• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Neutron Diffraction Investigation of the DyFe11Ti Magnetic Structure and Its Spin Reorientations

    2020-05-22 08:02:02OlivierIsnardEderKinast
    Engineering 2020年2期

    Olivier Isnard*, Eder J. Kinast

    a University Grenoble Alpes, Institut Néel du CNRS, 25 rue des Martyrs, Grenoble 38042, France

    b Universidade Estadual do Rio Grande do Sul, Porto Alegre, RS 90010-191, Brazil

    Keywords:

    A B S T R A C T In this article, we report on the magnetic structure of DyFe11Ti and its thermal evolution as probed by neutron powder diffraction. A thermodiffraction technique was used to follow the temperature dependence of the magnetic moments, as well as their orientation. The Dy and Fe moments were coupled to each other in an antiparallel manner to form a ferrimagnet, where the easy magnetization direction at 2 K was the [110] axis in the basal (a, b) plane. This magnetic structure underwent two successive spin reorientation phenomena with increasing temperature.A large Dy magnetic moment of 9.7 Bohr magneton (μB) was obtained at low temperatures, and the magnitude decreased rapidly to 7.5μB at 200 K. The largest Fe magnetic moment was observed on the Fe 8i position.A ThMn12-type crystal structure was preserved in the studied temperature range,despite the large changes of the magnetic structure.A sharp tilt was observed at the first-order spin reorientation, TSR1; the angle between the easy magnetization axis and the crystal c axis was reduced from 90° at 2 K to about 20° at 200 K (where c is the easy axis above 200 K); and the Dy and Fe magnetic moments maintained an antiparallel coupling.

    1. Introduction

    The investigation of iron (Fe)-rich intermetallic compounds containing rare-earth metals (R) has attracted considerable interest during the last three decades,due to the potential of these compounds to act as hard magnetic materials. These remarkable materials can potentially combine a high ordering temperature and high magnetization with significant magnetocrystalline anisotropy and coercivity. In addition to their potential for application,R-Fe intermetallic compounds offer researchers the opportunity to perform extensive fundamental studies of the magnetic behavior of itinerant 3d electrons and localized 4f electronic states. Several studies have investigated the unusual behavior of RFe12-xMxintermetallic compounds [1-3]. Firstly, no RFe12compound has been reported as a bulk sample; secondly, the use of a stabilizing element, M, is necessary in order to obtain the RFe12-xMxphase and observe a ThMn12structure type. When M = Ti, a relatively high Curie temperature can be obtained for these phases, and can be further improved by the insertion of a light element within the crystal lattice,such as hydrogen(H),carbon(C),or nitrogen(N)[4,5]. These materials are also of interest due to their relatively complex magnetic phase diagram when the R and Fe sub-lattices have different preferential anisotropy directions [1,2,4].

    The ThMn12structure, which was originally determined by Florio et al. [6], is closely related to the CaCu5structure type by an ordered substitution of a rare-earth element by a pair of 3d transition metals following the relation 2RM5- R + 2M →RM12.Half of the R atoms are consequently replaced by M atoms at the 8i position. This substitution results in a change of crystal symmetry, and the tetragonal I4/mmm space group is retained. In addition to the 2a position occupied by the rare-earth element,transition metal atoms are observed on three inequivalent atomic positions:8i,8j,and 8f[1,7,8].The ThMn12structure is also related to the parent Th2Ni17structure. For a detailed description of the relationships between these structures, the reader is referred to the work of Hu et al. [8].

    This article focuses on the magnetic structure of DyFe11Ti compounds and on its temperature dependence. This compound has attracted a great deal of research interest due to its original magnetic behavior and the presence of two spin reorientation transitions. At room temperature, DyFe11Ti exhibits a uniaxial alignment of the magnetic moments along the c axis, as has been derived from single-crystal studies and from M?ssbauer spectroscopy [9-12]. The low-temperature behavior is more complex,and has been the subject of several magnetic studies.Contradicting conclusions were drawn from the studies of different sets of single crystals[9-14],particularly in regards to the first-or second-order nature of the lowest temperature spin reorientation,TSR1.However,those researchers agreed that TSR2, the spin reorientation above 200 K, is of the second order.Nevertheless, no direct investigation of the magnetic structure by neutron diffraction has been reported to date.This is the purpose of the present study,which focuses on the low-temperature magnetic behavior around TSR1with the aim of shedding new light on the complex magnetic phase diagram of DyFe11Ti.

    2. Material and methods

    The sample preparation was performed by means of highfrequency induction melting in a purified argon (Ar) atmosphere,starting from the pure elements. To homogenize the obtained ingot, annealing was performed in an evacuated quartz ampoule for ten days at 950 °C. Sample purity was investigated using X-ray diffraction and thermomagnetic measurements. Neutron diffraction measurements were performed on D1B, a powder diffractometer operated by the French National Center for Scientific Research(CNRS) as a Collaborative Research Group at Institut Laue-Langevin (ILL), in Grenoble, France. A wavelength of 2.52 ? was selected by a pyrolytic graphite monochromator. We used a multicounter containing 400 cells, with a step of 0.2° between neighboring cells; the detector covered a 2θ angular range of 80°.The detector was set at an initial position of 2θ = 20°, since no Bragg reflection was observed at a lower angle.The diffractograms were taken at different temperatures ranging from 1.5 to 202 K.The crystal structure and magnetic parameters were refined using the Rietveld method implemented in the FullProf program [15].The definition of the agreement factors is given in the corresponding FullProf program manual.In order to minimize neutron absorption by the dysprosium (Dy) nucleus, we used a special annular sample holder.

    3. Results and discussion

    Rietveld refinement of the neutron data revealed the presence of elemental iron as a minority phase in the studied compound(its content was below 1%). Neutron diffraction also indicated the presence of traces of TiFe2as impurity. A plot of the refinement of the diffraction pattern recorded at 2 K for DyFe11Ti is given in Fig. 1. Thanks to the large contrast between the atomic neutron coherent scattering length of the titanium (Ti) and Fe nuclei, the Ti atom location and content could be precisely determined. As shown in Table 1, the Ti atoms were located exclusively on the 8i position of the ThMn12structure type, whereas the Fe atoms were found on the remaining transition metal positions 8i, 8j, and 8f.This preferential location on the 8i site is in line with earlier reported results on isotype RFe11Ti intermetallics [7], and is attributed to the larger volume of the 8i position. The refined Ti content was in excellent agreement with the initial DyFe11Ti stoichiometry, confirming the very low content of ‘‘Ti-containing impurity.”An analysis of the magnetic contribution to the neutron diffraction pattern indicated that the Dy and Fe magnetic moments were coupled anti-ferromagnetically and were lying within the basal (a, b) plane, forming a 90° angle with the c axis. Due to the contradicting results on the orientation of the magnetic moments[9,13],two directions were tested:[100]and[110].Rietveld refinement at 2 K gave a significantly better fit when the magnetic moments were along the[110]direction—a result that agrees with Refs. [13,14]; consequently, the easy magnetization axis is [110].At 2 K, the magnetic moment carried by the Dy atoms, 9.7 Bohr magneton(μB),was very close to the 10μBthat was expected from the trivalent state. The Fe magnetic moment was found to be aligned ferromagnetically and to have different values for the three inequivalent Fe atomic positions; the largest moment was observed on the Fe 8i site, whereas the smallest was found on the 8f site.The large magnetic moment observed on the 8i position is a general feature of the RFe12-xMxcompounds,and has been suggested to result from both the large atomic volume and the possible presence of a significant orbital contribution to the Fe magnetic moment [16]. Such a sequence of Fe magnetic moments—that is,8i > 8j > 8f—is in good agreement with the hyperfine field derived for the three Fe positions in RFe11Ti isotype compounds[17,18].No magnetic moment was refined on the Ti atoms. This does not exclude the possibility of a weak moment due to polarization by the surrounding Fe and Dy atoms on titanium. However, such a weak moment is likely to be below the sensitivity of the powder neutron diffraction used in this work.

    Fig.1. Plot of the Rietveld refinement of the neutron diffraction pattern recorded at 2 K for DyFe11Ti. The red points are experimental data and the black curve corresponds to Rietveld fit. The first and second rows of green Bragg peaks refer to the nuclear and magnetic contribution,respectively.The third and fourth rows refer to the Bragg peak position of the traces(<1%)of alpha Fe and TiFe2,respectively,as impurities. A.u.: arbitrary units; Iobs: ovserved intensity; Icalc: calculated intensity.

    In order to investigate the evolution of the magnetic structure of DyFe11Ti, diffraction patterns were recorded every 2.5 K during heating from 1.5 to 202 K. A zoom of the low-angle part(between 21° and 41° in 2θ) is plotted in Fig. 2, highlighting the main changes in diffraction intensities. This plot corresponds to the(110), (200), and (101) Bragg peaks, which were observed at 24°,34°, and 35°, respectively. Whereas the first two peaks showed an increase in intensity,the(101)presented the opposite behavior,with a rapidly decreasing intensity when approaching 100 K.Such behavior at low temperature is indicative of a spin reorientation of the magnetic moments, and motivated our further investigation.The presence of a magnetic contribution appearing at high temperature for the (110) and (200) peaks indicates the appearance of a magnetic moment component perpendicular to the scattering vector.Each of the 86 neutron diffraction patterns were refined in order to obtain the temperature dependence of the magnetic structure.The easy magnetization axis was[110]below TSR1.Up to about 89 K, the best fit was obtained by keeping a 90° angle between the Dy and Fe magnetic moments on the one hand, and the c axis on the other hand.Such easy plane orientation is in good agreement with the earlier reported57Fe M?ssbauer spectroscopy results[12,17].Above 91 K and up to 202 K,the diffraction patternswere fitted by refining the angle between the c axis and the magnetization direction. This gave significantly better refinement results.An example of the refinement is plotted for the 200 K pattern in Fig. 3. It is worth noting that the Dy magnetic moment experienced a large reduction of more than 2μBfrom 2 to 200 K.This finding confirms the strong temperature dependence of the 4f electron magnetic moments. The Fe magnetic moments are much less sensitive to temperature changes, and were reduced by only 0.2μBper Fe atom in this temperature range. This result can be attributed to the rather high ordering temperature of DyFe11Ti—that is, 552 K [12]—which led to a saturated state of Fe moments below 200 K.

    Table 1 Crystal structure parameters as deduced from Rietveld refinement of the neutron powder diffraction data recorded for DyFe11Ti at 2 K.

    Fig. 2. Temperature dependence of a low-angle portion of the neutron powder diffraction pattern recorded between 1.5 and 200 K for DyFe11Ti. The observed evolution reflects the occurrence of a spin reorientation transition upon temperature change.

    Fig.3. Plot of the Rietveld refinement of the neutron diffraction pattern recorded at 200 K for DyFe11Ti. The red points are experimental data and the black curve corresponds to Rietveld fit. The first and second rows of Bragg peaks refer to the nuclear and magnetic contribution,respectively.The third and fourth rows refer to the Bragg peak position of the traces (< 1%) of alpha Fe and TiFe2, respectively, as impurities. The last row is the contribution of the vanadium tail of the cryostat.

    The results of the Rietveld analysis of the thermodiffraction data are given in Figs. 4-6. Table 2 presents the structural and magnetic data obtained from Rietveld refinement of the pattern recorded for DyFe11Ti at 200 K.As derived from neutron diffraction,the thermal evolution of the angle between the easy magnetization direction and the c axis indicated that DyFe11Ti exhibits an easy plane anisotropy below 90 K, whereas an easy axis has been reported at 240 and 300 K from57Fe M?ssbauer spectroscopy[12]. As shown in Fig. 4, the first spin reorientation occurring at TSR1= 90 K is sharp and manifests itself by a sudden drop of the angle from 90°to 72°for 89 and 93 K,respectively.This angle then decreases much more slowly above 105 K. A smooth decrease is observed from 50° to 30°, followed by a slightly more pronounced decrease when approaching the second spin reorientation, TSR2,whose value is above 200 K.

    In his theoretical study,Kuz’min[13]demonstrated that spatial inhomogeneities of the sample composition (e.g., Ti content) play an important role in the magnetic behavior and gradual character of the first-order spin reorientation in DyFe11Ti. The present neutron diffraction investigation performed on a sample with defined stoichiometry provides a clear picture of the magnetic phase diagram and the spin reorientation phenomenon observed on DyFe11Ti. The temperature dependence of the angle of rotation of the magnetization, as derived from neutron diffraction, is similar to that reported in Ref.[19].Indeed,a rapid tilt of the easy magnetization direction to the plane can be observed for T

    Fig.4. Thermal evolution of the tilt angle between the easy magnetization direction and the c crystal axis as derived from the Rietveld refinement of the neutron powder diffraction patterns recorded for DyFe11Ti. The circles refer to the M?ssbauer data on the same sample [12], and the dotted line is a visual guide.

    Fig. 5. Temperature dependence of the lattice parameters of DyFe11Ti in the temperature range of the two spin reorientation transitions.

    Fig. 6. Thermal evolution of the atomic magnetic moments, as derived from the Rietveld refinement of the neutron powder diffraction patterns recorded for DyFe11Ti. MDy: magnetic moment of Dy; MFe: magnetic moment of Fe.

    Table 2 Crystal structure parameters deduced from Rietveld refinement of the neutron powder diffraction data recorded for DyFe11Ti at 200 K.

    It is interesting to note that no anomaly occurred in the temperature dependence of the lattice parameters at either TSR1or TSR2.On the contrary, the two lattice parameters exhibited a normal behavior, being almost constant up to 50 K and then increasing as a result of thermal expansion, with a rate of 2.3 × 10-5and 3.1 × 10-5?·K-1for c and a, respectively (Fig. 5). The absence of any features on the lattice parameters may be surprising, but is in agreement with the normal thermal expansion reported earlier for DyFe11Ti[20].In contrast,the magnetostriction has been found to be very sensitive to temperature changes in the vicinity of the spin reorientation phase transitions in single-crystal DyFe11Ti[21]. The magnitude of the atomic magnetic moments (Fig. 6)decreased upon increasing temperature, but did not seem to be influenced by the occurrence of spin reorientation at TSR1. A very small evolution of the Fe magnetic moment was observed in the studied temperature range, which is in good agreement with the relatively large ordering temperature of DyFe11Ti. The dysprosium magnetic moment was much more sensitive to temperature change and presented a quasi-linear dependence above 50 K,with a reduction rate of 0.0145μB·K-1.

    4. Conclusions

    Thanks to neutron diffraction analysis,the Ti content of DyFe11-Ti was determined and the crystal structure was investigated. Ti atoms were found to be exclusively located on the 8i position.The magnetic structure of DyFe11Ti exhibits a basal plane anisotropy at 2 K with an alignment of the Dy and Fe magnetic moments within the basal plane; the easy magnetization axis is along the[110] direction. The lowest temperature spin reorientation manifests itself at 90 K by an abrupt decrease of the angle between the easy magnetization direction and the [001] direction. At this TSR1, our experimental results favor the first-order spin reorientation transition scenario.A conical magnetic structure was observed in a wide temperature range above the basal plane anisotropy domain. Upon increasing the temperature further, the magnetic moments tilted toward the c axis,thus leading to the uniaxial character reported in the literature at 300 K.This transition from a conical magnetic structure to the easy plane occurred close to 200 K.A large temperature dependence of the Dy magnetic moment was observed, in contrast to the Fe moments, which remained almost identical in the studied temperature domain. A study of the thermal evolution of the lattice parameters did not present any anomalous behavior at the spin reorientation—a result that agrees with the earlier reported thermal expansion.Further studies are in progress to investigate the magnetic behavior of isotype RFe11Ti hydrides, and of DyFe11TiH in particular.

    Acknowledgements

    The use of the Collaborative Research Group instrument D1B operated by the CNRS at the ILL is warmly acknowledged, as well as the ILL for providing the neutron beam.

    Compliance with ethics guidelines

    Olivier Isnard and Eder J. Kinast declare that they have no conflict of interest or financial conflicts to disclose.

    久久精品国产亚洲av天美| 亚洲在久久综合| 1000部很黄的大片| 美女黄网站色视频| 中国美女看黄片| 女的被弄到高潮叫床怎么办| 国产伦一二天堂av在线观看| 午夜福利高清视频| 国产亚洲91精品色在线| 国产片特级美女逼逼视频| 成年av动漫网址| 欧美日本视频| 国产一区二区三区av在线 | 国产日本99.免费观看| 黄色欧美视频在线观看| 国产女主播在线喷水免费视频网站 | 国产 一区 欧美 日韩| 两性午夜刺激爽爽歪歪视频在线观看| 欧美日韩在线观看h| 亚洲无线在线观看| 男人和女人高潮做爰伦理| 中出人妻视频一区二区| 岛国毛片在线播放| 亚洲美女视频黄频| 在线观看午夜福利视频| 日本三级黄在线观看| 不卡视频在线观看欧美| 97人妻精品一区二区三区麻豆| 听说在线观看完整版免费高清| 少妇人妻精品综合一区二区 | 精华霜和精华液先用哪个| av在线天堂中文字幕| 狂野欧美白嫩少妇大欣赏| 啦啦啦观看免费观看视频高清| 高清午夜精品一区二区三区 | 99久久精品一区二区三区| 欧美三级亚洲精品| 国产黄a三级三级三级人| 国内精品宾馆在线| 成人午夜精彩视频在线观看| 亚洲精品自拍成人| 国产成人精品婷婷| 51国产日韩欧美| av专区在线播放| 一区二区三区高清视频在线| a级毛片a级免费在线| 精品人妻熟女av久视频| 国产精品电影一区二区三区| 日日啪夜夜撸| 激情 狠狠 欧美| 久久精品夜色国产| 欧美变态另类bdsm刘玥| 精品人妻视频免费看| 中国国产av一级| 秋霞在线观看毛片| 国产成人freesex在线| 亚洲精品日韩av片在线观看| 欧美日韩乱码在线| 日本在线视频免费播放| 熟女电影av网| 床上黄色一级片| 精品一区二区三区视频在线| 在线国产一区二区在线| 自拍偷自拍亚洲精品老妇| 中文字幕熟女人妻在线| 中出人妻视频一区二区| 国产老妇女一区| 国产私拍福利视频在线观看| 亚洲精品国产av成人精品| 高清在线视频一区二区三区 | 精品一区二区三区人妻视频| 又粗又硬又长又爽又黄的视频 | 在线a可以看的网站| 久久婷婷人人爽人人干人人爱| 美女内射精品一级片tv| 内地一区二区视频在线| 亚洲电影在线观看av| av又黄又爽大尺度在线免费看 | 国产亚洲欧美98| 亚洲精华国产精华液的使用体验 | 秋霞在线观看毛片| 伊人久久精品亚洲午夜| 久久精品夜夜夜夜夜久久蜜豆| 国产一区二区亚洲精品在线观看| 少妇熟女欧美另类| 欧美激情国产日韩精品一区| 国产精品av视频在线免费观看| 天天躁日日操中文字幕| 99久久成人亚洲精品观看| 成人亚洲欧美一区二区av| 亚洲一级一片aⅴ在线观看| 最近手机中文字幕大全| 国产精品野战在线观看| 成人三级黄色视频| av卡一久久| 99久久成人亚洲精品观看| 成人特级黄色片久久久久久久| 国产高清视频在线观看网站| 人妻系列 视频| 亚洲无线观看免费| 久久精品国产亚洲av香蕉五月| 久久久久九九精品影院| 国产在线男女| av国产免费在线观看| 69av精品久久久久久| 国产乱人偷精品视频| 熟女电影av网| 舔av片在线| 性欧美人与动物交配| 国内精品一区二区在线观看| 国产精品一区二区三区四区久久| 麻豆国产av国片精品| 精品久久久久久久人妻蜜臀av| av天堂在线播放| 午夜福利在线观看吧| 真实男女啪啪啪动态图| av在线观看视频网站免费| 最近中文字幕高清免费大全6| 欧美极品一区二区三区四区| av在线蜜桃| 久久久久久久午夜电影| 亚洲av不卡在线观看| 免费无遮挡裸体视频| 日韩欧美一区二区三区在线观看| 国产片特级美女逼逼视频| 国产精品人妻久久久久久| 国产一区二区三区av在线 | 1000部很黄的大片| 搡老妇女老女人老熟妇| 十八禁国产超污无遮挡网站| 91久久精品电影网| 国产黄片视频在线免费观看| 日本一本二区三区精品| 99国产极品粉嫩在线观看| 天美传媒精品一区二区| 亚洲第一电影网av| 精品一区二区三区人妻视频| 免费观看人在逋| 精品久久久久久成人av| 欧美三级亚洲精品| 听说在线观看完整版免费高清| 嘟嘟电影网在线观看| 在线播放无遮挡| 在线观看一区二区三区| 亚洲欧美中文字幕日韩二区| 日本熟妇午夜| 99在线人妻在线中文字幕| 中文字幕精品亚洲无线码一区| 国产伦在线观看视频一区| 少妇丰满av| 好男人视频免费观看在线| 九九爱精品视频在线观看| 国产伦一二天堂av在线观看| 日韩欧美 国产精品| 搡女人真爽免费视频火全软件| 欧美性猛交╳xxx乱大交人| 最近手机中文字幕大全| 婷婷色av中文字幕| 简卡轻食公司| 嘟嘟电影网在线观看| 可以在线观看的亚洲视频| 国产蜜桃级精品一区二区三区| 日韩强制内射视频| 99久国产av精品国产电影| 亚洲图色成人| 婷婷亚洲欧美| 欧美日本亚洲视频在线播放| or卡值多少钱| 中文字幕精品亚洲无线码一区| 午夜视频国产福利| 国产三级中文精品| 激情 狠狠 欧美| 99在线视频只有这里精品首页| 一卡2卡三卡四卡精品乱码亚洲| 成人一区二区视频在线观看| 97超碰精品成人国产| 亚洲国产高清在线一区二区三| 国产极品天堂在线| 又粗又硬又长又爽又黄的视频 | 精品人妻熟女av久视频| 国产 一区 欧美 日韩| 99视频精品全部免费 在线| 亚洲精品日韩av片在线观看| 有码 亚洲区| 深爱激情五月婷婷| 日本黄色片子视频| 亚洲无线观看免费| 18禁黄网站禁片免费观看直播| 校园人妻丝袜中文字幕| 国产美女午夜福利| 成人午夜精彩视频在线观看| 久久久久久九九精品二区国产| 精品久久国产蜜桃| 国产精品嫩草影院av在线观看| 欧美3d第一页| 老熟妇乱子伦视频在线观看| av免费观看日本| 亚洲无线在线观看| 亚洲婷婷狠狠爱综合网| 亚洲av电影不卡..在线观看| 免费看光身美女| 3wmmmm亚洲av在线观看| 一区二区三区四区激情视频 | av国产免费在线观看| 日日干狠狠操夜夜爽| 久久久国产成人精品二区| 欧美+日韩+精品| av在线观看视频网站免费| 18禁在线播放成人免费| 久久精品国产99精品国产亚洲性色| 欧美激情国产日韩精品一区| 精品人妻视频免费看| 天美传媒精品一区二区| 91精品国产九色| 欧美激情久久久久久爽电影| 深夜a级毛片| 免费观看人在逋| 亚洲av不卡在线观看| 少妇熟女aⅴ在线视频| 亚洲精品日韩av片在线观看| 国产黄色小视频在线观看| 国产精品嫩草影院av在线观看| 禁无遮挡网站| 久久久a久久爽久久v久久| 欧美不卡视频在线免费观看| 亚洲一区二区三区色噜噜| 亚洲精品成人久久久久久| 97在线视频观看| 亚洲精品国产av成人精品| 国产亚洲av片在线观看秒播厂 | 激情 狠狠 欧美| 国产亚洲欧美98| 人人妻人人看人人澡| 国产三级中文精品| 久久精品综合一区二区三区| 1024手机看黄色片| 成人综合一区亚洲| 波多野结衣高清无吗| 国产高清有码在线观看视频| 久久久久久久久久久丰满| 中文亚洲av片在线观看爽| 黄色视频,在线免费观看| 国产片特级美女逼逼视频| 尤物成人国产欧美一区二区三区| 九九在线视频观看精品| 高清日韩中文字幕在线| 久久6这里有精品| 一卡2卡三卡四卡精品乱码亚洲| 亚洲电影在线观看av| 长腿黑丝高跟| 简卡轻食公司| 久久久欧美国产精品| 日韩精品青青久久久久久| 亚洲国产欧洲综合997久久,| 午夜免费激情av| 99久久成人亚洲精品观看| 国产精品一区二区性色av| 丰满乱子伦码专区| 日本撒尿小便嘘嘘汇集6| 一个人看视频在线观看www免费| 国产一区二区在线观看日韩| 精品久久久久久久末码| 国产日韩欧美在线精品| 2021天堂中文幕一二区在线观| 一级二级三级毛片免费看| 亚洲成a人片在线一区二区| 99热这里只有是精品50| 在线观看66精品国产| 久久精品国产亚洲av香蕉五月| 最后的刺客免费高清国语| 亚洲av中文字字幕乱码综合| 2022亚洲国产成人精品| 九九热线精品视视频播放| av女优亚洲男人天堂| 国产午夜精品一二区理论片| 此物有八面人人有两片| 听说在线观看完整版免费高清| 免费看日本二区| 国语自产精品视频在线第100页| 国产精品一区二区三区四区久久| 麻豆国产av国片精品| 午夜免费男女啪啪视频观看| 99久久久亚洲精品蜜臀av| 偷拍熟女少妇极品色| 欧美成人免费av一区二区三区| 岛国毛片在线播放| 日韩欧美一区二区三区在线观看| 久久6这里有精品| 精品久久久久久久久久免费视频| 美女脱内裤让男人舔精品视频 | 亚洲高清免费不卡视频| 欧洲精品卡2卡3卡4卡5卡区| 国内精品一区二区在线观看| 午夜a级毛片| 午夜免费激情av| 欧美一级a爱片免费观看看| 永久网站在线| 丰满乱子伦码专区| 国产av一区在线观看免费| 熟女电影av网| 激情 狠狠 欧美| 国产高清三级在线| 成人三级黄色视频| 色播亚洲综合网| 国产成人a区在线观看| 国产精品综合久久久久久久免费| 亚洲av一区综合| 丝袜喷水一区| 亚洲精品日韩av片在线观看| 欧美成人一区二区免费高清观看| 免费人成在线观看视频色| 国产一区二区三区av在线 | 成年版毛片免费区| av免费在线看不卡| 国产中年淑女户外野战色| 国产免费男女视频| 男女做爰动态图高潮gif福利片| 一进一出抽搐动态| 国产毛片a区久久久久| 久久久成人免费电影| 毛片一级片免费看久久久久| 日韩大尺度精品在线看网址| 2022亚洲国产成人精品| 夜夜爽天天搞| 久久久久久久亚洲中文字幕| 全区人妻精品视频| 一级毛片电影观看 | 久久久久九九精品影院| 日韩国内少妇激情av| 五月玫瑰六月丁香| 成人性生交大片免费视频hd| 大香蕉久久网| 中文精品一卡2卡3卡4更新| 午夜爱爱视频在线播放| 国产亚洲精品av在线| 久久精品国产自在天天线| 麻豆成人午夜福利视频| 一个人看视频在线观看www免费| 热99在线观看视频| 中国美女看黄片| 国产色婷婷99| 国产午夜精品久久久久久一区二区三区| 老司机影院成人| 黄色配什么色好看| 欧美精品国产亚洲| 高清在线视频一区二区三区 | 国产精品.久久久| 国国产精品蜜臀av免费| 蜜桃亚洲精品一区二区三区| 国产精品1区2区在线观看.| 亚洲国产欧美人成| 如何舔出高潮| 神马国产精品三级电影在线观看| 中国美女看黄片| 成人午夜精彩视频在线观看| 国产一区二区在线观看日韩| 国产精品一区www在线观看| 色综合色国产| 精品一区二区免费观看| 国产成人aa在线观看| 欧美+日韩+精品| 97超视频在线观看视频| 午夜爱爱视频在线播放| 黄色一级大片看看| 天堂√8在线中文| 男人狂女人下面高潮的视频| 国产老妇女一区| 综合色av麻豆| 成年av动漫网址| 久久久久久九九精品二区国产| 在线观看美女被高潮喷水网站| 天堂影院成人在线观看| 亚洲欧美精品自产自拍| 久久久精品94久久精品| 国产91av在线免费观看| 国产成人精品久久久久久| 超碰av人人做人人爽久久| 国产在线精品亚洲第一网站| 日本与韩国留学比较| 女人十人毛片免费观看3o分钟| 六月丁香七月| 99精品在免费线老司机午夜| 国产不卡一卡二| 久久久国产成人免费| 熟妇人妻久久中文字幕3abv| 国产精品,欧美在线| 最近2019中文字幕mv第一页| 精品少妇黑人巨大在线播放 | 久久久久久久久久黄片| 99热全是精品| 你懂的网址亚洲精品在线观看 | 69av精品久久久久久| 亚洲在线观看片| av免费观看日本| 在线免费十八禁| 国产精品一区二区三区四区免费观看| 精品午夜福利在线看| 男人狂女人下面高潮的视频| 国产免费一级a男人的天堂| 国产成人午夜福利电影在线观看| 看非洲黑人一级黄片| 国产黄色视频一区二区在线观看 | av福利片在线观看| 欧美性感艳星| 美女被艹到高潮喷水动态| 国产精品一及| 国产亚洲av片在线观看秒播厂 | 少妇高潮的动态图| 一本久久精品| 亚洲人成网站在线播放欧美日韩| 麻豆成人午夜福利视频| 只有这里有精品99| 亚洲欧美精品综合久久99| 成人国产麻豆网| 午夜久久久久精精品| 亚洲一级一片aⅴ在线观看| 精品久久久噜噜| 国产国拍精品亚洲av在线观看| 麻豆一二三区av精品| 我要看日韩黄色一级片| 亚洲在久久综合| 夜夜爽天天搞| 寂寞人妻少妇视频99o| 久久久国产成人免费| 亚洲精品乱码久久久久久按摩| 国产精品一二三区在线看| 日本色播在线视频| 国内久久婷婷六月综合欲色啪| 日韩欧美三级三区| 波多野结衣巨乳人妻| 99九九线精品视频在线观看视频| 少妇高潮的动态图| 99久久精品国产国产毛片| 色哟哟哟哟哟哟| 少妇人妻精品综合一区二区 | 热99re8久久精品国产| 国产精品无大码| 内地一区二区视频在线| 五月玫瑰六月丁香| 国产亚洲精品av在线| 岛国在线免费视频观看| 成人特级黄色片久久久久久久| 午夜爱爱视频在线播放| 久久国产乱子免费精品| 中文在线观看免费www的网站| 五月玫瑰六月丁香| 国产精品不卡视频一区二区| 日日干狠狠操夜夜爽| 亚洲成人av在线免费| 国产老妇伦熟女老妇高清| 亚洲成人av在线免费| 能在线免费看毛片的网站| 国产一级毛片七仙女欲春2| 欧美xxxx性猛交bbbb| 亚洲国产精品sss在线观看| 内地一区二区视频在线| 久久人人爽人人爽人人片va| 国产伦理片在线播放av一区 | 久久久久久久久久成人| 97热精品久久久久久| 12—13女人毛片做爰片一| 在线免费观看不下载黄p国产| 97人妻精品一区二区三区麻豆| 久久久久久久久久久丰满| 欧美精品国产亚洲| 伦精品一区二区三区| 亚洲婷婷狠狠爱综合网| 欧美一区二区精品小视频在线| 亚洲成a人片在线一区二区| 午夜a级毛片| 亚洲在线观看片| 欧美性猛交╳xxx乱大交人| 国内精品一区二区在线观看| 99久国产av精品国产电影| 久久久午夜欧美精品| 免费看日本二区| 久久精品久久久久久噜噜老黄 | 在线观看免费视频日本深夜| 可以在线观看的亚洲视频| 人妻夜夜爽99麻豆av| 六月丁香七月| 日韩欧美精品免费久久| 亚洲三级黄色毛片| 久久婷婷人人爽人人干人人爱| 成人性生交大片免费视频hd| 日韩一本色道免费dvd| 久久精品夜色国产| 亚洲av中文av极速乱| 国产成人aa在线观看| 日韩av不卡免费在线播放| 少妇人妻精品综合一区二区 | 免费av毛片视频| 国产色爽女视频免费观看| 亚洲自偷自拍三级| 99热精品在线国产| 国产精品日韩av在线免费观看| 小蜜桃在线观看免费完整版高清| 99在线人妻在线中文字幕| 欧美最黄视频在线播放免费| 久久久成人免费电影| 亚洲天堂国产精品一区在线| 久久精品国产清高在天天线| 高清在线视频一区二区三区 | 国产 一区精品| 桃色一区二区三区在线观看| 波多野结衣高清无吗| 国产精品一二三区在线看| 日本与韩国留学比较| 女的被弄到高潮叫床怎么办| 久久亚洲精品不卡| 精品久久久久久久久久久久久| 亚洲欧洲国产日韩| 男女那种视频在线观看| 中文精品一卡2卡3卡4更新| 国产av麻豆久久久久久久| 国产精品三级大全| 欧美日本视频| 亚洲七黄色美女视频| h日本视频在线播放| 好男人视频免费观看在线| av福利片在线观看| 插阴视频在线观看视频| 日韩国内少妇激情av| 精品免费久久久久久久清纯| 国产伦在线观看视频一区| 一级二级三级毛片免费看| 国产伦一二天堂av在线观看| 日本免费a在线| 日本熟妇午夜| 99久久无色码亚洲精品果冻| 波野结衣二区三区在线| 中国美女看黄片| 小说图片视频综合网站| 一本一本综合久久| 不卡一级毛片| 麻豆成人午夜福利视频| 日日啪夜夜撸| 中文字幕制服av| 99久久精品热视频| 国产色婷婷99| 狂野欧美激情性xxxx在线观看| 看片在线看免费视频| 久久久精品94久久精品| 尾随美女入室| 卡戴珊不雅视频在线播放| 熟女电影av网| 99在线视频只有这里精品首页| ponron亚洲| 秋霞在线观看毛片| 亚洲精品成人久久久久久| 内地一区二区视频在线| 国产精品人妻久久久影院| 欧美高清性xxxxhd video| 热99在线观看视频| 国产精品麻豆人妻色哟哟久久 | 国产白丝娇喘喷水9色精品| 高清毛片免费观看视频网站| 亚洲欧美精品自产自拍| 狂野欧美白嫩少妇大欣赏| 波多野结衣高清无吗| 人妻系列 视频| 97人妻精品一区二区三区麻豆| 成年av动漫网址| 免费av毛片视频| 国产色婷婷99| a级毛片免费高清观看在线播放| 看黄色毛片网站| 国产精品久久久久久精品电影| 99热这里只有精品一区| 97超视频在线观看视频| 成人综合一区亚洲| 淫秽高清视频在线观看| 成人永久免费在线观看视频| 亚洲国产精品成人综合色| 国产黄片美女视频| 99久久无色码亚洲精品果冻| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧美精品专区久久| 亚洲欧美精品综合久久99| 久久久久久久久久黄片| av专区在线播放| 综合色丁香网| 在线天堂最新版资源| 成人av在线播放网站| 免费看a级黄色片| 高清在线视频一区二区三区 | 美女国产视频在线观看| 午夜久久久久精精品| 长腿黑丝高跟| 日韩欧美在线乱码| 一个人免费在线观看电影| 在线a可以看的网站| 国产精品一区www在线观看| 国产三级在线视频| 色尼玛亚洲综合影院| 少妇的逼好多水| 91精品一卡2卡3卡4卡| 国产黄片视频在线免费观看| 三级男女做爰猛烈吃奶摸视频| 1024手机看黄色片| 亚洲乱码一区二区免费版| 亚洲美女搞黄在线观看| 国产精品一及| 人人妻人人看人人澡| 成人午夜高清在线视频| 成人亚洲欧美一区二区av| 乱系列少妇在线播放| 91aial.com中文字幕在线观看| 九九爱精品视频在线观看| 久久人人爽人人爽人人片va| 中文资源天堂在线| av卡一久久| 身体一侧抽搐| 国产亚洲欧美98| 九九久久精品国产亚洲av麻豆|