• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermal and Mechanical Properties Optimization of ABO4 Type EuNbO4 By the B-Site Substitution of Ta

    2020-05-22 08:02:14LinChenJingFeng
    Engineering 2020年2期

    Lin Chen, Jing Feng*

    Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China

    Keywords:

    A B S T R A C T Ferroelastic ABO4 type RETaO4 and RENbO4 ceramics (where RE stands for rare earth) are being investigated as promising thermal barrier coatings (TBCs), and the mechanical properties of RETaO4 have been found to be better than those of RENbO4.In this work,B-site substitution of tantalum(Ta)is used to optimize the thermal and mechanical properties of EuNbO4 fabricated through a solid-state reaction (SSR).The crystal structure is clarified by means of X-ray diffraction (XRD) and Raman spectroscopy; and the surface microstructure is surveyed via scanning electronic microscope (SEM). The Young’s modulus and the thermal expansion coefficient (TEC) of EuNbO4 are effectively increased; with respective maximum values of 169 GPa and 11.2 × 10-6 K-1 (at 1200 °C). The thermal conductivity is reduced to 1.52 W·K-1·m-1 (at 700 °C), and the thermal radiation resistance is improved. The relationship between the phonon thermal diffusivity and temperature was established in order to determine the intrinsic phonon thermal conductivity by eliminating the thermal radiation effects.The results indicate that the thermal and mechanical properties of EuNbO4 can be effectually optimized via the B-site substitution of Ta,and that this proposed material can be applied as a high-temperature structural ceramic in future.

    1. Introduction

    Ferroelastic rare earth tantalates and niobates (RETaO4and RENbO4, where RE stands for rare earth) are being researched for diverse applications, according to their individual properties[1-5]. The investigative fields of RENbO4include protonconducting solid oxide fuel cells, microwave dielectric materials,and shape memory materials [5-8]. The prominent properties of rare earth niobates come from their distinctive crystal structure and the various ligands of niobium (Nb). The crystal structure of RENbO4is dominated by Nb, and RENbO4undergoes a reversible ferroelastic crystal structure transformation with variation of temperature[2,4,5].At high temperatures,RENbO4is in a tetragonal(t)phase, which transforms to a monoclinic (m) phase at room temperature [2,5]. The t-m transformation temperature of RENbO4is between 500 and 800 °C, depending on the rare earth elements[2,5]. Usually, an evident change in unit cell volume is detected during crystal structure transformation; however, such change is not found in RENbO4and RETaO4[2,4,5,8]. Current documents prove that the ferroelastic t-m transformation of RENbO4and RETaO4is a natural second-order transition; no atomic rearrangement is detected. Therefore, volume variation in RENbO4and RETaO4, that is caused by t-m transformation is neglected.

    RETaO4exhibits a crystal structure that is analogous to that of RENbO4. Different crystal structures are found in RETaO4, which is ascribed to decrease in RE3+ionic radius. RETaO4(where RE=Y,Nd-Er)has the m phase,while the rest have the metastable monoclinic (m′) phase [1,8]. Furthermore, RETaO4exhibits a much higher t-m transition temperature than RENbO4. For example, the transition temperature of YTaO4is about 1430 °C, while it is less than 800 °C for RENbO4[2,8]. Ferroelastic toughness is a critical property that allows 6 wt%-8 wt%yttria-stabilized zirconia(6-8YSZ) to be applied as a thermal barrier coating (TBC) [9-12].However, the working temperature limit of yttria-stabilized zirconia (YSZ) is below 1200 °C because of phase transition, which results in a huge volume change. Much effort has been devoted to optimizing the properties of YSZ, and many materials are being investigated as TBCs [13-19]. Herein, ferroelastic RETaO4and RENbO4are studied as TBCs with a higher application temperature to replace 6-8YSZ. RETaO4possesses better thermal and mechanical properties than RENbO4, due to the characteristic properties of tantalum (Ta). In addition, the weak bonding strength of RENbO4produces an inferior hardness and Young’s modulus, which makes it less useful for application as high-temperature TBCs. Nevertheless, lower centrifugal force will be produced when RENbO4is applied as TBCs in comparison with RETaO4,due to the lower density.To modify the properties of RENbO4,the B-site substitution of Ta is attempted for EuNbO4by applying the atomic weight misfit between Ta and Nb and the difference in bond strength between the Ta-O and Nb-O bonds.

    In this paper, EuNb1-XTaXO4(composition parameter X = 0/6,1/6,2/6,3/6,4/6)specimens were fabricated via a solid-state reaction (SSR). The crystal structure was clarified by means of X-ray diffraction(XRD)and Raman spectra.The surface grain size,pores,and cracks were surveyed by means of scanning electronic microscope (SEM). The thermal and mechanical properties (i.e., heat capacity, thermal diffusivity and conductivity, thermal radiation resistance, thermal expansion performance, inharmonic lattice vibration strength, and Young’s modulus) were modified by the B-site substitution of Ta. This work stresses that EuNbO4ceramics are promising TBCs via further property optimization.

    2. Experimental process

    The EuNb1-XTaXO4(X = 0/6, 1/6, 2/6, 3/6, 4/6) bulk specimens were synthesized by SSR. Crude substances included Eu2O3,Ta2O5, and Nb2O5powders and C2H5OH (Shanghai Aladdin Bio-Chem Technology Co., Ltd., China). The weighted substance was ball-milled (720 min, 240 r·min-1) within C2H5OH. The mixture was kept at 90 °C for 840 min to eliminate C2H5OH. The arid mixtures were pressed into a bulk with a radius of 7.5 mm and a thickness of 2 mm. Before sintering, the bulk samples were held at 280 MPa for 8 min, they were then sintered at 1400-1600 °C for 10 h to obtain dense samples.

    The crystal structure was confirmed by means of XRD (Mini-Flex600, Rigaku Corporation, Japan). Raman spectroscopy was employed to research the change in crystal structure, along with XRD. A confocal spectrometer (Horiba-Jobin Yvon, Horiba, Ltd.,USA)was utilized to collect Raman spectra using a He-Ne ion laser(532 nm).SEM(EVO 180,Zeiss,Germany)was employed to survey the superficial morphology, because the grain size, pores, and cracks affected the thermal and mechanical properties.

    The longitudinal (VL) and transverse (VT) acoustic velocities of EuNb1-XTaXO4were calculated by determining the transmission interval through an ultrasonic pulser/receiver instrument (UMS-100, TECLAB, France). Various properties were identified [20]:

    The thermal expansion coefficients (TECs) were determined by means of a thermal expansion rate curve. Thermo-mechanical analysis (TMA 402 F3, NETZSCH, Germany) was employed to test the temperature-dependent thermal expansion rate(100-1200°C).The test was conducted in argon(Ar)gaseous fluid,the specimens were cut to a size of 8 mm×2 mm×1 mm to adapt to the sample holder. The heating speed was 5 K·min-1. The test time lasted for about 5 h, with only one sample being tested each time.

    The bulk specimens were machined into discs with a radius of 3 mm and a thickness of 1 mm to fit the sample holder in order to test the thermal diffusivity (λ). Silver (Ag) and carbon (C) coatings were applied to reduce the thermal radiative conductivity,and ensure to absorption and maximum emissivity. The test was executed under Ar gas protection within a laser flash instrument(LFA 457, NETZSCH, Germany). Three samples were tested each time, and the test lasted for about 12 h. The thermal diffusivity was corrected by means of the ‘‘radiation + pulse” method; three tests were performed at each temperature point and the average value was used. The thermal conductivity (k′) was determined from the λ, CP, and ρ as follows [21]:

    where the specific heat, Cp, was computed using the Neumann-Kopp principle[22], and ρ is the density. The influence of porosity,φ, on thermal conductivity was removed as follows [21]:

    Debye’s principle was employed to investigate the thermal conduction mechanism. The thermal conduction mechanism was related to the propagation of phonons, as heat is transmitted via the phonons in insulators [23]:

    where k is the thermal conductivity of fully dense sample,CVrefers to the specific heat per unit volume, and l refers to the phonon mean free path. The influence of the specific heat on thermal conduction was restricted,as it reached 3kB(where kBis the Boltzmann constant) per atom at high temperatures. Herein, l was obtained:

    The phonon mean free path, l, was typically depressed by diverse scattering procedures,indicating that l and k decrease with an increase in the phonon scattering strength.

    3. Results and discussion

    Fig.1(a)shows that the experimental EuNb1-XTaXO4XRD peaks are consistent with those of standard PDF#22-1099, and that no peak for the precipitated phase is present. EuNb1-XTaXO4crystallizes in the m phase; no crystal structure transition was detected with an increase in the Ta content. Fig. 1(b) shows that the main XRD peaks slightly deviate from those on the standard PDF card,which relates to the sintering temperature. The final sintering temperature of EuNbO4is 1400 °C; it increases with an increase in Ta content, and is 1600 °C for EuNb2/6Ta4/6O4. Similar roomtemperature Raman peaks were found for EuNb1-XTaXO4, as displayed in Fig.1(c).The shift and intensity of each Raman vibration mode are connected to the molecular vibration and bond length.No evident peak deviation was observed in the two strongest Raman vibration modes (V1and V2) of EuNb1-XTaXO4. The results of the Raman spectra align with the situation indicated by XRD;that is no phase transition is detected,indicating that each sample crystallizes in the same m phase.

    Fig.1. Phase characterization of EuNb1-XTaXO4(X=0/6,1/6,2/6,3/6,4/6)ceramics.(a)XRD,25°≤2θ ≤65°;(b)XRD,27°≤2θ ≤31°;(c)room-temperature Raman spectra(25 °C, 532 nm, 100-900 cm-1).

    Fig. 2. Typical surface morphology of EuNb1-XTaXO4 (X = 0/6, 1/6, 2/6, 3/6, 4/6) ceramics. (a) EuNbO4; (b) EuNb5/6Ta1/6O4; (c) EuNb4/6Ta2/6O4; (d) EuNb3/6Ta3/6O4;(e) EuNb2/6Ta4/6O4.

    Fig. 2 shows that the grain size of EuNb1-XTaXO4is less than 20 μm; the EuNb2/6Ta4/6O4displays a minimal grain size, which is ascribed to the highest sintering temperature.The final sintering temperature is related to the melting point. The final sintering temperature of EuNbO4is 1400 °C, and the substance melts at 1600 °C. The final sintering temperature of EuNb2/6Ta4/6O4is 1600 °C; the melting point of EuNbO4has been increased via the B-site substitution of Ta. A higher melting point implies a higher limit application temperature. The grain boundaries are evident,and the grains bond well with each other. The fine grain size and outstanding combination of grains contribute to produce extraordinary thermal and mechanical properties.

    The data presented in Table 1 implies that the B-site substitution of Ta makes a notable difference to the mechanical properties of EuNbO4.The Young’s modulus of EuNbO4is about 76 GPa,so the B-site substitution of Ta has led to an increase in the Young’s modulus. The highest Young’s modulus (169 GPa) is detected in EuNb2/6Ta4/6O4. A similar situation is observed in the bulk modulus, shear modulus, and mean acoustic velocity. The composition dependence of the elastic modulus and acoustic velocity of EuNb1-XTaXO4is depicted in Fig. 3. When X ≤3/6, the increase in the elastic modulus and acoustic velocity of EuNb1-XTaXO4is minute. The Young’s modulus mirrors the bond strength of the chemical bonds. It is clear that the B-site substitution of Ta leads to an increase in the bonding strength. A high Young’s modulus means that EuNb1-XTaXO4can be directly applied as high-temperature structural ceramics.

    The bond strength increases with a decrease in bond length[24].Fig.1 implies that the lattice parameters and unit cell volume of EuNb1-XTaXO4increase with an increase in Ta content, whichleads to an increase in bond length. Therefore, it is believed that the Ta-O bond strength is much greater than that of the Nb-O bond,which results in an increase of the Young’s modulus.Greater bond strength leads to a faster phonon propagation speed, which results in an increase of the thermal conductivity, to a certain extent.However,the factors affecting thermal conduction are complex, and will be discussed in detail.

    Table 1 The mean acoustic velocity, elastic modulus (E, B, and G), Grüneisen parameter (γ), and Poisson’s ratio (ν) of EuNb1-XTaXO4 (X = 0/6, 1/6, 2/6, 3/6, 4/6) ceramics.

    Fig. 3. Composition-dependent acoustic velocity and elastic modulus of EuNb1-XTaXO4 (X = 0/6, 1/6, 2/6, 3/6, 4/6) ceramics. (a) Acoustic velocity; (b) elastic modulus.

    Fig. 4(a) shows that the thermal expansion rate of EuNb1-XTaXO4rapidly increases with an increase in temperature.At 1200 °C, EuNbO4exhibits the lowest thermal expansion rate,while EuNb3/6Ta3/6O4displays the maximal value. Fig. 4(b) shows that EuNbO4exhibits the lowest TEC (10.2 × 10-6K-1, 1200 °C),and the TEC of EuNbO4can be increased by the B-site substitution of Ta.The maximal TEC(11.2×10-6K-1,1200°C)was obtained for EuNb3/6Ta3/6O4, this value is much higher than that of 7YSZ(10.0 × 10-6K-1) and RE2Zr2O7(9.0 × 10-6K-1) [25-27]. A High TEC will contribute to reducing the thermal stress between topcoat ceramics and substrate alloys during operation, and will prolong the lifetime of the TBC. The crystal structure is relaxed via substitution, leading to an increase in TEC. Nevertheless, the TEC(11.0 × 10-6K-1) of EuNb2/6Ta4/6O4is slightly lower than that of EuNb3/6Ta3/6O4, which can be explained by the dramatic increase in the Young’s modulus. The difference in Young’s modulus between EuNbO4and EuNb3/6Ta3/6O4(26 GPa) is much less than that between EuNb3/6Ta3/6O4and EuNb2/6Ta4/6O4(67 GPa). When X ≤3/6, the increase in the TECs of EuNb1-XTaXO4is dominated by crystal structure relaxation, as the Young’s modulus variation is minute.The TEC of EuNb2/6Ta4/6O4is higher than that of EuNbO4,and lower than that of EuNb3/6Ta3/6O4. The increasing bonding strength will lead to a decrease in the TEC, to some extent, when X ≥4/6. Thermal expansion of inorganic ceramics stems from inharmonic atomic vibration around the equilibrium position,which is characterized by the Grüneisen parameter. As shown in Table 1, the Grüneisen parameter of EuNbO4has been increased by the B-site substitution of Ta, which agrees well with the composition-dependent TEC. Thus, it is believed that the TECs of EuNb1-XTaXO4are governed by different factors with the variation of Ta content.

    Fig. 4. Thermal expansion performance of EuNb1-XTaXO4 (X = 0/6, 1/6, 2/6, 3/6, 4/6) ceramics. (a) Thermal expansion rate; (b) TECs.

    As shown in Table 2,the specific heat of EuNb1-XTaXO4increases with an increase in temperature (0.35-0.58 J·K-1·g-1, 25-900 °C).Furthermore, the specific heat of EuNb1-XTaXO4decreases with an increase in Ta concentration. The specific heat decreases with increasing molecular weight, according to the Neumann-Kopp principle. Fig. 5(a) shows that the thermal diffusivity(0.42-1.13 mm2·s-1,25-900°C)of EuNb1-XTaXO4quickly decreases with increase in temperature, the lowest thermal diffusivity(0.42-0.90 mm2·s-1, 25-900 °C) is detected in EuNb3/6Ta3/6O4.Meanwhile,when the temperature is greater than 700°C,an evident increase in the thermal diffusivity of EuNb1-XTaXO4(X = 0/6, 1/6)is observed, which is caused by thermal radiation. No obvious increase of thermal diffusivity is detected in EuNb1-XTaXO4(X = 2/6, 3/6, 4/6), indicating that the B-site substitution of Ta is effective in improving the thermal radiation resistance of EuNbO4.Fig.5(b)shows that the thermal conductivity(1.52-3.28 W·K-1·m-1,25-900°C)of EuNb1-XTaXO4decreases with an increase in temperature, and that EuNb3/6Ta3/6O4exhibits the minimum value(1.52 W·K-1·m-1, 700 °C). The thermal radiation effect causes the thermal conductivity of EuNb1-XTaXO4(X = 0/6, 1/6, 2/6, 3/6) to increase at high temperatures (≥500 °C). No increase in thermal diffusivity or conductivity is detected for EuNb2/6Ta4/6O4, which is attributed to it having the best thermal radiation resistance.

    Thermal transfer is conducted via phonons—that is, lattice vibration—in insulators [28,29]. During phonon propagation, they are scattered via various processes, including Umklapp phononphonon scattering, different point defects scattering, grain boundaries scattering, and the other scattering processes [29-32]. Thephonon mean free path (l), which is restricted by the above processes, consists of different parts [29-32]:

    Table 2 Temperature-dependent specific heat of EuNb1-XTaXO4 (X = 0/6, 1/6, 2/6, 3/6, 4/6) ceramics calculated via the Neumann-Kopp principle.

    Fig. 5. Thermal properties of EuNb1-XTaXO4 (X = 0/6, 1/6, 2/6, 3/6, 4/6) ceramics. (a) Thermal diffusivity; (b) thermal conductivity; (c) composition dependence of thermal conductivity; (d) phonon mean free path.

    where lp, ld, lband lxare the phonon free paths derived from Umklapp phonon-phonon scattering, point defects scattering, grain boundaries scattering, and other processes, respectively [29-32].Figs. 1 and 2 indicate that no phase transformation is detected,and that the grain size (microscale)is dozens of times greater than the size of phonon free path (nanoscale). Furthermore, the phonon scattering intensity caused by the grain boundary decreases with increase in temperature. Therefore, grain boundaries scattering can not decide the phonon mean free path.According to the chemical formula of EuNb1-XTaXO4, no vacancy is induced in EuNbO4by the B-site substitution of Ta,as both Nb and Ta are pentavalent(+5).The Umklapp scattering degree is reflected via inharmonic lattice vibration. The inharmonic lattice vibration of EuNbO4is enhanced by the B-site substitution of Ta,and the lowest value of the Grüneisen parameter is detected in EuNbO4(Table 1). As the Grüneisen parameter increases with an increase in temperature, the thermal conductivity decreases with an increase in temperature. Furthermore, point defects are introduced, which are attributed to the atomic weight difference between Nb (92.9 g·mol-1) and Ta(180.9 g·mol-1). The effective ionic radius of Ta5+and Nb5+with four ligands is equal (0.064 nm); the phonon scattering caused by the ionic radius difference is therefore omitted. Normally, the misfits of atomic weight and ionic radius reach the maximum value when X is 3/6 in the substitution process [25,30,32-34]. Hence,the lowest thermal conductivity of EuNb1-XTaXO4is detected in EuNb3/6Ta3/6O4. The phonon scattering process sketch map of EuNb3/6Ta3/6O4is displayed in Fig. 6, in which Ta atoms are the strongest phonon scattering sources. First, the B-site substitution of Ta causes an atomic weight difference, as Ta atoms are much heavier than Nb atoms. Second, the introduction of Ta increases the total unit cell weight and crystal structure complexity.The work by Clarke[35] proves that the thermal conductivity decreases with an increase in unit cell weight and crystal structure complexity.Third, the Ta and Nb atoms are centered by four O atoms to form TaO4and NbO4tetrahedrons. Phonons are scattered via a cage-like structure to reduce the thermal conductivity, which has been reported in various ceramics [32,36,37]. The complex crystal structure and cage-like structure are important reasons why EuNb1-XTaXO4exhibits a low thermal conductivity.

    The composition dependence of the thermal conductivity can be clearly observed in Fig. 5(c). At the same temperature, the thermal conductivity of EuNb1-XTaXO4decreases with an increasein Ta content, and increases slightly when X is 4/6. The phonon mean free path (0.41-1.56 nm, 25-900 °C) of EuNb1-XTaXO4decreases with an increase in temperature(Fig.5(d)).The temperature dependence of l and k is analogous. The lowest l (0.41 nm,900 °C) was detected in EuNb2/6Ta4/6O4. Eq. (10) indicates that l connects to VMand λ. VMis temperature dependent; therefore,the temperature dependence of l is determined by the thermal diffusivity. In addition, VMof EuNb2/6Ta4/6O4(3022 m·s-1) is much faster than those of the rest of the samples (2246-2393 m·s-1),which results in the lowest l being detected in EuNb2/6Ta4/6O4.

    The thermal radiative conductivity occurs at elevated temperature, and results in an increase of the thermal conductivity. The thermal diffusivity and conductivity, as well as the phonon mean free path, of EuNb1-XTaXO4(X = 0/6, 1/6, 2/6, 3/6) slightly increase at high temperatures. To obtain the intrinsic phonon thermal conductivity of EuNb1-XTaXO4, the thermal radiative conductivity should be removed. In the work of Klemens [30] and Ambegaokar[31], the phonon scattering intensity caused by the point defects and grain boundaries is constant, and the mean phonon free path of the insulator predominantly consists of lp, ld, and lb[33-37].Therefore, the temperature dependence of the thermal diffusivity is decided by the Umklapp phonon-phonon scattering process.The correlation between the temperature T and lpof crystalline ceramics is as follows [36,37]:

    where TDis the Debye temperature, h is the Plank’s constant, kBis the Boltzmann constant, m is the total weight per unit cell, V is the unit cell volume, l0is a parameter before the exponential, T-Dis the revised Debye temperature,and b is a constant set as 2.When the temperature is greater than T-D, l is as follows [36,37]:

    where C and D are parameters.Fig.5(d)shows that the relationship between l and T clearly deviates from l ∝T-1at elevated temperatures due to the thermal radiation effect.To obtain the intrinsic lattice thermal conductivity of EuNb1-XTaXO4, the intrinsic phonon thermal diffusivity should be determined.Based on the relationship between λ and l, λ is determined as follows [36,37]:

    Eq. (16) indicates that the reciprocal thermal diffusivity increases with an increase in temperature, when no thermal radiation effect occurs.Fig.7(a)shows that λ-1follows the relationship expressed in Eq.(16)at low temperature.However,when the temperature is greater than 600°C,λ-1deviates from the λ-1∝T (dotted lines) relationship. The intrinsic phonon thermal diffusivity of EuNb1-XTaXO4is corrected.

    Fig. 7(a) shows that the intrinsic phonon thermal diffusivity monotonously decreases with increasing temperature. A similar temperature dependence of the intrinsic phonon thermal conductivity and the phonon mean free path is observed in Figs. 7(c)and (d). The minimum intrinsic phonon thermal conductivity of EuNb1-XTaXO4is 1.27 W·K-1·m-1(EuNb3/6Ta3/6O4). The variation trend of the thermal conductivity implies that it will decrease further with an increase in temperature,and will approach the theoretical limit value (kmin), which has been derived by Cahill et al.[34-36]:

    Fig. 7. Intrinsic thermal properties of EuNb1-XTaXO4 (X = 0/6, 1/6, 2/6, 3/6, 4/6) ceramics. (a) Reciprocal thermal diffusivity; (b) intrinsic phonon thermal diffusivity;(c) intrinsic phonon thermal conductivity; (d) intrinsic phonon mean free path.

    where n is the atomic number per unit cell. The theoretical minimum thermal conductivity decreases with a decrease in acoustic velocity. As shown in Table 3, kminof EuNbO4is about 0.78 W·K-1·m-1, implying that the experimental k of EuNbO4can be decreased. The ZrO2alloying effects have been applied to reduce the thermal conductivity of rare earth tantalates, and these methods may be effective for EuNbO4[38]. Furthermore, the A-site substitution of other rare earth elements (e.g., Gd, Dy, Ho, Yb, Er,and Lu) with a heavier atomic weight can be attempted. As for the thermal radiation effect, dual layer coatings are effective in blocking the thermal radiative conductivity of LaPO4/La2Zr2O7ceramics[39].EuPO4/EuNbO4dual coatings can be used to attempt to reduce the thermal radiative conductivity of EuNbO4, due to theexcellent thermal radiation resistance of rare earth phosphate(REPO4) [40].

    Table 3 Fitted reciprocal thermal diffusivity (λ-1) and theoretical minimum thermal conductivity (kmin) of EuNb1-XTaXO4 (X = 0/6, 1/6, 2/6, 3/6, 4/6) ceramics.

    4. Conclusion

    The thermal and mechanical properties of EuNbO4synthesized via a SSR have been successfully optimized by the B-site substitution of Ta. The highest TEC reaches 11.2 × 10-6K-1at 1200 °C(EuNb3/6Ta3/6O4), attributed to crystal structure relaxation and the enhancement of inharmonic lattice vibration strength. The highest Young’s modulus (169 GPa) is detected in EuNb2/6Ta4/6O4,as the Ta-O bond strength is much greater than that of the Nb-O bond. The minimum experimental thermal conductivity(1.52 W·K-1·m-1, 700 °C) is found in EuNb3/6Ta3/6O4, due to the maximum misfit of atomic weight between Ta and Nb.The thermal radiation resistance of EuNb1-XTaXO4is improved via the B-site substitution of Ta. The theoretical minimum thermal conductivity(0.78 W·K-1·m-1) of EuNbO4indicates that the experimental thermal conductivity can be reduced further. It is clear that EuNb1-XTaXO4exhibits lower thermal conductivity, lower Young’s modulus and greater TECs than the 7YSZ and La2Zr2O7ceramics.The excellent material properties of EuNb1-XTaXO4imply that EuNbO4is a promising high-temperature TBC.

    Acknowledgements

    This research is under the support of the Natural Science Foundation of China (51762028 and 91960103) and the Materials Genome Engineering of Rare and Precious Metal of Yunnan Province (2018ZE019).

    Compliance with ethics guidelines

    Lin Chen and Jing Feng declare that they have no conflict of interest or financial conflicts to disclose.

    久久久久精品人妻al黑| 露出奶头的视频| 精品免费久久久久久久清纯 | 欧美久久黑人一区二区| 9热在线视频观看99| 乱人伦中国视频| 黑人欧美特级aaaaaa片| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美丝袜亚洲另类 | 成人三级做爰电影| 欧美日韩国产mv在线观看视频| 黄网站色视频无遮挡免费观看| tube8黄色片| 大香蕉久久网| 久久久久国内视频| 久久午夜综合久久蜜桃| 又黄又爽又免费观看的视频| 亚洲国产毛片av蜜桃av| 欧美日韩中文字幕国产精品一区二区三区 | 韩国av一区二区三区四区| 天堂俺去俺来也www色官网| 99re在线观看精品视频| 男女免费视频国产| 99精品久久久久人妻精品| 久久久久精品国产欧美久久久| 国精品久久久久久国模美| 国产精品99久久99久久久不卡| 国产成人系列免费观看| 精品免费久久久久久久清纯 | 99re在线观看精品视频| 欧美在线一区亚洲| 老司机福利观看| 丝袜美足系列| av中文乱码字幕在线| 亚洲精品粉嫩美女一区| 大香蕉久久成人网| 夜夜躁狠狠躁天天躁| 欧美日韩av久久| 国产日韩欧美亚洲二区| 午夜福利在线免费观看网站| 超色免费av| 国产熟女午夜一区二区三区| 久久 成人 亚洲| 国产无遮挡羞羞视频在线观看| 他把我摸到了高潮在线观看| 在线观看午夜福利视频| 国产精品一区二区在线不卡| 激情在线观看视频在线高清 | 久久午夜综合久久蜜桃| 婷婷成人精品国产| 亚洲熟妇熟女久久| 视频区图区小说| 免费观看精品视频网站| 天天躁夜夜躁狠狠躁躁| 90打野战视频偷拍视频| 国产亚洲欧美98| 王馨瑶露胸无遮挡在线观看| 午夜精品国产一区二区电影| 亚洲av电影在线进入| 亚洲人成电影免费在线| 好看av亚洲va欧美ⅴa在| 亚洲伊人色综图| 久久久久久久午夜电影 | 免费一级毛片在线播放高清视频 | 国产精品99久久99久久久不卡| 一a级毛片在线观看| 男女免费视频国产| 伦理电影免费视频| 久久久久久免费高清国产稀缺| 欧美老熟妇乱子伦牲交| 久9热在线精品视频| 午夜免费鲁丝| 黑人巨大精品欧美一区二区蜜桃| 日韩欧美免费精品| 成年女人毛片免费观看观看9 | 国产一区二区激情短视频| 久久久国产成人免费| 人人澡人人妻人| 亚洲欧美激情在线| 亚洲熟妇熟女久久| 夜夜夜夜夜久久久久| 天天躁日日躁夜夜躁夜夜| 午夜免费成人在线视频| 日韩欧美免费精品| 日韩欧美在线二视频 | 国产色视频综合| 久久国产精品人妻蜜桃| 亚洲全国av大片| 国产亚洲欧美在线一区二区| 18禁黄网站禁片午夜丰满| 日日摸夜夜添夜夜添小说| 欧美日韩亚洲高清精品| 国产精品.久久久| 日韩有码中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 精品人妻在线不人妻| 男女免费视频国产| 成人18禁高潮啪啪吃奶动态图| 麻豆乱淫一区二区| 捣出白浆h1v1| 欧美丝袜亚洲另类 | 久久影院123| 777久久人妻少妇嫩草av网站| 在线观看免费视频网站a站| 久久亚洲真实| 我的亚洲天堂| 国产日韩欧美亚洲二区| 老鸭窝网址在线观看| 国产片内射在线| 天堂俺去俺来也www色官网| 国产精品二区激情视频| 后天国语完整版免费观看| 国产精品一区二区免费欧美| 亚洲精品在线观看二区| 久久99一区二区三区| 久久久国产一区二区| av免费在线观看网站| 精品国产一区二区三区四区第35| 亚洲一码二码三码区别大吗| 久久热在线av| 无遮挡黄片免费观看| 男女之事视频高清在线观看| 亚洲国产中文字幕在线视频| 久久久精品区二区三区| 亚洲av电影在线进入| 成人国语在线视频| 麻豆成人av在线观看| 久久狼人影院| 精品一区二区三区四区五区乱码| 精品久久久久久,| 国产av一区二区精品久久| 黑丝袜美女国产一区| 少妇裸体淫交视频免费看高清 | 欧美日韩亚洲国产一区二区在线观看 | 人妻丰满熟妇av一区二区三区 | 人妻 亚洲 视频| 国产一区二区激情短视频| 在线观看午夜福利视频| 成人国语在线视频| 欧美最黄视频在线播放免费 | 丝袜美足系列| 妹子高潮喷水视频| 黄色女人牲交| 欧美在线一区亚洲| 亚洲免费av在线视频| 脱女人内裤的视频| 在线十欧美十亚洲十日本专区| 好男人电影高清在线观看| 午夜福利乱码中文字幕| 亚洲aⅴ乱码一区二区在线播放 | 国产精品98久久久久久宅男小说| 国产一卡二卡三卡精品| 久久亚洲真实| 婷婷丁香在线五月| 亚洲欧美激情在线| 19禁男女啪啪无遮挡网站| 日韩大码丰满熟妇| 久久久久久亚洲精品国产蜜桃av| 免费在线观看视频国产中文字幕亚洲| 丝瓜视频免费看黄片| 在线天堂中文资源库| 99久久国产精品久久久| av免费在线观看网站| 国产一卡二卡三卡精品| 一进一出抽搐动态| 无限看片的www在线观看| 精品视频人人做人人爽| 一级作爱视频免费观看| 亚洲国产欧美网| 新久久久久国产一级毛片| 日韩视频一区二区在线观看| 国产精品亚洲av一区麻豆| 777久久人妻少妇嫩草av网站| 亚洲男人天堂网一区| 精品一区二区三区四区五区乱码| 国产亚洲av高清不卡| 欧美日本中文国产一区发布| 亚洲精品国产一区二区精华液| 中文亚洲av片在线观看爽 | 香蕉久久夜色| 精品乱码久久久久久99久播| 亚洲第一欧美日韩一区二区三区| 超碰97精品在线观看| 久久精品人人爽人人爽视色| 在线播放国产精品三级| www.自偷自拍.com| 老鸭窝网址在线观看| 高潮久久久久久久久久久不卡| 亚洲av成人不卡在线观看播放网| 中国美女看黄片| 亚洲 欧美一区二区三区| 精品亚洲成a人片在线观看| 69av精品久久久久久| www.熟女人妻精品国产| 国产高清视频在线播放一区| 欧美日韩亚洲综合一区二区三区_| 国产亚洲欧美精品永久| 国产视频一区二区在线看| 亚洲中文av在线| 久久久国产成人精品二区 | 另类亚洲欧美激情| aaaaa片日本免费| 久久久久国产精品人妻aⅴ院 | 成人精品一区二区免费| 精品国产美女av久久久久小说| 麻豆国产av国片精品| 欧美乱码精品一区二区三区| 80岁老熟妇乱子伦牲交| 亚洲人成伊人成综合网2020| 精品少妇一区二区三区视频日本电影| 成人亚洲精品一区在线观看| 国产高清videossex| 黄色 视频免费看| 香蕉丝袜av| 在线播放国产精品三级| 新久久久久国产一级毛片| 夜夜爽天天搞| 在线观看舔阴道视频| 亚洲国产看品久久| bbb黄色大片| 久久久久国产精品人妻aⅴ院 | 免费在线观看视频国产中文字幕亚洲| 91精品三级在线观看| 免费不卡黄色视频| 国产亚洲一区二区精品| 51午夜福利影视在线观看| 亚洲欧洲精品一区二区精品久久久| 黄色 视频免费看| 中文字幕另类日韩欧美亚洲嫩草| 看免费av毛片| 亚洲视频免费观看视频| 久久久久国产一级毛片高清牌| 不卡一级毛片| a级毛片在线看网站| 99国产精品99久久久久| 欧美激情 高清一区二区三区| 亚洲成a人片在线一区二区| 久久久精品区二区三区| 国产成人精品久久二区二区91| 亚洲在线自拍视频| 国产又色又爽无遮挡免费看| 精品国产一区二区久久| 天堂俺去俺来也www色官网| 国产有黄有色有爽视频| 国产1区2区3区精品| 久久国产乱子伦精品免费另类| 亚洲人成电影观看| 精品久久久精品久久久| 免费在线观看完整版高清| 亚洲精品乱久久久久久| 久久久久久人人人人人| 日韩人妻精品一区2区三区| 国精品久久久久久国模美| 国产一区在线观看成人免费| 热99re8久久精品国产| 成年人午夜在线观看视频| 一二三四社区在线视频社区8| 国产亚洲欧美98| 午夜两性在线视频| 亚洲av电影在线进入| 国产高清videossex| 国产日韩欧美亚洲二区| 一区二区三区精品91| 99国产精品一区二区三区| 黄片小视频在线播放| 色婷婷av一区二区三区视频| 国产欧美日韩一区二区三区在线| 91国产中文字幕| 国产免费男女视频| 欧美日韩中文字幕国产精品一区二区三区 | a级片在线免费高清观看视频| 精品无人区乱码1区二区| 一级a爱视频在线免费观看| 久久久久久久午夜电影 | 欧美日韩精品网址| 俄罗斯特黄特色一大片| 日日夜夜操网爽| 国产主播在线观看一区二区| 操美女的视频在线观看| 黄网站色视频无遮挡免费观看| 国产伦人伦偷精品视频| 日日摸夜夜添夜夜添小说| 人妻 亚洲 视频| 日韩一卡2卡3卡4卡2021年| 变态另类成人亚洲欧美熟女 | 精品乱码久久久久久99久播| 美女扒开内裤让男人捅视频| 国产野战对白在线观看| 成人手机av| 热99国产精品久久久久久7| 亚洲熟妇中文字幕五十中出 | 手机成人av网站| 国产成人精品在线电影| 免费观看精品视频网站| 18禁国产床啪视频网站| 校园春色视频在线观看| 无遮挡黄片免费观看| 国产精品偷伦视频观看了| 一本大道久久a久久精品| 久久精品国产亚洲av香蕉五月 | 久久香蕉精品热| 国产伦人伦偷精品视频| 亚洲午夜理论影院| 国产一区二区激情短视频| 久久久久精品国产欧美久久久| 精品亚洲成国产av| 国产精品美女特级片免费视频播放器 | 人妻久久中文字幕网| 精品电影一区二区在线| 国产精品成人在线| 777久久人妻少妇嫩草av网站| 日韩视频一区二区在线观看| 精品国产乱子伦一区二区三区| 国产淫语在线视频| 国产成人欧美在线观看 | 91麻豆av在线| 日韩欧美国产一区二区入口| 国产熟女午夜一区二区三区| 精品国产亚洲在线| 99riav亚洲国产免费| 又黄又爽又免费观看的视频| 久久人妻熟女aⅴ| 啦啦啦视频在线资源免费观看| 宅男免费午夜| 搡老乐熟女国产| 巨乳人妻的诱惑在线观看| 国产国语露脸激情在线看| 亚洲精品成人av观看孕妇| 午夜亚洲福利在线播放| 欧美最黄视频在线播放免费 | 精品久久久久久久毛片微露脸| 人人澡人人妻人| 久久久精品免费免费高清| 亚洲一区高清亚洲精品| 亚洲av成人不卡在线观看播放网| 99热国产这里只有精品6| 一区二区三区激情视频| 久久久久国内视频| 国产精品免费视频内射| 在线看a的网站| 亚洲av成人一区二区三| 成人免费观看视频高清| 日日爽夜夜爽网站| 亚洲熟妇熟女久久| 免费观看精品视频网站| 亚洲久久久国产精品| 午夜成年电影在线免费观看| 午夜福利欧美成人| 国产成人欧美在线观看 | 夫妻午夜视频| 国产一区有黄有色的免费视频| 精品国产一区二区久久| 纯流量卡能插随身wifi吗| 欧美乱妇无乱码| 久热爱精品视频在线9| 性色av乱码一区二区三区2| 看黄色毛片网站| www.999成人在线观看| 精品第一国产精品| 国产精品免费一区二区三区在线 | 色在线成人网| 久久草成人影院| 男女午夜视频在线观看| av片东京热男人的天堂| 精品亚洲成国产av| 十分钟在线观看高清视频www| 国产在线一区二区三区精| 视频区图区小说| 12—13女人毛片做爰片一| 青草久久国产| 妹子高潮喷水视频| 如日韩欧美国产精品一区二区三区| 少妇 在线观看| av网站免费在线观看视频| 超碰成人久久| 久久精品国产亚洲av高清一级| 美国免费a级毛片| 国产三级黄色录像| 啦啦啦在线免费观看视频4| 99热只有精品国产| 淫妇啪啪啪对白视频| 欧美黄色片欧美黄色片| 精品久久久久久久久久免费视频 | av有码第一页| 99国产精品99久久久久| 成人亚洲精品一区在线观看| 色播在线永久视频| 90打野战视频偷拍视频| 美女福利国产在线| 成人亚洲精品一区在线观看| 99久久99久久久精品蜜桃| 亚洲熟妇中文字幕五十中出 | 999久久久国产精品视频| 久久九九热精品免费| 精品国产亚洲在线| tocl精华| 老熟妇仑乱视频hdxx| 欧美人与性动交α欧美精品济南到| 精品国产亚洲在线| 久9热在线精品视频| 精品国产超薄肉色丝袜足j| 嫁个100分男人电影在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产精品久久久久久人妻精品电影| 热99国产精品久久久久久7| 黄频高清免费视频| 国产精品乱码一区二三区的特点 | 中文字幕高清在线视频| 久久久国产精品麻豆| 王馨瑶露胸无遮挡在线观看| 俄罗斯特黄特色一大片| 国产免费男女视频| 满18在线观看网站| 国产精品99久久99久久久不卡| 国产精品久久久久久人妻精品电影| 午夜激情av网站| 精品福利永久在线观看| 手机成人av网站| cao死你这个sao货| 国产精品免费视频内射| 欧美亚洲 丝袜 人妻 在线| 97人妻天天添夜夜摸| 国产精品久久久久久人妻精品电影| 欧美精品亚洲一区二区| 久久精品成人免费网站| 老汉色∧v一级毛片| 波多野结衣一区麻豆| 久久婷婷成人综合色麻豆| 麻豆国产av国片精品| 国产99白浆流出| av福利片在线| 免费在线观看影片大全网站| x7x7x7水蜜桃| 国产成人系列免费观看| 成人18禁在线播放| www.999成人在线观看| 一级毛片精品| 老司机影院毛片| av电影中文网址| 狠狠婷婷综合久久久久久88av| 国产伦人伦偷精品视频| 老司机午夜福利在线观看视频| 无遮挡黄片免费观看| 国产成人欧美在线观看 | 在线播放国产精品三级| 日韩欧美三级三区| 精品一区二区三区av网在线观看| 国产精品九九99| 看片在线看免费视频| 国产精品一区二区在线观看99| 欧美乱码精品一区二区三区| 久久久久久久精品吃奶| 国产精品1区2区在线观看. | 97人妻天天添夜夜摸| 18禁美女被吸乳视频| 日日爽夜夜爽网站| 亚洲久久久国产精品| 亚洲 欧美一区二区三区| 国产精品久久久人人做人人爽| 成人国语在线视频| 精品一品国产午夜福利视频| 欧美大码av| www.999成人在线观看| 男男h啪啪无遮挡| 99国产综合亚洲精品| 欧美性长视频在线观看| 1024视频免费在线观看| 精品一区二区三区视频在线观看免费 | 99精国产麻豆久久婷婷| 国产精品久久久久成人av| 母亲3免费完整高清在线观看| 一级黄色大片毛片| 国产精品成人在线| 韩国精品一区二区三区| 亚洲成国产人片在线观看| 亚洲精品久久成人aⅴ小说| 久久久久精品国产欧美久久久| 99国产精品免费福利视频| 欧美日韩国产mv在线观看视频| 国产精品久久久久久人妻精品电影| 亚洲精品在线美女| 日本撒尿小便嘘嘘汇集6| 在线观看免费视频网站a站| 我的亚洲天堂| 91av网站免费观看| 一区二区三区激情视频| 99久久精品国产亚洲精品| 国产高清激情床上av| 亚洲精品久久午夜乱码| 黄频高清免费视频| 在线观看www视频免费| 性少妇av在线| 国产欧美日韩一区二区三| 啦啦啦在线免费观看视频4| 黄频高清免费视频| 久久久久久免费高清国产稀缺| 日本撒尿小便嘘嘘汇集6| 久久久精品免费免费高清| 国产精品电影一区二区三区 | 亚洲中文字幕日韩| 日本撒尿小便嘘嘘汇集6| 国产av一区二区精品久久| 啦啦啦在线免费观看视频4| 精品免费久久久久久久清纯 | e午夜精品久久久久久久| 国产蜜桃级精品一区二区三区 | 亚洲欧美一区二区三区黑人| 亚洲欧美激情在线| 女人精品久久久久毛片| a级片在线免费高清观看视频| 亚洲av片天天在线观看| a级毛片在线看网站| 精品电影一区二区在线| 亚洲国产中文字幕在线视频| 国产精品九九99| 美女国产高潮福利片在线看| 国产欧美日韩一区二区精品| 欧美在线黄色| 免费在线观看日本一区| 大型av网站在线播放| 亚洲国产欧美日韩在线播放| 成人国语在线视频| 天堂动漫精品| 欧美 亚洲 国产 日韩一| 高清毛片免费观看视频网站 | 国产精品国产av在线观看| 免费一级毛片在线播放高清视频 | 亚洲性夜色夜夜综合| 老司机在亚洲福利影院| 国产精品美女特级片免费视频播放器 | 亚洲一区二区三区不卡视频| 中文字幕人妻丝袜制服| 欧美 亚洲 国产 日韩一| 亚洲五月婷婷丁香| 99国产精品一区二区三区| av超薄肉色丝袜交足视频| 午夜精品国产一区二区电影| 午夜老司机福利片| 在线永久观看黄色视频| 91大片在线观看| 久久人妻福利社区极品人妻图片| 欧美人与性动交α欧美软件| 成人黄色视频免费在线看| 12—13女人毛片做爰片一| 欧美日韩亚洲国产一区二区在线观看 | 丁香欧美五月| 精品久久久久久久久久免费视频 | 午夜福利,免费看| 咕卡用的链子| 免费女性裸体啪啪无遮挡网站| 热re99久久精品国产66热6| 欧美精品一区二区免费开放| 免费少妇av软件| 午夜成年电影在线免费观看| 午夜福利在线免费观看网站| 美国免费a级毛片| 午夜精品在线福利| 男人舔女人的私密视频| 国产精品永久免费网站| 一进一出好大好爽视频| 免费观看精品视频网站| 老鸭窝网址在线观看| 国产精品亚洲一级av第二区| 十分钟在线观看高清视频www| 国产精品久久久av美女十八| 啦啦啦在线免费观看视频4| 日韩视频一区二区在线观看| 丰满饥渴人妻一区二区三| 国产极品粉嫩免费观看在线| 国产精品国产av在线观看| 很黄的视频免费| av视频免费观看在线观看| 欧美乱码精品一区二区三区| 国产亚洲精品久久久久5区| 亚洲国产欧美网| 久久久水蜜桃国产精品网| 两人在一起打扑克的视频| 涩涩av久久男人的天堂| 亚洲一卡2卡3卡4卡5卡精品中文| 美国免费a级毛片| 国产黄色免费在线视频| 久久婷婷成人综合色麻豆| 亚洲国产中文字幕在线视频| 1024香蕉在线观看| 热99国产精品久久久久久7| 国产欧美日韩综合在线一区二区| 精品亚洲成国产av| 国产99久久九九免费精品| 国产成人av教育| 亚洲精品久久成人aⅴ小说| 国产在线精品亚洲第一网站| 男女下面插进去视频免费观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品乱久久久久久| 国产一区二区激情短视频| 91九色精品人成在线观看| 久久精品亚洲av国产电影网| 不卡一级毛片| 欧美国产精品一级二级三级| 国内毛片毛片毛片毛片毛片| 曰老女人黄片| e午夜精品久久久久久久| 天堂√8在线中文| netflix在线观看网站| 制服诱惑二区| 精品视频人人做人人爽| 高清在线国产一区| 久久人妻熟女aⅴ| 亚洲精品成人av观看孕妇| 欧美一级毛片孕妇| 国产一区二区激情短视频| 好看av亚洲va欧美ⅴa在| 一级作爱视频免费观看| 国产日韩欧美亚洲二区| 日日夜夜操网爽|