• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flue Gas Monitoring System With Empirically-Trained Dictionary

    2020-05-22 02:59:00HuiCaoYajieYuPanpanZhangandYanxiaWang
    IEEE/CAA Journal of Automatica Sinica 2020年2期

    Hui Cao,, Yajie Yu, Panpan Zhang, and Yanxia Wang

    Abstract—The monitoring of flue gas of the thermal power plants is of great significance in energy conservation and environmental protection. Spectral technique has been widely used in the gas monitoring system for predicting the concentrations of specific gas components. This paper proposes flue gas monitoring system with empirically-trained dictionary (ETD) to deal with the complexity and biases brought by the uninformative spectral data.Firstly, ETD is extracted from the raw spectral data by an alternative optimization between the sparse coding stage and the dictionary update stage to minimize the error of sparse representation. D1, D2 and D3 are three types of ETD obtained by different methods. Then, the predictive model of component concentration is constructed on the ETD. In the experiments, two real flue gas spectral datasets are collected and the proposed method combined with the partial least squares, the background propagation neural network and the support vector machines are performed.Moreover, the optimal parameters are chosen according to the 10-fold root-mean-square error of cross validation. The experimental results demonstrate that the proposed method can be used for quantitative analysis effectively and ETD can be applied to the gas monitoring systems.

    I. Introduction

    VAST amount of toxic and harmful gases are produced in the operation of the thermal power plants. Monitoring the flue gas of the thermal power plants is obligatory for avoiding the serious damage on ecological environment. The monitoring of the flue gas is also indispensable to build the closedloop control circuit to realize the high efficiency of combustion system. Spectral techniques have become increasingly popular for gas monitoring system, due to their high sensitivity, stability and selectivity [1], [2]. Gas monitoring system based on absorption spectroscopy records the absorption of light that occurs at different wavelengths when the light passes through the gas mixture [3]. The concentration of specific components of the gas can be predicted by the regression models based on absorption spectra [4].

    The partial least squares (PLS) [5], [6], the background propagation neural network (BPNN) [7], [8], and the support vector machines (SVM) [9]–[11] are commonly used in quantitative analysis of gas concentrations. PLS is a multivariate statistical technique and builds the linear models by mapping the high-dimensional data into the lowdimensional space [12]. Background propagation is used in BPNN to adjust the weights of each layer to optimize the objects to get the mapping relationship between the inputs and the outputs [13]. SVM is a trainable machine learning, the parameters of which lack theoretical basis [14]. All these methods directly performed on the space of the wavelength absorption. However, the space of the wavelength absorption contains redundant and unrelated information, which might lower the precision of the predictive model. Feature selection[15], [16] and feature extraction [17], [18] are generally employed to eliminate the disturbance produced by the redundant and unrelated information. Feature selection chooses a suitable subset of the wavelength absorptions,which generally is suboptimal because the number of all possible combinations is prohibitive [19], [20], particularly for high-dimensional data. Feature selection also ignores the information contained in the unchosen wavelengths [21]. The advantage of feature extraction above feature selection is that no information from any of the elements of the measurement vector needs to be wasted and the contextual information is considered as well [22].

    Sparse representation is one of the feature extraction methods [23], [24] and could be adopted for quantitative analysis of the flue gas. For sparse representation, the original signals are represented only by few fundamental elements[25]. The representationcan be obtained for a original signalwhereis named dictionary,andis the another form of the signaly,Each column in the dictionarycould be regarded as a basis inand named atom [26]. The representation of the signalis sparse, when there are only few nonzero entries inThe sparsity of the representation enforces the important causes of the original signalAn appropriate dictionaryconsisted of the prototype atoms, leads to the sparse representation of the original signaland would improve the precision and effectiveness of the quantitative analysis of the flue gas[28]–[30].

    In this paper, flue gas monitoring system with empiricallytrained dictionary (ETD) is proposed to deal with the complexity and biases brought by the uninformative spectral data. Firstly, ETD is extracted from the raw spectral data by an alternative optimization between the sparse coding stage and the dictionary update stage to minimize the error of sparse representation. There are three types of ETD, D1, D2 and D3,obtained by different methods. Then, the predictive model of component concentration is constructed on the ETD. In the experiments, two real flue gas spectral datasets, which are respectively collected from the gas-fired power plant and the coal-fired power plant, are used and the proposed method combined with PLS, BPNN and SVM are performed. The optimal parameters are chosen according to the 10-fold rootmean-square error of cross validation (RMSECV).Furthermore, the squared correlation coefficient of cross validationof the calibration set, the root-mean-square error of prediction (RMSEP) of the validation set and the squared correlation coefficient of predictionof the validation set are adopted to evaluate the methods.

    The paper is organized as follows. The preliminaries are introduced in Section II. Flue gas monitoring system with ETD is presented in Section III. Section IV provides the experimental details. The experimental results are analyzed in Section V. Finally, Section VI concludes the paper.

    II. Preliminaries

    The core of the gas monitoring system is the quantitative analysis of specific components of the gas. Gas chromatography can be used for the analysis of the concentration of specific components of the gas because of its high separation function, high sensitivity and high selectivity.However, the gas chromatograph is relatively expensive and the experimental procedure is complex and with poor repeatability. According to different samples to be tested, the corresponding experimental plan is needed. Hence, gas chromatography is unsuitable for the gas monitoring systems of the thermal power plants.

    According to the Beer-Lambert law, the total absorption of light is dependent upon the concentration and the absorptivity of the molecules [31]. Gas monitoring systems can be based on absorption spectroscopy, which records the absorption of light that occurs at different wavelengths when the light passes through the gas mixture. The concentration of specific components of the gas can be predicted by the regression models based on absorption spectra. Some classical regression methods are introduced in the following.

    1)PLS:The equations of PLS can be represented by [6]

    2)BPNN:An artificial neural network generally consists of an input layer, several hidden layers and an output layer. The network can use different types of activation functions such as the sign function, the linear function and the sigmoid function[32]. The goal of the artificial neural network learning algorithm is to obtain the parameters of the activation functions,that minimize the total sum of squared errors:whereis the real value, theis the network output. The parameter update formula used by the gradient descent method can be written as follows:whereis the learning rate. However, for hidden nodes,is difficult to access. BPNN uses the back-propagation technique to solve this problem. Each iteration of back-propagation has the forward stage and the backward stage. During the forward stage, the weights obtained from the previous iterations are used to compute the output value of each neuron in the network. During the backward stage, the weight update formula is applied in the reverse direction, i.e., the weights at layerare updated before the weights atlayer are updated, so the errors in layercan be used to estimate the weights in layer

    3)SVM:The model of SVM can be expressed as the following form [14]:

    The optimization problem can be solved by a Lagrange multiple method. The weight vectorcan be written as

    All these conventional predictive models directly perform on the space of the wavelength absorption. However, the space of the wavelength absorption contains redundant and unrelated information, which might lower the precision of the predictive model of the flue gas. Therefore, flue gas monitoring system with ETD is proposed to overcome the complexity and biases brought by the uninformative spectral data. Flue gas monitoring system with ETD would be explained in detail in the next section.

    III. Flue Gas Monitoring System With ETD

    The schematic diagram of flue gas monitoring system with ETD is shown in Fig. 1 . The flue gas is drawn into an explosion-proof heater and heated to a fixed temperature.Then it is transferred to an absorption cell where lights from a predefined light source is shone through the gas onto miniature spectrometers which measure the spectral absorption spectra. The content of the flue gas can be predicted by the ETD model built on the absorption spectra.

    For spectral analysis, the input is the absorbance of each wavelengthand the output is the component concentration

    A dictionary is consisted of atoms that are used for signal sparse representation. Given a set oftraining signalsinETD is sought to best represent each memberunder strict sparsity constricts.is the corresponding coefficient of the signalThe ETD can be learned by

    Fig. 1. Flue gas monitoring system with ETD.

    On the sparse coding stage,is fixed and the optimization problem changes to

    In the dictionary update stage,is sought to minimize the reconstruction error with a fixedThe optimization problem in this stage is

    There are three ways to solve (10) and three types of ETD are obtained.

    Take the derivative of (10) with respect toThe relation is

    For (11), the dictionary can also be updated by the update of atoms one by one. For theatom,is defined as the support ofUpdatingandis equivalent to solve (6)

    This problem amounts to finding the closest rank-1 approximation tothat can be easily solved by singular value decomposition. The second type of ETD,is obtained byKsingular value decomposition, whereKis the number of the atoms of the dictionary.

    After all the training signals being processed,is obtained.

    After the ETD is learned from the original spectral data, the regression models, such as PLS, BPNN, and SVM, could be constructed on the obtained ETD to predict the component concentration..

    IV. Experiments

    A. Data Collection

    To estimate the effectiveness of the proposed method, two real datasets of flue gas are collected respectively from a coalfired power plant and a gas-fired power plant. The first dataset is the spectra of a mixture of nitrogen dioxide (NO2) and sulfur dioxide (SO2) collected from a coal-fired power plant.There are 150 samples. The absorption spectrum is measured by a USB2000+ fiber optic spectrometer of the Ocean Optics Company. Each spectrum contains 489 wavelengths, ranging from 200 nm to 700 nm. Fig. 2 shows a spectrum of the flue gas dataset of coal-fired power plant. The second dataset is the spectra of flue gas collected from a gas-fired power plant with a total of 150 samples. The flue gas is made of carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4).The absorption spectrum is measured by a GASMET DX4000 Fourier transform infrared (FTIR) gas analyze. Each spectrum has 476 wavelengths and ranges from 549.44 cm?1to 4238.28 cm?1with a resolution of 7.72 cm?1. A spectrum of the flue gas dataset of gas-fired power plant is shown in Fig. 3. The standard concentrations of the flue gas are measured by an SP-3400 gas chromatograph from Beijing Beifen-Ruili Analytical Instrument Co. Ltd.

    Fig. 2. The spectrum of the flue gas dataset of coal-fired power plant.

    Fig. 3. The spectrum of the flue gas dataset of gas-fired power plant.

    B. Experimental Procedure

    In this study, the three types of ETD, D1, D2 and D3, are obtained from the three solutions. PLS, BPNN and SVM are combined with D1, D2 and D3, respectively, to predict the gas concentration of the gas sensing system. PLS, BPNN, SVM,PLS based on D1 (D1-PLS), BPNN based on D1 (D1-BPNN),SVM based on D1 (D1-SVM), PLS based on D2 (D2-PLS),BPNN based on D2 (D2-BPNN), SVM based on D2 (D2-SVM), PLS based on D3, (D3-PLS), BPNN based on D3 (D3-BPNN), and SVM based on D3 (D3-SVM) are built. The shutters strategy is employed to separate both datasets into the calibration set and the validation set [34]. Every five samples are divided as a group. The first four samples of each group are divided into the calibration set to build the prediction models and the last sample of each group is divided into the calibration set to evaluate the precision of these models. The predictive capability of the models has great correlations with the parameters. In our experiments, the optimal parameters are chosen according to the 10-fold RMSECV. For PLS, D1-PLS,D2-PLS, and D3-PLS, the optimal number of the latent variables (LVs) is searched from [1, 40] and the number of atoms in the ETD from [100, 200]. For BPNN, D1-BPNN,D2-BPNN, and D3-BPNN, three-layer net is adopted in our experiments and the optimal number of nodes of the hidden layer is searched from [1, 10]. The number of iteration is 100.The tansig function and the purelin function are respectively used in the hidden layer and the output layer. The search interval of the optimal number of atoms in the ETD is [100,200]. For SVM, D1-SVM, D2-SVM, and D3-SVM, the search ranges are [2?1, 215] in steps of 20.5for the penalty parameter[2?4, 26] in steps of 20.5for the non-sensitive lossand[100, 200] for the optimal number of atoms in the ETD. The performance of the models are discussed according to the RMSECV of the calibration set,of the calibration set, the RMSEP of the validation set andof the validation set.

    V. Results and Discussion

    A. The Flue Gas Dataset of a Coal-fired Power Plant

    The RMSECV of PLS, BPNN, SVM, D1-PLS, D1-BPNN,D1-SVM, D2-PLS, D2-BPNN, D2-SVM, D3-PLS, D3-BPNN, and D3-SVM for SO2are presented in Fig. 4. The parameters of various prediction models of SO2are chosen by the minimal RMSECV. Table I summarizes the analytical results of SO2. For SO2, D2-PLS, D2-BPNN and D2-SVM all achieve the lower RMSEP than the original PLS, BPNN and SVM. The RMSEP of D2-PLS is 2.13% lower than that of PLS; The RMSEP of D2-BPNN is 6.63% lower than that of BPNN; The RMSEP of D2-SVM is 1.54% lower than the RMSEP of SVM. It is demonstrated that D2 can be applied to improve the precision of prediction models of SO2. The solution to (2) is susceptible to local minimum. Both D1 and D3 update the whole set of atoms at once, while D2 updates the atoms one-by-one and replaces the atom that being not used enough with the least represented data elements. The replacement is effective in avoiding the local minima and over-fitting. The appropriate ETD improves the precision of prediction models.

    Fig. 4. Cross validation errors of SO2.

    The RMSECV of PLS, BPNN, SVM, D1-PLS, D1-BPNN,D1-SVM, D2-PLS, D2-BPNN, D2-SVM, D3-PLS, D3-BPNN, and D3-SVM for NO2are presented in Fig. 5. The parameters of various prediction models of NO2are also chosen by the minimum RMSECV. The analytical results of NO2are summarized in Table II . For NO2, D3-PLS, D3-BPNN and D3-SVM all achieve the lower RMSEP than the original PLS, BPNN and SVM. The RMSEP of D3-PLS is 0.69% lower than that of PLS; The RMSEP of D3-BPNN is 39.31% lower than that of BPNN; The RMSEP of D3-SVM is 1.08% lower than that of SVM. Therefore, D3 is proposed to improve the precision of prediction models of NO2. Although D1 is obtained from a closed-form expression but with trouble in matrix inversion. It is not suitable for constructing the prediction models of NO2. The choice of the appropriate ETD is crucial, because sometimes the approximate solution of (3)can introduce noises and corrupt the data.

    B. The Flue Gas Dataset of a Gas-fired Power Plant

    Figs. 6–8 present the RMSECV of PLS, BPNN, SVM, D1-PLS, D1-BPNN, D1-SVM, D2-PLS, D2-BPNN, D2-SVM,D3-PLS, D3-BPNN, and D3-SVM for CO, CO2, and CH4,respectively. The parameters of various prediction models of the flue gas dataset of the gas-fired power plant are decided by the minimum RMSECV. Table III summarizes the analytical results of the flue gas dataset of a gas-fired power plant.BPNN is proved inappropriate for the flue gas dataset,because the RMSEP of BPNN are much higher than that of PLS and SVM. Therefore, BPNN, D1-BPNN, D2-BPNN and D3-BPNN are not discussed in the following analysis. PLS is employed as a benchmark for the comparison because the RMSEP of PLS is lowest among the three classical models for the flue gas dataset of the gas-fired power plant.

    TABLE I Analytical Results of SO2

    Fig. 5. Cross validation errors of NO2.

    TABLE II Analytical Results of NO2

    Fig. 6. Cross validation errors of CO.

    Fig. 7. Cross validation errors of CO2.

    For CO, the RMSEP of D1-PLS and D2-PLS are both lower than that of PLS. Moreover, the RMSEP of D1-SVM is 14.51% lower than that of SVM and 11.28% lower than that of PLS. It is proved the adoption of the ETD improve the predictive results in a large margin. For CO2, the D1-PLS has achieved the best predictive results with the RMSEP 3.33%lower than that of PLS. Although the RMSEP of D1-SVM is 4.27% higher than that of PLS, it is 16.7% lower than that of SVM. Hence, D1 is proposed to improve the precision of prediction models of CO2. For CH4, the D2-PLS has achieved the best predictive results with the RMSEP much lower than that of PLS. Furthermore, the RMSEP of D1-PLS is also much lower than that of PLS and the RMSEP of D1-SVM is 7.49% lower than that of SVM. Therefore, D1 is proposed to improve the precision of prediction models of CH4.

    Fig. 8. Cross validation errors of CH4.

    In a conclusion, ETD could be adopted for the quantitative analysis of the flue gas effectively and the choice of the proper ETD is crucial. The appropriate ETD can improve the precision of the prediction models of flue gas significantly.

    VI. Conclusions

    In this paper, flue gas monitoring system with ETD is proposed. This proposed method has the following advantages. Firstly, ETD contains the most significant causes of the original spectral data and represents the optimal subspace of the original data based on sparsity. Secondly, the dimensionality of the data is reduced for the ETD, which is consisted of compelling features, and can realize the sparse representation for spectral signals. Thirdly, the prediction models based on the ETDs have a higher predictive ability.Two real flue gas spectral datasets are adopted in our experiments. The experimental results verify that the proposed method can be used for the quantitative analysis of flue gas effectively and ETD can be applied to the gas monitoring systems.

    TABLE III Analytical Results of the Flue Gas Dataset of Gas-Fired Power Plant

    草草在线视频免费看| 国产精品不卡视频一区二区| 婷婷色综合www| 日韩成人av中文字幕在线观看| 国产精品爽爽va在线观看网站| 男女边吃奶边做爰视频| 亚洲国产欧美在线一区| 少妇丰满av| 寂寞人妻少妇视频99o| 国内少妇人妻偷人精品xxx网站| 黄色一级大片看看| 秋霞伦理黄片| 欧美潮喷喷水| 天堂网av新在线| 亚洲天堂国产精品一区在线| 亚洲不卡免费看| 啦啦啦啦在线视频资源| 禁无遮挡网站| 在线观看免费高清a一片| 亚洲精品乱久久久久久| 精华霜和精华液先用哪个| 3wmmmm亚洲av在线观看| 自拍偷自拍亚洲精品老妇| 午夜福利在线在线| 日本与韩国留学比较| 国产极品天堂在线| av.在线天堂| 午夜福利在线观看免费完整高清在| 夫妻性生交免费视频一级片| 成年版毛片免费区| 欧美区成人在线视频| 看免费成人av毛片| 国产成人午夜福利电影在线观看| 日本三级黄在线观看| 精品99又大又爽又粗少妇毛片| 色视频www国产| 天堂俺去俺来也www色官网 | 人妻少妇偷人精品九色| 亚洲国产精品成人综合色| 日韩av在线大香蕉| 老司机影院毛片| 一区二区三区免费毛片| www.色视频.com| videos熟女内射| 最近中文字幕高清免费大全6| 老司机影院毛片| 亚洲色图av天堂| 九草在线视频观看| 免费看光身美女| h日本视频在线播放| 老司机影院毛片| 国产一级毛片七仙女欲春2| 成人亚洲欧美一区二区av| 日本熟妇午夜| 插逼视频在线观看| 国产有黄有色有爽视频| 天堂中文最新版在线下载 | 麻豆精品久久久久久蜜桃| 精品人妻熟女av久视频| 91久久精品国产一区二区成人| 少妇猛男粗大的猛烈进出视频 | 日韩强制内射视频| 国产精品精品国产色婷婷| 超碰av人人做人人爽久久| 免费观看无遮挡的男女| 国产黄片视频在线免费观看| 午夜福利视频1000在线观看| 2021少妇久久久久久久久久久| 亚洲最大成人手机在线| videossex国产| 久久这里有精品视频免费| 欧美97在线视频| 国产成人精品福利久久| 欧美xxⅹ黑人| 免费大片黄手机在线观看| 国产精品不卡视频一区二区| 麻豆成人av视频| 波野结衣二区三区在线| 精品熟女少妇av免费看| 身体一侧抽搐| 国产永久视频网站| 国产黄片美女视频| 欧美日韩综合久久久久久| 肉色欧美久久久久久久蜜桃 | 99视频精品全部免费 在线| 亚洲精品aⅴ在线观看| 久久久久久九九精品二区国产| 我的老师免费观看完整版| 久久精品人妻少妇| 国产极品天堂在线| 日韩中字成人| 久久99热这里只有精品18| 国产 亚洲一区二区三区 | 久久精品久久久久久噜噜老黄| 亚洲怡红院男人天堂| 精品国产三级普通话版| 国产成人91sexporn| 美女黄网站色视频| 色综合站精品国产| 欧美一区二区亚洲| 99九九线精品视频在线观看视频| 性插视频无遮挡在线免费观看| 久久国内精品自在自线图片| 亚洲精品中文字幕在线视频 | 国产单亲对白刺激| 精品人妻一区二区三区麻豆| 成年女人在线观看亚洲视频 | 国产毛片a区久久久久| 精品国产一区二区三区久久久樱花 | 国产伦一二天堂av在线观看| 黄色配什么色好看| 欧美日韩综合久久久久久| 在线观看av片永久免费下载| 亚洲欧美精品专区久久| 亚洲国产av新网站| 久久久久久久午夜电影| 91在线精品国自产拍蜜月| 高清欧美精品videossex| 国产精品一二三区在线看| 色尼玛亚洲综合影院| 国产一区有黄有色的免费视频 | 久久国产乱子免费精品| 97超视频在线观看视频| 舔av片在线| 国产黄片视频在线免费观看| 五月天丁香电影| 韩国高清视频一区二区三区| 蜜桃久久精品国产亚洲av| 可以在线观看毛片的网站| 不卡视频在线观看欧美| 成人毛片a级毛片在线播放| 自拍偷自拍亚洲精品老妇| 美女国产视频在线观看| 麻豆国产97在线/欧美| 久久97久久精品| 亚洲四区av| 国产单亲对白刺激| 成人欧美大片| 亚洲欧美成人精品一区二区| a级一级毛片免费在线观看| 欧美日本视频| 欧美日本视频| 精品一区二区三区人妻视频| 成人国产麻豆网| 日韩av免费高清视频| 超碰av人人做人人爽久久| 插阴视频在线观看视频| 久久精品久久久久久久性| 亚洲人成网站高清观看| 欧美变态另类bdsm刘玥| 免费观看精品视频网站| 日韩,欧美,国产一区二区三区| 老司机影院毛片| 国产精品一区二区性色av| 日韩av在线免费看完整版不卡| 亚洲国产精品sss在线观看| 久久99热这里只有精品18| 男女边吃奶边做爰视频| 校园人妻丝袜中文字幕| 欧美激情在线99| 一个人观看的视频www高清免费观看| 99久久精品国产国产毛片| 三级国产精品片| 女人被狂操c到高潮| 嘟嘟电影网在线观看| 高清毛片免费看| 天堂av国产一区二区熟女人妻| 国产精品1区2区在线观看.| 两个人的视频大全免费| 天天一区二区日本电影三级| 免费看光身美女| ponron亚洲| 在线观看一区二区三区| 少妇的逼好多水| av一本久久久久| 大香蕉97超碰在线| 色视频www国产| 久久这里有精品视频免费| 十八禁网站网址无遮挡 | 91午夜精品亚洲一区二区三区| 最新中文字幕久久久久| 男人舔女人下体高潮全视频| 男女国产视频网站| 亚洲婷婷狠狠爱综合网| 久久精品夜色国产| 国产久久久一区二区三区| 久久久久免费精品人妻一区二区| 国产男女超爽视频在线观看| 亚洲精品aⅴ在线观看| 日韩伦理黄色片| 狂野欧美激情性xxxx在线观看| 性插视频无遮挡在线免费观看| 女人被狂操c到高潮| 18+在线观看网站| 22中文网久久字幕| 国产伦精品一区二区三区视频9| 精品一区在线观看国产| 美女内射精品一级片tv| 国产乱来视频区| 成年女人在线观看亚洲视频 | 亚洲成色77777| 亚洲精品乱码久久久久久按摩| 久久久久久久久大av| 久久久精品94久久精品| 一本久久精品| 99久国产av精品| 欧美日本视频| 国产亚洲5aaaaa淫片| 丰满乱子伦码专区| 久久久久网色| 最近最新中文字幕大全电影3| 国产精品一区二区三区四区免费观看| 免费观看a级毛片全部| 亚洲内射少妇av| 午夜福利视频1000在线观看| 精品亚洲乱码少妇综合久久| 九草在线视频观看| 久久国产乱子免费精品| 乱人视频在线观看| 国内精品宾馆在线| 精品久久久久久久久久久久久| 国产黄片美女视频| 国产精品无大码| 观看美女的网站| 亚洲精品456在线播放app| 久久亚洲国产成人精品v| 久久久亚洲精品成人影院| 国产精品国产三级国产av玫瑰| 精品久久久久久久末码| 九九爱精品视频在线观看| 看免费成人av毛片| 日本色播在线视频| 69人妻影院| 亚洲精品456在线播放app| 国产亚洲精品av在线| 91午夜精品亚洲一区二区三区| 日本猛色少妇xxxxx猛交久久| 亚洲国产色片| 久久久久久久亚洲中文字幕| 亚洲欧美精品自产自拍| av又黄又爽大尺度在线免费看| 一区二区三区免费毛片| 亚洲国产精品国产精品| 人人妻人人澡人人爽人人夜夜 | 国产高清有码在线观看视频| 久久精品国产亚洲网站| 欧美变态另类bdsm刘玥| 91午夜精品亚洲一区二区三区| 2018国产大陆天天弄谢| av女优亚洲男人天堂| 久久草成人影院| av专区在线播放| 日韩av在线免费看完整版不卡| 精品一区在线观看国产| 99热全是精品| 国产午夜精品一二区理论片| 91午夜精品亚洲一区二区三区| 亚洲av福利一区| 国产淫片久久久久久久久| 久久久久性生活片| 日日啪夜夜爽| 人人妻人人看人人澡| 国产老妇女一区| 免费av毛片视频| 国产亚洲精品久久久com| 欧美潮喷喷水| 国产精品1区2区在线观看.| eeuss影院久久| 91久久精品国产一区二区成人| 午夜精品国产一区二区电影 | 亚洲精品成人av观看孕妇| 免费少妇av软件| 国产午夜福利久久久久久| av免费在线看不卡| 亚洲四区av| 久久久久久久亚洲中文字幕| 亚洲电影在线观看av| 777米奇影视久久| 老司机影院成人| 久久久精品免费免费高清| 国产乱人视频| 激情 狠狠 欧美| 欧美成人精品欧美一级黄| 免费大片黄手机在线观看| 日韩伦理黄色片| 卡戴珊不雅视频在线播放| 亚洲av电影在线观看一区二区三区 | 美女主播在线视频| 视频中文字幕在线观看| 亚洲精品中文字幕在线视频 | 国产高清三级在线| 九草在线视频观看| 搡女人真爽免费视频火全软件| 亚洲va在线va天堂va国产| 午夜久久久久精精品| 日本-黄色视频高清免费观看| 黄片wwwwww| 日韩av在线大香蕉| 精品久久久久久久久久久久久| 成年女人看的毛片在线观看| 国产成人免费观看mmmm| 大香蕉97超碰在线| 国产午夜精品一二区理论片| 男人舔女人下体高潮全视频| 久久午夜福利片| 男女那种视频在线观看| 午夜福利在线在线| 亚洲精品国产成人久久av| 麻豆精品久久久久久蜜桃| 内射极品少妇av片p| 亚洲怡红院男人天堂| 2021少妇久久久久久久久久久| 久久精品熟女亚洲av麻豆精品 | 我的女老师完整版在线观看| 97热精品久久久久久| 久久久a久久爽久久v久久| 国产永久视频网站| 免费大片18禁| 国产精品蜜桃在线观看| 国产精品人妻久久久久久| 久久99蜜桃精品久久| 免费观看无遮挡的男女| 在线观看人妻少妇| 亚洲av国产av综合av卡| 国产综合精华液| 蜜桃亚洲精品一区二区三区| 亚洲,欧美,日韩| 少妇被粗大猛烈的视频| 春色校园在线视频观看| 观看免费一级毛片| 国内精品美女久久久久久| 欧美另类一区| 一级av片app| 亚洲av二区三区四区| 亚洲av福利一区| 国产精品国产三级国产专区5o| 色综合色国产| 丰满人妻一区二区三区视频av| 久99久视频精品免费| 欧美日本视频| 国产精品av视频在线免费观看| 在线观看免费高清a一片| 国产大屁股一区二区在线视频| 日韩av不卡免费在线播放| 国精品久久久久久国模美| 国产高清三级在线| 久久热精品热| 97在线视频观看| 九九爱精品视频在线观看| 两个人的视频大全免费| 欧美性猛交╳xxx乱大交人| 熟妇人妻不卡中文字幕| 三级国产精品欧美在线观看| 观看美女的网站| 精品久久久噜噜| av免费观看日本| 国产精品熟女久久久久浪| 97超碰精品成人国产| 精品久久久久久电影网| 成人性生交大片免费视频hd| 黄色配什么色好看| 免费不卡的大黄色大毛片视频在线观看 | 蜜桃久久精品国产亚洲av| 欧美精品一区二区大全| 天美传媒精品一区二区| 亚洲av成人精品一区久久| 久久国产乱子免费精品| 精品久久久精品久久久| 美女被艹到高潮喷水动态| 国产一区二区三区av在线| 2021少妇久久久久久久久久久| 免费av观看视频| 久久精品夜夜夜夜夜久久蜜豆| av女优亚洲男人天堂| 国产成人精品福利久久| 久久久久久久久大av| 国产精品熟女久久久久浪| 麻豆成人av视频| 七月丁香在线播放| 99热全是精品| av福利片在线观看| 国产精品日韩av在线免费观看| 99热这里只有精品一区| 少妇熟女aⅴ在线视频| 99久久精品热视频| 狂野欧美白嫩少妇大欣赏| 久久精品国产亚洲av涩爱| 99久久精品热视频| 99热全是精品| 国产熟女欧美一区二区| 日韩av免费高清视频| 18禁动态无遮挡网站| 国产熟女欧美一区二区| 嫩草影院精品99| 亚洲人成网站高清观看| 只有这里有精品99| 91精品伊人久久大香线蕉| 国产激情偷乱视频一区二区| 久久久成人免费电影| 水蜜桃什么品种好| 国产伦一二天堂av在线观看| 色吧在线观看| 在线免费观看不下载黄p国产| 夫妻性生交免费视频一级片| 国产 亚洲一区二区三区 | 水蜜桃什么品种好| 亚洲av二区三区四区| 91久久精品国产一区二区三区| 日日啪夜夜爽| 亚洲自拍偷在线| 乱系列少妇在线播放| 天堂av国产一区二区熟女人妻| 又大又黄又爽视频免费| 亚洲精品国产av成人精品| www.av在线官网国产| 国产欧美另类精品又又久久亚洲欧美| 秋霞在线观看毛片| 全区人妻精品视频| 嫩草影院新地址| 国产欧美日韩精品一区二区| 少妇被粗大猛烈的视频| 午夜爱爱视频在线播放| 欧美不卡视频在线免费观看| 亚洲最大成人av| 国产视频内射| 永久网站在线| 舔av片在线| 一区二区三区免费毛片| av专区在线播放| 搡女人真爽免费视频火全软件| 在线免费观看不下载黄p国产| 大陆偷拍与自拍| 一级二级三级毛片免费看| 午夜精品一区二区三区免费看| 97人妻精品一区二区三区麻豆| 亚洲精品日本国产第一区| 看免费成人av毛片| 亚洲国产欧美人成| 欧美成人精品欧美一级黄| 两个人的视频大全免费| av卡一久久| 国产伦一二天堂av在线观看| 亚洲精品乱久久久久久| 如何舔出高潮| 精品熟女少妇av免费看| 免费观看无遮挡的男女| 26uuu在线亚洲综合色| 日日啪夜夜爽| 国产av国产精品国产| 国产永久视频网站| 又黄又爽又刺激的免费视频.| 亚洲高清免费不卡视频| 一级黄片播放器| 国产精品.久久久| 国产中年淑女户外野战色| 亚洲第一区二区三区不卡| 一级a做视频免费观看| 日日啪夜夜爽| 国产不卡一卡二| 色视频www国产| 久久久午夜欧美精品| 春色校园在线视频观看| 日韩国内少妇激情av| 麻豆国产97在线/欧美| 国产大屁股一区二区在线视频| eeuss影院久久| 美女高潮的动态| 国内少妇人妻偷人精品xxx网站| 午夜福利在线观看吧| 久久精品国产亚洲av涩爱| 精品久久久久久久久av| 亚洲天堂国产精品一区在线| 午夜福利成人在线免费观看| 久久久久久久久久人人人人人人| 天美传媒精品一区二区| 亚洲av中文字字幕乱码综合| 久久久久久久久久黄片| 别揉我奶头 嗯啊视频| 亚洲熟女精品中文字幕| 秋霞在线观看毛片| 国产高潮美女av| 毛片女人毛片| 欧美不卡视频在线免费观看| 综合色av麻豆| 精品国内亚洲2022精品成人| 亚洲av免费在线观看| 中文在线观看免费www的网站| 欧美bdsm另类| 亚洲精品456在线播放app| 婷婷色麻豆天堂久久| 精品人妻熟女av久视频| 永久网站在线| 亚洲综合精品二区| 欧美区成人在线视频| 天天躁日日操中文字幕| 欧美激情国产日韩精品一区| 我要看日韩黄色一级片| 欧美高清成人免费视频www| 中文精品一卡2卡3卡4更新| 国产91av在线免费观看| 国产不卡一卡二| 亚洲成人一二三区av| 久久99精品国语久久久| 国产淫片久久久久久久久| 欧美三级亚洲精品| 最后的刺客免费高清国语| 免费av不卡在线播放| 六月丁香七月| 日韩,欧美,国产一区二区三区| 国产综合精华液| 人妻一区二区av| 欧美性感艳星| 97超碰精品成人国产| 国产亚洲最大av| 少妇的逼水好多| 亚洲欧洲日产国产| 精品久久久噜噜| 久久久久久久久久黄片| 乱码一卡2卡4卡精品| 黄片wwwwww| 亚洲精品国产av蜜桃| 久久99蜜桃精品久久| 久久精品国产亚洲网站| 国产爱豆传媒在线观看| 久久久色成人| 高清午夜精品一区二区三区| 性色avwww在线观看| 三级男女做爰猛烈吃奶摸视频| 欧美激情在线99| 日本熟妇午夜| 成人漫画全彩无遮挡| 高清视频免费观看一区二区 | 久久久色成人| 精品一区二区三区人妻视频| 高清欧美精品videossex| 国产成人精品久久久久久| 国产亚洲精品久久久com| 亚洲欧美一区二区三区黑人 | or卡值多少钱| 亚洲国产日韩欧美精品在线观看| 男女边吃奶边做爰视频| 免费人成在线观看视频色| 欧美另类一区| 国产成人午夜福利电影在线观看| 久久久久久久午夜电影| 天堂av国产一区二区熟女人妻| 久久久久久久午夜电影| 91精品一卡2卡3卡4卡| 搡老乐熟女国产| 欧美+日韩+精品| or卡值多少钱| 日韩成人伦理影院| 欧美性猛交╳xxx乱大交人| 久久久久免费精品人妻一区二区| 中国国产av一级| 97超碰精品成人国产| 七月丁香在线播放| 超碰97精品在线观看| 男人舔奶头视频| 亚洲欧美中文字幕日韩二区| 国产白丝娇喘喷水9色精品| 国产视频首页在线观看| 亚洲在久久综合| 卡戴珊不雅视频在线播放| 99久久九九国产精品国产免费| 两个人视频免费观看高清| 伦理电影大哥的女人| 六月丁香七月| 你懂的网址亚洲精品在线观看| 久久午夜福利片| 国内精品美女久久久久久| 秋霞在线观看毛片| 亚洲精品日韩av片在线观看| 亚洲精品乱码久久久v下载方式| 一级毛片 在线播放| 夜夜爽夜夜爽视频| 国产一区二区亚洲精品在线观看| 国产亚洲精品av在线| 日韩av免费高清视频| 亚洲精品一二三| 一夜夜www| 一个人看的www免费观看视频| 午夜免费激情av| 亚洲精品aⅴ在线观看| 水蜜桃什么品种好| 精品人妻视频免费看| 九九爱精品视频在线观看| 爱豆传媒免费全集在线观看| 国产淫语在线视频| 狂野欧美激情性xxxx在线观看| 欧美日本视频| 欧美激情在线99| 肉色欧美久久久久久久蜜桃 | 免费在线观看成人毛片| 久久99蜜桃精品久久| 欧美成人午夜免费资源| 久久99热这里只有精品18| av在线老鸭窝| 97在线视频观看| 免费看光身美女| 午夜福利在线观看吧| 国产午夜福利久久久久久| 99热6这里只有精品| 欧美bdsm另类| 国产高清三级在线| 亚洲内射少妇av| 亚洲在久久综合| 丰满少妇做爰视频| 纵有疾风起免费观看全集完整版 | 亚洲最大成人中文| 91精品伊人久久大香线蕉| 国产午夜福利久久久久久| 最近最新中文字幕大全电影3| 国产国拍精品亚洲av在线观看| 国产又色又爽无遮挡免|