• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive Output Regulation of a Class of Nonlinear Output Feedback Systems With Unknown High Frequency Gain

    2020-05-22 02:58:20YuanJiangandJiyangDai
    IEEE/CAA Journal of Automatica Sinica 2020年2期

    Yuan Jiang and Jiyang Dai

    Abstract— This paper presents an output feedback design approach based on the adaptive control scheme developed for nonlinearly parameterized systems, to achieve global output regulation for a class of nonlinear systems in output feedback form. We solve the output regulation problem without the knowledge of the sign and the value of the high frequency gain a priori. It is not necessary to have both the limiting assumptions that the exogenous signal ω and the unknown parameter μ belong to a prior known compact set and the high frequency gain has a determinate lower and upper bounds. The effectiveness of the proposed algorithm is shown with the help of an example.

    I. Introduction

    IN this paper, we consider the problem of global output regulation for nonlinear systems of the form as follows:

    The first global output regulation problem of (1) was reported in [1]. However, the paper assumes that the exogenous signaland the unknown parameterbelong to a prior known compact set. This is a limiting assumption, as the controller should also be changed as the bounds of exogenous signal are changed. In [2], an adaptive output regulator was proposed based on the adaptive control method developed for nonlinearly parameterized systems in [3], [4], which achieves global output regulation of the nonlinear system (1) without requiring the knowledge of the bounds of the unknown parameters and exogenous signals. However, [2] assumed that the sign of the high frequency gainis known. In this case,when the sign ofis unknown, the method developed in[2] is not applicable anymore. In this paper, we will consider the same problem with the unknown high frequency gain i.e.,both the sign and value of control coefficient is assumed to be unknown.

    Note that, the work dealing with the global robust output regulation in the output feedback form with the unknown control directions is reported [5] with the assumption that the high frequency gain has a determinate lower and upper bounds. In fact, an exterior unknown bounded parameter is used to regulate the control direction. Therefore, a natural and meaningful problem is how to design the controller without the knowledge of the bounds of the unknown high frequency gain. In this paper, we will use the backstepping, adaptive control technique and Nussbaum gain methods to design a nonlinear output feedback controller. Finally the simulation shows that the proposed nonlinear output feedback controller ensures the boundedness of all the states of the closed loop system and the tracking error asymptotically converges to zero. The approach we use here is an integration of the robust stabilization technique, adaptive technique and backstepping technique.

    II. Preliminaries

    Lemma 1 [6]:Letandbe smooth functions, andbe an even Nussbaum function in [7]. If the following inequality holds, i.e.,

    In the following we will make assumptions that have been commonly used when dealing with output regulation of nonlinear systems in the output feedback form.

    Assumption 1:System (1) has a uniform relative degree

    Assumption 2:For system (1), the high frequency gain

    Remark 1:Assumption 2 indicates that the sign of the high frequency gainis unknown. In our paper, we also assume that the value of the high frequency gainis unknown.References [1], [2], [8], and [9] assumed that the sign of the high frequency gainis known. In this case, when the sign ofis unknown, the method developed in [1], [2], [8], and[9] is not applicable anymore. Here, it is also not necessary to have the assumption that the high frequency gain has a determinate lower and upper bounds.

    Assumption 3:For every μ ∈ ?, the linear systemis minimum phase.

    Remark 2:Under the Assumption 3, the linear systemis minimum phase. Together with Assumption 1, this implies that Assumption 3 is essentially equivalent to the condition that the matrixis Hurwitz with the restrictionThis is exactly the assumption which is used in [10] and [11], where the global stabilization problem was studied.

    Assumption 4:There exist globally defined smooth functionsandsatisfying the regulator equations

    It has been shown in [12] and [13] that there exists a parameter dependent filter transformation such that system (1)can be introduced in a lower triangular form. Indeed,introducing the filter

    Using (3) and (4), (1) can be transformed into

    Remark 3:It is easy to conclude thatis a Hurwitz matrix for allin [14].

    As pointed in [1] and [8], [9], the problem of output regulation can be transformed into a stabilization problem under suitable conditions. We use the method introduced in[8] to perform such a transformation under the following hypothesis.

    Assumption 5:Suppose thatdefined in Assumption 4 is a trigonometric polynomial of the form

    Remark 4:As shown in [8] and [15], Assumption 5 implies the existence of a globally defined mappingand a set of real numbers,satisfying

    It can be shown that all the eigenvalues ofare simple and located on the imaginary axis as in [7], [8], [15]–[17].

    Under Assumption 5, for any Hurwitz matrixandwhereis controllable, the Sylvester equationhas a unique solutionwhich is nonsingular.Then, we can define a dynamic system of the form

    as an internal model for system (5).

    Now, we are ready to transform the output regulation problem to a stabilization problem via a global change of coordinates. Using the following change of coordinates

    gives the following triangular form

    where

    The objective of this paper is to find a smooth dynamic output error feedback adaptive stabilizing controller

    such that the closed loop system (9) is globally bounded for any initial conditionand anywhile the errorasymptotically converges to zero.

    Remark 5:is called the control coefficient in this paper,which is considered to be unknown, if both the sign and value are unknown. If system (9) is globally asymptotically stabilized by output error feedback, the same controller also solves the global output regulation problem for the original system (1).

    Remark 6:By construction,is a Hurwitz matrix.Therefore, there exists a matrixsuch that

    III. Main Result

    In this subsection, we will consider the global robust stabilization problem of the system (9). When the sign of the control coefficientis known, the global stabilization problem of system (9) has been solved in [2]. In the absence of the assumption on the control coefficient sign, the method in [2] is no longer applicable. Then, we combine this method with the Nussbaum gain method to solve the same problem with the unknown control coefficient.

    Let us first introduce some inequalities that will be used later. Recall that bothandare in compact sets whose bounds are unknown. According to Lemma in [3], [4], and[18] we have

    For the second and third term, by the aforementioned inequalities (12), (13) and (14) and the completing of squares,we have

    Substituting (17)–(19) into (16), we conclude that

    Substituting (21) into (20), and after some algebraic manipulation, we have

    Step 1:Choose Lyapunov function candidate

    By (13), (14) and the completion of squares, it is easy to obtain

    Then, from the aforementioned definition ofsubstituting(26)–(28) into (25), we can obtain

    So we can choose the smooth virtual controller

    which renders

    Step 1 is thus completed. The remaining steps can be recursively executed.

    Inductive Step:Assume that there exists smooth, positive definite and proper Lyapunov function candidatescorrespond torespectively,andsatisfy the following inequality

    In the following sections, we prove that (32) holds as well as in step

    Choose the Lyapunov function candidate

    Using an argument similar to the ones in the previous step,we can obtain

    Therefore, we choose the smooth virtual controller

    From (36), it is clear thatcan be expressed as the

    Substituting (36) into (35), and after some algebraic manipulations, it implies

    Using the inductive argument, it is reasonable to conclude that at stepthere exists a smooth, positive definite and proper Lyapunov function candidateand a smooth controllerwithsatisfying the following inequality

    Therefore, the actual controller and the adaptive law are obtained and given by

    leading to

    Thus, we have completed the design procedure of the output error feedback adaptive control using backstepping and tuning function techniques. In the following we will prove that all the states of the closed loop system are bounded for alland the tracking errorconverges to zero asWe first assumed thatfor someis the maximal internal of existence of the solution of the closed loop system and letApplying lemma 1 to inequality(40) shows thatandare bounded onSinceis a positive definite quadratic function inthe variablesmust be bounded onTherefore,no finite time escape phenomenon may happen andmeaning thatare bounded for allAs a result, all closed loop system states are bounded for allAlso,are bounded for allFurthermore, integrating (40) fromshowsare square integrable onBy Barbalat's lemma,approaches to zero asTherefore, the tracking error converges to zero asymptotically.

    The result of this section is summarized in the following.

    Theorem 1: Considering that system (1) satisfies Assumptions 1–5, then the introduction of the observer (3)and the internal model (7) in conjunction with (21) and (39)into system (1) ensures that global output regulation of the uncertain system (1) is achievable by an error feedback controller.

    IV. An Example

    We consider the planar system with the three-dimensional exosystem

    It can be verified that the solution of the regulator equation of this system exists globally and is given by=thus Assumption 4 is satisfied.

    Therefore, following the design procedure developed in the previous Section III, an output feedback controller which solves the global output regulation problem for system (41)can be given by

    where

    In the simulation, the initial condition are set to bethe reference signaland the disturbance signalFig. 1 gives the error output which converges to zero. Fig. 2 and Fig. 3 show that all the states of the closed loop system are bounded. Fig. 4 shows that the parameter estimatesandare bounded.

    V. Conclusion

    Fig. 1. Transient response of the error signal.

    Fig. 2. Transient response of the states

    Fig. 3. Transient response of the states

    Fig. 4. Parameter estimates and

    This paper presents an output error feedback design approach based on the adaptive control scheme developed for nonlinearly parameterized systems, to achieve global output regulation for a class of nonlinear systems in output feedback form. We solve the output regulation problem without the a priori knowledge of the sign and value of the high frequency gain. In our work it is not necessary to have the limiting assumption that the exogenous signaland the unknown parameterbelong to a prior known compact set and also have the assumption that the high frequency gain has a determinate lower and upper bounds. Recently, several exciting breakthroughs have been made for the stochastic nonlinear systems, for instance, global stabilization [22], [23]and output tracking [24] have been solved. However, there are lesser results available in the literature addressing the output regulation problem [25], [26]. It is interesting to further consider the output regulation problem of the stochastic nonlinear systems.

    最近视频中文字幕2019在线8| 18禁裸乳无遮挡免费网站照片| 性欧美人与动物交配| 日本一本二区三区精品| 日韩中文字幕欧美一区二区| 国产不卡一卡二| 极品教师在线免费播放| 熟女人妻精品中文字幕| 亚洲av成人精品一区久久| 亚洲精品一卡2卡三卡4卡5卡| 亚洲乱码一区二区免费版| 九色成人免费人妻av| 美女cb高潮喷水在线观看| 精品99又大又爽又粗少妇毛片 | 国产成人av教育| 两个人看的免费小视频| 亚洲中文字幕一区二区三区有码在线看| 国产欧美日韩一区二区三| 99国产精品一区二区蜜桃av| 法律面前人人平等表现在哪些方面| 在线国产一区二区在线| 亚洲真实伦在线观看| 国产一区二区激情短视频| 亚洲五月婷婷丁香| 欧美一级a爱片免费观看看| 麻豆成人av在线观看| 在线观看一区二区三区| 少妇裸体淫交视频免费看高清| 美女 人体艺术 gogo| 免费观看精品视频网站| 精品人妻偷拍中文字幕| or卡值多少钱| 久久久久性生活片| 国产精品99久久久久久久久| eeuss影院久久| 综合色av麻豆| 日本黄色片子视频| 老司机深夜福利视频在线观看| 婷婷精品国产亚洲av在线| 国产一区二区在线av高清观看| 欧美乱妇无乱码| 天堂影院成人在线观看| 国产一区二区三区视频了| 美女黄网站色视频| 日韩亚洲欧美综合| 国产激情偷乱视频一区二区| 亚洲精品在线观看二区| 极品教师在线免费播放| 成年免费大片在线观看| www日本在线高清视频| 亚洲成人中文字幕在线播放| 久久亚洲真实| 精品99又大又爽又粗少妇毛片 | 亚洲午夜理论影院| 日韩欧美精品v在线| av在线天堂中文字幕| 很黄的视频免费| 精品久久久久久久人妻蜜臀av| 日韩欧美 国产精品| 最后的刺客免费高清国语| 国产精品 欧美亚洲| 老熟妇乱子伦视频在线观看| 18禁国产床啪视频网站| 国模一区二区三区四区视频| 午夜精品一区二区三区免费看| 国产午夜福利久久久久久| 亚洲,欧美精品.| 性色avwww在线观看| 观看免费一级毛片| 午夜福利高清视频| 偷拍熟女少妇极品色| 日本黄色片子视频| 国产精品98久久久久久宅男小说| 美女黄网站色视频| 午夜精品在线福利| 久久久久久久久中文| 国产高潮美女av| 色综合站精品国产| 性欧美人与动物交配| 国产精品乱码一区二三区的特点| 男女做爰动态图高潮gif福利片| 亚洲黑人精品在线| 国产高清三级在线| 91字幕亚洲| 露出奶头的视频| aaaaa片日本免费| 中文资源天堂在线| 亚洲片人在线观看| 欧美乱妇无乱码| 国产精品电影一区二区三区| 国产三级在线视频| 欧美成人a在线观看| 99久久成人亚洲精品观看| 变态另类成人亚洲欧美熟女| АⅤ资源中文在线天堂| 中文字幕精品亚洲无线码一区| 在线国产一区二区在线| 久久这里只有精品中国| 最近在线观看免费完整版| 国内精品久久久久精免费| 悠悠久久av| 久久久久久大精品| 午夜福利成人在线免费观看| 动漫黄色视频在线观看| 嫩草影院精品99| 欧美丝袜亚洲另类 | 久久久精品大字幕| 99国产极品粉嫩在线观看| 香蕉丝袜av| 婷婷丁香在线五月| 日本黄大片高清| 国产亚洲欧美在线一区二区| 法律面前人人平等表现在哪些方面| 又紧又爽又黄一区二区| 国产一区二区亚洲精品在线观看| 老司机午夜福利在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产一区在线观看成人免费| 给我免费播放毛片高清在线观看| 亚洲国产欧美网| 亚洲成人精品中文字幕电影| 中亚洲国语对白在线视频| 久久国产精品人妻蜜桃| 国产男靠女视频免费网站| а√天堂www在线а√下载| 99热这里只有精品一区| 国产爱豆传媒在线观看| 亚洲国产精品成人综合色| www.熟女人妻精品国产| 大型黄色视频在线免费观看| 久久亚洲真实| 天堂网av新在线| 大型黄色视频在线免费观看| 一个人观看的视频www高清免费观看| 亚洲第一电影网av| 日韩免费av在线播放| 国产精品精品国产色婷婷| 成人亚洲精品av一区二区| 一级黄色大片毛片| 国产欧美日韩精品亚洲av| 亚洲人与动物交配视频| 久久精品亚洲精品国产色婷小说| 久久久久久久久大av| 真人一进一出gif抽搐免费| 少妇的逼水好多| 久久国产乱子伦精品免费另类| 国产精品 国内视频| 国产高清三级在线| 美女大奶头视频| 久久精品91无色码中文字幕| 少妇的逼水好多| av国产免费在线观看| 中国美女看黄片| 中文字幕久久专区| 国产野战对白在线观看| 黄片大片在线免费观看| 一级毛片高清免费大全| 国产蜜桃级精品一区二区三区| 最近在线观看免费完整版| 久久精品国产综合久久久| www日本黄色视频网| 久久天躁狠狠躁夜夜2o2o| 精品久久久久久久久久免费视频| 亚洲自拍偷在线| 嫩草影院入口| 真人做人爱边吃奶动态| 久久精品夜夜夜夜夜久久蜜豆| 午夜免费激情av| 日日摸夜夜添夜夜添小说| 午夜福利18| 一个人免费在线观看电影| 成人鲁丝片一二三区免费| 久久久久久久亚洲中文字幕 | 男插女下体视频免费在线播放| 成人国产一区最新在线观看| 中文字幕久久专区| 日韩欧美国产在线观看| 日本免费一区二区三区高清不卡| 亚洲精品色激情综合| 午夜激情福利司机影院| 网址你懂的国产日韩在线| 国产一区二区在线观看日韩 | 搞女人的毛片| 热99在线观看视频| 黄色片一级片一级黄色片| 色老头精品视频在线观看| 欧美黄色片欧美黄色片| www国产在线视频色| 三级男女做爰猛烈吃奶摸视频| АⅤ资源中文在线天堂| 亚洲不卡免费看| 每晚都被弄得嗷嗷叫到高潮| 老鸭窝网址在线观看| 日日夜夜操网爽| 在线视频色国产色| 日韩有码中文字幕| 成人高潮视频无遮挡免费网站| 黄片小视频在线播放| 在线免费观看不下载黄p国产 | 看黄色毛片网站| 欧美bdsm另类| 久久九九热精品免费| 91九色精品人成在线观看| 午夜免费观看网址| www国产在线视频色| 精品一区二区三区视频在线观看免费| а√天堂www在线а√下载| 亚洲在线观看片| 午夜影院日韩av| 午夜免费激情av| 欧美日韩国产亚洲二区| 一二三四社区在线视频社区8| 亚洲一区高清亚洲精品| 免费在线观看影片大全网站| 噜噜噜噜噜久久久久久91| 精品熟女少妇八av免费久了| 制服人妻中文乱码| 少妇人妻精品综合一区二区 | 91久久精品电影网| 亚洲av电影在线进入| 国产中年淑女户外野战色| 免费一级毛片在线播放高清视频| 老汉色∧v一级毛片| 午夜a级毛片| 男女视频在线观看网站免费| 日本三级黄在线观看| 亚洲天堂国产精品一区在线| 嫩草影院精品99| 亚洲中文日韩欧美视频| 两个人视频免费观看高清| 天堂√8在线中文| 国内毛片毛片毛片毛片毛片| 精品久久久久久久毛片微露脸| 亚洲黑人精品在线| 狠狠狠狠99中文字幕| 国产精品久久视频播放| 亚洲最大成人手机在线| 18禁国产床啪视频网站| 免费高清视频大片| 欧美一区二区国产精品久久精品| 少妇裸体淫交视频免费看高清| 久久九九热精品免费| 51国产日韩欧美| 国产久久久一区二区三区| 亚洲av中文字字幕乱码综合| 亚洲最大成人中文| 精品电影一区二区在线| avwww免费| 天堂动漫精品| 九九热线精品视视频播放| 日本免费a在线| 一进一出抽搐动态| 欧美激情在线99| 亚洲av电影在线进入| 国产91精品成人一区二区三区| 久久精品影院6| 69人妻影院| 国产精华一区二区三区| 狂野欧美激情性xxxx| 午夜久久久久精精品| 国产欧美日韩一区二区三| 精品乱码久久久久久99久播| 婷婷丁香在线五月| 好男人电影高清在线观看| 免费搜索国产男女视频| 久久久久免费精品人妻一区二区| 亚洲18禁久久av| 老司机午夜福利在线观看视频| 国产午夜福利久久久久久| 制服丝袜大香蕉在线| 亚洲人成网站高清观看| 国产高清激情床上av| 女警被强在线播放| 日本黄色视频三级网站网址| 久久久久久久精品吃奶| 精品国内亚洲2022精品成人| 他把我摸到了高潮在线观看| 亚洲欧美精品综合久久99| 两个人的视频大全免费| 一边摸一边抽搐一进一小说| 少妇熟女aⅴ在线视频| 一二三四社区在线视频社区8| 校园春色视频在线观看| 亚洲美女黄片视频| 亚洲成人久久爱视频| 国语自产精品视频在线第100页| 欧美日韩中文字幕国产精品一区二区三区| 久久人妻av系列| 欧美日本亚洲视频在线播放| 午夜激情欧美在线| 精品一区二区三区人妻视频| 男人的好看免费观看在线视频| 欧美+日韩+精品| 亚洲精品色激情综合| 久久久国产成人精品二区| 色哟哟哟哟哟哟| 精品免费久久久久久久清纯| 在线播放无遮挡| 男女床上黄色一级片免费看| av黄色大香蕉| avwww免费| 国产97色在线日韩免费| 好男人电影高清在线观看| 一本久久中文字幕| 久久国产精品影院| 亚洲黑人精品在线| 成人高潮视频无遮挡免费网站| 国产精品三级大全| 久久人妻av系列| 一区福利在线观看| 国产精品久久久久久久久免 | 亚洲无线在线观看| 啦啦啦观看免费观看视频高清| avwww免费| 国产精品亚洲av一区麻豆| 我的老师免费观看完整版| 夜夜爽天天搞| 少妇熟女aⅴ在线视频| 亚洲性夜色夜夜综合| 美女被艹到高潮喷水动态| 丰满的人妻完整版| 内地一区二区视频在线| 五月伊人婷婷丁香| 成人鲁丝片一二三区免费| 日韩免费av在线播放| 国产精品久久视频播放| av福利片在线观看| 丰满乱子伦码专区| 18美女黄网站色大片免费观看| 1024手机看黄色片| 国产精品美女特级片免费视频播放器| 午夜激情欧美在线| 女同久久另类99精品国产91| 国产精品 国内视频| 又黄又粗又硬又大视频| 俄罗斯特黄特色一大片| 在线国产一区二区在线| 成年女人永久免费观看视频| 脱女人内裤的视频| 亚洲国产欧洲综合997久久,| xxx96com| 国产欧美日韩一区二区三| 蜜桃久久精品国产亚洲av| 亚洲自拍偷在线| 狂野欧美白嫩少妇大欣赏| 精品国产超薄肉色丝袜足j| 免费人成视频x8x8入口观看| 欧美激情久久久久久爽电影| 亚洲七黄色美女视频| 18+在线观看网站| 丰满人妻一区二区三区视频av | 亚洲成人久久性| 色精品久久人妻99蜜桃| 亚洲av二区三区四区| 中文字幕熟女人妻在线| 18+在线观看网站| 99热只有精品国产| 精品久久久久久久久久久久久| 欧美av亚洲av综合av国产av| 免费看日本二区| 国产精品久久久久久亚洲av鲁大| 亚洲成人久久爱视频| 1000部很黄的大片| 精品一区二区三区视频在线 | 国产美女午夜福利| 国内少妇人妻偷人精品xxx网站| 国产亚洲av嫩草精品影院| 亚洲专区国产一区二区| 俺也久久电影网| 国产老妇女一区| 欧美成人a在线观看| 白带黄色成豆腐渣| 母亲3免费完整高清在线观看| 国产精品乱码一区二三区的特点| 日本a在线网址| 小蜜桃在线观看免费完整版高清| 国产亚洲欧美在线一区二区| 一级毛片高清免费大全| 九九热线精品视视频播放| 麻豆一二三区av精品| 国产av不卡久久| 一级毛片女人18水好多| 国产黄a三级三级三级人| 欧美一级a爱片免费观看看| 91麻豆精品激情在线观看国产| 久久伊人香网站| avwww免费| 婷婷丁香在线五月| 搡女人真爽免费视频火全软件 | 午夜福利在线在线| 国产视频内射| 亚洲自拍偷在线| 国产精品亚洲av一区麻豆| 91字幕亚洲| 91在线精品国自产拍蜜月 | 久久精品综合一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 此物有八面人人有两片| 日本撒尿小便嘘嘘汇集6| 国产爱豆传媒在线观看| 三级毛片av免费| 亚洲 国产 在线| 国产真实乱freesex| 日韩免费av在线播放| 亚洲人成伊人成综合网2020| 亚洲精品一区av在线观看| 国产美女午夜福利| 亚洲精品一区av在线观看| 狂野欧美激情性xxxx| 久久精品国产自在天天线| 校园春色视频在线观看| 美女黄网站色视频| 国产探花在线观看一区二区| 听说在线观看完整版免费高清| 午夜日韩欧美国产| 日本免费a在线| 国产精品国产高清国产av| 久久精品91无色码中文字幕| 动漫黄色视频在线观看| 别揉我奶头~嗯~啊~动态视频| ponron亚洲| 无人区码免费观看不卡| 亚洲自拍偷在线| 99热这里只有精品一区| 国产私拍福利视频在线观看| 一级毛片女人18水好多| 极品教师在线免费播放| 精品福利观看| tocl精华| 最好的美女福利视频网| 欧美中文综合在线视频| 97超视频在线观看视频| 听说在线观看完整版免费高清| 久久精品亚洲精品国产色婷小说| 久久久久久久精品吃奶| 久久精品91蜜桃| 最近在线观看免费完整版| 国产精品综合久久久久久久免费| 黄色片一级片一级黄色片| 身体一侧抽搐| 日韩欧美精品免费久久 | 久久久久久久精品吃奶| 欧美乱色亚洲激情| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品久久国产高清桃花| 国产亚洲欧美在线一区二区| 免费在线观看亚洲国产| 成年女人看的毛片在线观看| 欧美成人性av电影在线观看| 中文字幕高清在线视频| a级毛片a级免费在线| 亚洲午夜理论影院| 成人午夜高清在线视频| 亚洲成人免费电影在线观看| 欧美日韩一级在线毛片| 亚洲美女黄片视频| 久久久久精品国产欧美久久久| 亚洲av免费在线观看| 波多野结衣巨乳人妻| 叶爱在线成人免费视频播放| 网址你懂的国产日韩在线| a在线观看视频网站| 免费在线观看影片大全网站| 欧美3d第一页| 亚洲激情在线av| 国产探花在线观看一区二区| 欧美日韩乱码在线| 午夜两性在线视频| 一级黄片播放器| 久久精品国产自在天天线| 九色国产91popny在线| 有码 亚洲区| 又黄又粗又硬又大视频| 国产精品久久视频播放| 日韩免费av在线播放| 成人鲁丝片一二三区免费| 日韩欧美一区二区三区在线观看| 国内精品久久久久精免费| 国产精品爽爽va在线观看网站| 国产免费男女视频| 中国美女看黄片| 国产高清视频在线播放一区| 亚洲精品456在线播放app | 日韩成人在线观看一区二区三区| 日本在线视频免费播放| 国产成人福利小说| 91在线观看av| 色精品久久人妻99蜜桃| 中文字幕av成人在线电影| 成年女人毛片免费观看观看9| 丁香欧美五月| 一本精品99久久精品77| 综合色av麻豆| 亚洲国产精品合色在线| 男人和女人高潮做爰伦理| 精品人妻1区二区| 午夜福利成人在线免费观看| 亚洲av成人av| 欧美日韩国产亚洲二区| 最近最新免费中文字幕在线| 91字幕亚洲| 特大巨黑吊av在线直播| 国产精品一及| 午夜日韩欧美国产| 亚洲国产精品成人综合色| 亚洲 欧美 日韩 在线 免费| 精品无人区乱码1区二区| 国产三级在线视频| aaaaa片日本免费| 国产三级中文精品| 一个人免费在线观看的高清视频| 国产中年淑女户外野战色| 国产精品98久久久久久宅男小说| а√天堂www在线а√下载| 精品久久久久久久人妻蜜臀av| 有码 亚洲区| 免费在线观看日本一区| 美女高潮喷水抽搐中文字幕| 天堂影院成人在线观看| 国产精品久久久人人做人人爽| 日本在线视频免费播放| 欧美午夜高清在线| 国产综合懂色| 一进一出好大好爽视频| 国产综合懂色| 亚洲精品美女久久久久99蜜臀| 国内精品久久久久精免费| 国产三级黄色录像| 波多野结衣巨乳人妻| 欧美一区二区亚洲| 国产精品亚洲美女久久久| 制服丝袜大香蕉在线| 日韩国内少妇激情av| 亚洲欧美一区二区三区黑人| 欧美日韩瑟瑟在线播放| 岛国在线免费视频观看| 99久久九九国产精品国产免费| 久久亚洲真实| 亚洲精品一卡2卡三卡4卡5卡| 精品久久久久久久末码| av天堂中文字幕网| 99riav亚洲国产免费| 成年女人看的毛片在线观看| 一本一本综合久久| 亚洲中文字幕一区二区三区有码在线看| 久久九九热精品免费| 日本黄大片高清| e午夜精品久久久久久久| 色综合亚洲欧美另类图片| 日韩欧美在线乱码| 午夜老司机福利剧场| 又粗又爽又猛毛片免费看| 国产精品永久免费网站| 国产精品爽爽va在线观看网站| 欧美最新免费一区二区三区 | 国产欧美日韩一区二区精品| 欧美bdsm另类| 国产伦精品一区二区三区四那| 女人十人毛片免费观看3o分钟| 老熟妇仑乱视频hdxx| 欧美另类亚洲清纯唯美| АⅤ资源中文在线天堂| 国产乱人伦免费视频| 女警被强在线播放| 丰满的人妻完整版| 国产伦一二天堂av在线观看| 亚洲欧美日韩高清专用| 美女免费视频网站| 日本一本二区三区精品| av视频在线观看入口| 一区二区三区高清视频在线| 成人18禁在线播放| 亚洲熟妇熟女久久| 欧美最新免费一区二区三区 | 级片在线观看| 观看美女的网站| 不卡一级毛片| 欧美中文综合在线视频| 乱人视频在线观看| 一区二区三区激情视频| 色综合欧美亚洲国产小说| 久久久久久久午夜电影| 免费av不卡在线播放| 最新在线观看一区二区三区| АⅤ资源中文在线天堂| 亚洲精品一卡2卡三卡4卡5卡| av片东京热男人的天堂| 亚洲av免费在线观看| 久久久久国产精品人妻aⅴ院| 成人性生交大片免费视频hd| 亚洲美女视频黄频| 免费av观看视频| 亚洲最大成人手机在线| 国产不卡一卡二| 成人精品一区二区免费| 性色avwww在线观看| 美女免费视频网站| 一级毛片高清免费大全| 日本一二三区视频观看| 搡老岳熟女国产| 波多野结衣巨乳人妻| 午夜免费激情av| 日韩 欧美 亚洲 中文字幕| 国产激情偷乱视频一区二区| 欧美xxxx黑人xx丫x性爽| 午夜影院日韩av| 怎么达到女性高潮| 夜夜爽天天搞| 亚洲成人精品中文字幕电影| 免费在线观看日本一区| 久久久久国内视频| 欧美av亚洲av综合av国产av| 看片在线看免费视频| 美女cb高潮喷水在线观看| 国产精品香港三级国产av潘金莲|