhibits lower thermal conductivity, lower Young’s modulus and greater TECs than the 7YSZ and La2Zr2O7ceramics.The excellent material properties of EuNb1-XTaXO4imply that EuNbO4is a promising high-temperature TBC.

    Acknowledgements

    This research is under the support of the Natural Science Foundation of China (51762028 and 91960103) and the Materials Genome Engineering of Rare and Precious Metal of Yunnan Province (2018ZE019).

    Compliance with ethics guidelines

    Lin Chen and Jing Feng declare that they have no conflict of interest or financial conflicts to disclose.

    国产中年淑女户外野战色| 国产白丝娇喘喷水9色精品| 特级一级黄色大片| 国产免费福利视频在线观看| 日韩制服骚丝袜av| 日韩强制内射视频| 男女边摸边吃奶| 成年女人在线观看亚洲视频 | 国产在视频线在精品| 一区二区三区免费毛片| 国产午夜精品久久久久久一区二区三区| 国产白丝娇喘喷水9色精品| 亚洲精华国产精华液的使用体验| 女人被狂操c到高潮| 日韩欧美精品免费久久| 大片免费播放器 马上看| 久久国产乱子免费精品| 啦啦啦韩国在线观看视频| 国语对白做爰xxxⅹ性视频网站| 国产一区二区亚洲精品在线观看| 哪个播放器可以免费观看大片| 看十八女毛片水多多多| 国产免费福利视频在线观看| 日韩欧美 国产精品| 狂野欧美白嫩少妇大欣赏| 日本爱情动作片www.在线观看| 99久久精品热视频| 精品酒店卫生间| 亚洲av电影不卡..在线观看| 日韩亚洲欧美综合| 深爱激情五月婷婷| 久久精品人妻少妇| 久久久成人免费电影| 日韩精品青青久久久久久| 成人亚洲精品一区在线观看 | 亚洲乱码一区二区免费版| 夜夜看夜夜爽夜夜摸| 中文字幕av在线有码专区| 免费看日本二区| 成人av在线播放网站| 国产成人福利小说| 一级片'在线观看视频| 国产有黄有色有爽视频| 亚洲丝袜综合中文字幕| 免费黄色在线免费观看| 美女国产视频在线观看| 熟女电影av网| 成人美女网站在线观看视频| 国产精品不卡视频一区二区| 日本熟妇午夜| 国产午夜精品论理片| 亚洲天堂国产精品一区在线| 男人和女人高潮做爰伦理| 18禁在线无遮挡免费观看视频| 国产亚洲最大av| 国产午夜精品久久久久久一区二区三区| 亚洲国产高清在线一区二区三| 国内少妇人妻偷人精品xxx网站| 亚洲精品国产av蜜桃| 91久久精品国产一区二区成人| 欧美成人a在线观看| 国内精品宾馆在线| 秋霞在线观看毛片| 色尼玛亚洲综合影院| 亚洲丝袜综合中文字幕| 国产精品99久久久久久久久| 人妻制服诱惑在线中文字幕| kizo精华| 国产在线一区二区三区精| 欧美不卡视频在线免费观看| 直男gayav资源| 欧美极品一区二区三区四区| 最近手机中文字幕大全| 好男人视频免费观看在线| 亚洲av电影在线观看一区二区三区 | 亚洲天堂国产精品一区在线| 色尼玛亚洲综合影院| 大又大粗又爽又黄少妇毛片口| 成人一区二区视频在线观看| 少妇人妻精品综合一区二区| 最后的刺客免费高清国语| 91在线精品国自产拍蜜月| 黑人高潮一二区| 99热网站在线观看| 亚洲精品日韩在线中文字幕| 深夜a级毛片| 久久久久久久久大av| 草草在线视频免费看| 纵有疾风起免费观看全集完整版 | 国产伦精品一区二区三区四那| 天堂俺去俺来也www色官网 | 一个人免费在线观看电影| 国产精品一区二区三区四区久久| 五月伊人婷婷丁香| 成人毛片60女人毛片免费| 可以在线观看毛片的网站| 亚洲精品一区蜜桃| 内地一区二区视频在线| 久久99热这里只频精品6学生| 精品久久国产蜜桃| 亚洲欧洲国产日韩| 国产精品一及| 九色成人免费人妻av| 七月丁香在线播放| 伊人久久精品亚洲午夜| 亚洲成人一二三区av| 日韩欧美精品免费久久| 久久人人爽人人爽人人片va| 亚州av有码| 免费高清在线观看视频在线观看| 国产亚洲5aaaaa淫片| 全区人妻精品视频| h日本视频在线播放| 久久久久久久久久久免费av| 人妻一区二区av| 一级毛片aaaaaa免费看小| 99九九线精品视频在线观看视频| 国产精品国产三级国产av玫瑰| 国产真实伦视频高清在线观看| 国产黄色免费在线视频| 国产精品国产三级专区第一集| 91aial.com中文字幕在线观看| 丰满人妻一区二区三区视频av| 午夜福利在线观看吧| 晚上一个人看的免费电影| 国产在视频线在精品| 极品教师在线视频| 丝袜美腿在线中文| 亚洲最大成人av| 欧美日韩视频高清一区二区三区二| 国产成年人精品一区二区| 国产 亚洲一区二区三区 | 久久久久久久久久久免费av| 久久鲁丝午夜福利片| 日韩在线高清观看一区二区三区| 九九爱精品视频在线观看| 别揉我奶头 嗯啊视频| 91精品国产九色| 最近的中文字幕免费完整| 久久久久网色| 禁无遮挡网站| 色视频www国产| 麻豆av噜噜一区二区三区| 欧美一区二区亚洲| 国产亚洲91精品色在线| 99久久精品热视频| av免费在线看不卡| 午夜福利在线在线| 日日啪夜夜撸| 精华霜和精华液先用哪个| 成人亚洲欧美一区二区av| 麻豆成人av视频| 尾随美女入室| 啦啦啦韩国在线观看视频| 日本一本二区三区精品| 亚洲av成人精品一区久久| 老女人水多毛片| 免费av观看视频| 老女人水多毛片| 天堂影院成人在线观看| 色尼玛亚洲综合影院| 99久久人妻综合| 国产v大片淫在线免费观看| 中文乱码字字幕精品一区二区三区 | 精品久久久久久电影网| 纵有疾风起免费观看全集完整版 | 99久久精品一区二区三区| 国产精品国产三级国产专区5o| 午夜福利成人在线免费观看| 成人鲁丝片一二三区免费| 在线观看人妻少妇| 一级毛片aaaaaa免费看小| 欧美一级a爱片免费观看看| 麻豆精品久久久久久蜜桃| 欧美 日韩 精品 国产| 国产精品一二三区在线看| 亚洲一区高清亚洲精品| 亚洲精品成人av观看孕妇| 久久精品夜色国产| 色5月婷婷丁香| av免费观看日本| 亚洲精品影视一区二区三区av| 婷婷色av中文字幕| 免费少妇av软件| 精品久久久噜噜| av在线亚洲专区| 久久精品国产鲁丝片午夜精品| 国产单亲对白刺激| 免费看av在线观看网站| 毛片女人毛片| 成人特级av手机在线观看| 欧美性猛交╳xxx乱大交人| 欧美一区二区亚洲| 丝袜美腿在线中文| 亚洲人与动物交配视频| 亚洲av不卡在线观看| 一级爰片在线观看| 中文字幕免费在线视频6| 人妻少妇偷人精品九色| 国产精品伦人一区二区| 嘟嘟电影网在线观看| 亚洲精品乱码久久久v下载方式| 成人亚洲精品一区在线观看 | 69av精品久久久久久| 嫩草影院新地址| 精品久久久精品久久久| 熟女人妻精品中文字幕| 免费黄网站久久成人精品| 国产 一区 欧美 日韩| 欧美高清成人免费视频www| 91狼人影院| 大陆偷拍与自拍| av免费在线看不卡| 国产精品国产三级专区第一集| 亚洲av日韩在线播放| 男女边摸边吃奶| 少妇被粗大猛烈的视频| 精品久久久久久久久av| 我要看日韩黄色一级片| 日日干狠狠操夜夜爽| 亚洲最大成人手机在线| 美女cb高潮喷水在线观看| 51国产日韩欧美| 国产精品伦人一区二区| 午夜福利成人在线免费观看| 观看免费一级毛片| 成人一区二区视频在线观看| 不卡视频在线观看欧美| av在线蜜桃| 一级二级三级毛片免费看| 好男人视频免费观看在线| 99热这里只有是精品50| 内射极品少妇av片p| 纵有疾风起免费观看全集完整版 | 高清毛片免费看| 女的被弄到高潮叫床怎么办| 久久精品熟女亚洲av麻豆精品 | 亚洲av电影在线观看一区二区三区 | 99久久精品热视频| 国产极品天堂在线| 日本色播在线视频| 人人妻人人澡欧美一区二区| 搡老乐熟女国产| 蜜桃亚洲精品一区二区三区| 日日摸夜夜添夜夜添av毛片| 1000部很黄的大片| 亚洲真实伦在线观看| 亚洲欧洲国产日韩| 国产国拍精品亚洲av在线观看| 日韩不卡一区二区三区视频在线| 亚洲伊人久久精品综合| 国产成人福利小说| 中国国产av一级| 色视频www国产| 国产高清不卡午夜福利| 草草在线视频免费看| 国产高清有码在线观看视频| 亚洲精品日本国产第一区| 在线免费十八禁| 亚洲精品第二区| 蜜桃亚洲精品一区二区三区| 伊人久久国产一区二区| 中文字幕久久专区| 少妇高潮的动态图| 久久久久久九九精品二区国产| 亚洲国产欧美人成| 成人av在线播放网站| 亚洲精品第二区| 在线观看人妻少妇| 日韩在线高清观看一区二区三区| 亚洲国产高清在线一区二区三| 日韩欧美 国产精品| 九九久久精品国产亚洲av麻豆| 国产精品日韩av在线免费观看| av卡一久久| 欧美成人午夜免费资源| 日韩一本色道免费dvd| 一级a做视频免费观看| 一级毛片我不卡| 99热全是精品| 国产高清三级在线| 精品少妇黑人巨大在线播放| 成人亚洲欧美一区二区av| 日韩av在线免费看完整版不卡| 国产不卡一卡二| or卡值多少钱| 中文字幕亚洲精品专区| 国产三级在线视频| 男插女下体视频免费在线播放| 波多野结衣巨乳人妻| 国产黄色免费在线视频| 国产精品爽爽va在线观看网站| 一级毛片我不卡| 直男gayav资源| 人妻一区二区av| 欧美三级亚洲精品| 免费播放大片免费观看视频在线观看| 少妇的逼好多水| 最后的刺客免费高清国语| 成年免费大片在线观看| 国产又色又爽无遮挡免| 色吧在线观看| 亚洲最大成人手机在线| 人妻制服诱惑在线中文字幕| 久久精品国产自在天天线| 一级毛片电影观看| 日本一二三区视频观看| 别揉我奶头 嗯啊视频| 国产在线男女| 国产熟女欧美一区二区| 1000部很黄的大片| 3wmmmm亚洲av在线观看| 日本猛色少妇xxxxx猛交久久| 春色校园在线视频观看| 久久久久免费精品人妻一区二区| 精品人妻视频免费看| 欧美日韩视频高清一区二区三区二| 性色avwww在线观看| 国产精品久久视频播放| 免费看日本二区| 日韩国内少妇激情av| 精品一区二区三区人妻视频| 黑人高潮一二区| videossex国产| 尤物成人国产欧美一区二区三区| av专区在线播放| 啦啦啦中文免费视频观看日本| 99热这里只有是精品在线观看| 亚洲av成人精品一区久久| 熟妇人妻久久中文字幕3abv| 久久热精品热| av免费在线看不卡| 国产精品女同一区二区软件| 久久精品久久久久久久性| 国产伦精品一区二区三区四那| 人妻制服诱惑在线中文字幕| 中文欧美无线码| 18禁在线播放成人免费| 国产成人a∨麻豆精品| 亚洲精品日本国产第一区| 天堂影院成人在线观看| 少妇高潮的动态图| 又大又黄又爽视频免费| 春色校园在线视频观看| 不卡视频在线观看欧美| 久久久成人免费电影| 一区二区三区四区激情视频| 51国产日韩欧美| 久久久精品免费免费高清| 日本-黄色视频高清免费观看| 又大又黄又爽视频免费| 久久久精品欧美日韩精品| 国产黄色小视频在线观看| 99热全是精品| 特级一级黄色大片| 国产成人91sexporn| 99久久精品国产国产毛片| 在线免费十八禁| 男女那种视频在线观看| 伦理电影大哥的女人| 五月伊人婷婷丁香| 综合色丁香网| 简卡轻食公司| 一级爰片在线观看| 一个人看的www免费观看视频| av免费观看日本| 亚洲婷婷狠狠爱综合网| 精品人妻一区二区三区麻豆| 熟妇人妻久久中文字幕3abv| 日韩人妻高清精品专区| 国产欧美另类精品又又久久亚洲欧美| 色播亚洲综合网| 亚洲av不卡在线观看| 少妇的逼水好多| 久久热精品热| 搡老乐熟女国产| 超碰97精品在线观看| 午夜免费男女啪啪视频观看| 日本-黄色视频高清免费观看| 又大又黄又爽视频免费| 深爱激情五月婷婷| 久久精品夜色国产| 中文在线观看免费www的网站| 亚洲av二区三区四区| 精品国产三级普通话版| 国产精品av视频在线免费观看| 免费大片18禁| 国产精品蜜桃在线观看| 日韩,欧美,国产一区二区三区| 亚洲欧美日韩无卡精品| 亚洲欧美日韩卡通动漫| 亚洲精品成人av观看孕妇| 久久精品熟女亚洲av麻豆精品 | 免费观看精品视频网站| 午夜福利高清视频| 嫩草影院精品99| 午夜激情福利司机影院| 日日摸夜夜添夜夜添av毛片| 91午夜精品亚洲一区二区三区| 国产精品一区二区三区四区久久| 精品欧美国产一区二区三| 亚洲在线自拍视频| 欧美激情久久久久久爽电影| 国产一区二区在线观看日韩| 能在线免费看毛片的网站| 国产男人的电影天堂91| 熟女人妻精品中文字幕| 亚洲欧美日韩东京热| 97超视频在线观看视频| 亚洲精品成人av观看孕妇| 国产毛片a区久久久久| 亚洲av成人av| 成人av在线播放网站| 亚洲,欧美,日韩| 男女下面进入的视频免费午夜| 毛片女人毛片| 搞女人的毛片| 97在线视频观看| 干丝袜人妻中文字幕| 麻豆久久精品国产亚洲av| 久久精品综合一区二区三区| 国产精品一二三区在线看| 麻豆久久精品国产亚洲av| 日韩av在线大香蕉| av专区在线播放| 亚洲伊人久久精品综合| 国产乱来视频区| 国产熟女欧美一区二区| 一级二级三级毛片免费看| 日本一本二区三区精品| 亚洲欧美精品专区久久| 国内精品宾馆在线| 看十八女毛片水多多多| 观看美女的网站| 亚洲天堂国产精品一区在线| 只有这里有精品99| 在线 av 中文字幕| 女人久久www免费人成看片| 综合色av麻豆| 联通29元200g的流量卡| 国产伦精品一区二区三区视频9| 建设人人有责人人尽责人人享有的 | 成人午夜精彩视频在线观看| 亚洲欧美成人综合另类久久久| 久久精品国产亚洲网站| 人妻夜夜爽99麻豆av| 亚洲婷婷狠狠爱综合网| 中国美白少妇内射xxxbb| 精品午夜福利在线看| 建设人人有责人人尽责人人享有的 | 国产久久久一区二区三区| av播播在线观看一区| 久99久视频精品免费| 中文字幕av成人在线电影| 国产精品嫩草影院av在线观看| 三级经典国产精品| 最近中文字幕高清免费大全6| 熟妇人妻久久中文字幕3abv| 欧美性猛交╳xxx乱大交人| 精品久久久久久久久久久久久| 免费高清在线观看视频在线观看| 亚洲精品第二区| 在线免费十八禁| 久久久久久久久久成人| 国产精品国产三级国产av玫瑰| 久久久久久久大尺度免费视频| 寂寞人妻少妇视频99o| 综合色av麻豆| 国产精品麻豆人妻色哟哟久久 | 午夜爱爱视频在线播放| av福利片在线观看| 色哟哟·www| 又爽又黄无遮挡网站| .国产精品久久| 日韩欧美三级三区| 国产精品一区www在线观看| 欧美日本视频| 日韩中字成人| 高清欧美精品videossex| 国产探花在线观看一区二区| 街头女战士在线观看网站| 精品久久久久久久末码| 成人一区二区视频在线观看| 精品人妻视频免费看| 毛片女人毛片| 日韩成人伦理影院| 看非洲黑人一级黄片| 免费观看的影片在线观看| 18+在线观看网站| 亚洲欧洲国产日韩| 亚洲国产色片| 人妻一区二区av| 菩萨蛮人人尽说江南好唐韦庄| 国产精品熟女久久久久浪| 91狼人影院| 七月丁香在线播放| 最近2019中文字幕mv第一页| 黄色配什么色好看| 国产成人精品婷婷| 精品人妻一区二区三区麻豆| 热99在线观看视频| 国产精品蜜桃在线观看| 国产高清不卡午夜福利| 卡戴珊不雅视频在线播放| 日韩国内少妇激情av| 日韩成人av中文字幕在线观看| 在线播放无遮挡| 嫩草影院精品99| 人妻一区二区av| 久久99热这里只频精品6学生| 少妇熟女aⅴ在线视频| 亚洲国产精品成人综合色| 成人亚洲精品一区在线观看 | 久久久久免费精品人妻一区二区| 久久人人爽人人爽人人片va| 国产探花在线观看一区二区| 一边亲一边摸免费视频| 日韩欧美一区视频在线观看 | 女人十人毛片免费观看3o分钟| 人妻制服诱惑在线中文字幕| 91在线精品国自产拍蜜月| 亚洲最大成人中文| 校园人妻丝袜中文字幕| 亚洲无线观看免费| 免费大片18禁| 熟妇人妻久久中文字幕3abv| 日本免费a在线| 伦精品一区二区三区| 亚洲国产欧美在线一区| 最近最新中文字幕大全电影3| 国产成人91sexporn| av线在线观看网站| 免费av毛片视频| 日本黄色片子视频| 国产黄色免费在线视频| 熟女人妻精品中文字幕| 国内少妇人妻偷人精品xxx网站| 在线免费十八禁| 一区二区三区高清视频在线| 国产精品美女特级片免费视频播放器| 身体一侧抽搐| 国产单亲对白刺激| 又粗又硬又长又爽又黄的视频| 亚洲在久久综合| 亚洲欧美清纯卡通| 深夜a级毛片| 成人综合一区亚洲| 亚洲aⅴ乱码一区二区在线播放| 久久久久久九九精品二区国产| 精品人妻熟女av久视频| 成人毛片a级毛片在线播放| 国产精品久久久久久精品电影小说 | 日韩欧美精品v在线| 国产亚洲一区二区精品| 亚洲真实伦在线观看| 蜜桃亚洲精品一区二区三区| 精品人妻偷拍中文字幕| 春色校园在线视频观看| 一本久久精品| 看免费成人av毛片| 日日摸夜夜添夜夜爱| www.av在线官网国产| 国产免费视频播放在线视频 | 国产麻豆成人av免费视频| 色综合亚洲欧美另类图片| 男女那种视频在线观看| 久久久久久久午夜电影| 国产伦理片在线播放av一区| 国产黄色小视频在线观看| 日本熟妇午夜| 免费观看无遮挡的男女| 日韩电影二区| 一级片'在线观看视频| 精品一区二区三卡| 久久久精品94久久精品| 午夜精品一区二区三区免费看| 日韩大片免费观看网站| 午夜精品一区二区三区免费看| 国产精品国产三级国产av玫瑰| av黄色大香蕉| 99久久中文字幕三级久久日本| 亚洲精品乱码久久久v下载方式| 亚洲欧美成人综合另类久久久| 色尼玛亚洲综合影院| 国产亚洲91精品色在线| 日韩成人伦理影院| 一夜夜www| 天天躁夜夜躁狠狠久久av| 国产乱人偷精品视频| 国产精品日韩av在线免费观看| 高清视频免费观看一区二区 | 97超碰精品成人国产| 美女xxoo啪啪120秒动态图| 欧美变态另类bdsm刘玥| 中国国产av一级| 99re6热这里在线精品视频| 偷拍熟女少妇极品色| 白带黄色成豆腐渣| 亚洲精品国产av成人精品| 国产老妇女一区| 2021少妇久久久久久久久久久| 午夜福利网站1000一区二区三区| 久久精品国产亚洲网站| 久久精品国产自在天天线| 精品亚洲乱码少妇综合久久| 日韩欧美三级三区| 又爽又黄无遮挡网站| 国产精品av视频在线免费观看| 午夜免费男女啪啪视频观看| 观看美女的网站| 大陆偷拍与自拍| 国产成人aa在线观看| 男女啪啪激烈高潮av片| 又爽又黄无遮挡网站| eeuss影院久久|