• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal Neuro-Control Strategy for Nonlinear Systems With Asymmetric Input Constraints

    2020-05-22 02:58:28XiongYangandBoZhao
    IEEE/CAA Journal of Automatica Sinica 2020年2期

    Xiong Yang, and Bo Zhao,

    Abstract— In this paper, we present an optimal neuro-control scheme for continuous-time (CT) nonlinear systems with asymmetric input constraints. Initially, we introduce a discounted cost function for the CT nonlinear systems in order to handle the asymmetric input constraints. Then, we develop a Hamilton-Jacobi-Bellman equation (HJBE), which arises in the discounted cost optimal control problem. To obtain the optimal neurocontroller,we utilize a critic neural network (CNN) to solve the HJBE under the framework of reinforcement learning. The CNN’s weight vector is tuned via the gradient descent approach. Based on the Lyapunov method, we prove that uniform ultimate boundedness of the CNN’s weight vector and the closed-loop system is guaranteed. Finally, we verify the effectiveness of the present optimal neuro-control strategy through performing simulations of two examples.

    I. Introduction

    REINFORCEMENT learning (RL), known as a research branch of machine learning, has been an effective tool in solving nonlinear optimization problems [1]. The main idea behind RL is to create an architecture to learn optimal policies without systems’ information. A well-known architecture used in RL is the actor-critic structure, which is comprised of two neural networks (NNs), that is, actor and critic NNs. The mechanism of implementing the actor-critic structure is as follows: The actor NN generates a control policy to surroundings or plants, and the critic NN (CNN) estimates the cost stemming from that control policy and gives a positive/negative signal to the actor NN [2]. Owing to this mechanism of actor-critic structure, one is able to not only obtain optimal policies without knowing systems’ prior knowledge, but also avoid “the curse of dimensionality” occurring [3]. According to [4], adaptive dynamic programming (ADP) also takes the actor-critic structure as an implementation architecture and shares similar spirits as RL. Thus, researchers often use ADP and RL as two interchangeable names. During the past few years, quite a few ADP and RL approaches emerged, such as goal representation ADP [5], policy/value iteration ADP [6],[7], event-sampled/triggered ADP [8], [9], robust ADP [10],integral RL [11], [12], online RL [13], [14], off-policy RL[15], [16].

    Doubtlessly, the actor-critic structure utilized in RL has achieved great success in solving nonlinear optimization problems (see aforementioned literature). However, when tackling optimal control problems of nonlinear systems with available systems’ information, researchers found that the actor-critic structure could be reduced to a structure with only the critic, i.e., the critic-only structure [17]. The early research on solving optimization problems via a critic-only structure can be tracked to the work of Widrowet al.[18]. Later,Prokhorov and Wunsch [19] named this critic-only structure as a kind of adaptive critic designs (ACDs), which were originated from RL. After that, Padhiet al.[20] suggested a single network ACD to learn an optimal control policy for input-affine discrete-time (DT) nonlinear systems. Recently,Wanget al.[21] introduced a data-based ACD to acquire the robust optimal control of continuous-time (CT) nonlinear systems. Apart from the identifier NN used to reconstruct system dynamics, Wanget al.[21] proposed a unique CNN to implement the data-based ACD. Later, Luoet al.[22] reported a critic-onlymethod to derive an optimal tracking control of input-nonaffine DT nonlinear systems with unknown models. Following the line of [20]–[22], this paper aims at presenting a single CNN to obtain an optimal neurocontrol law of CT nonlinear systems with asymmetric input constraints.

    System’s inputs/actuators suffering from constraints are common phenomena. This is because the design of stabilizing controllers must take safety or the physical restriction of actuators into consideration. In recent years, many scholars have paid their attention to nonlinear-constrained optimization problems. For DT nonlinear systems, Zhanget al.[23]presented an iterative ADP to derive an optimal control of nonlinear systems subject to control constraints. To implement the iterative ADP, they employed the model NN, the CNN,and the actor NN. By using a similar architecture as [23], Haet al.[24 ] suggested an event-triggered ACD to solve nonlinear-constrained optimization problems. The key feature distinguishing [23] and [24] is whether the optimal control was obtained in an event-triggering mechanism. For CT nonlinear systems, Abu-Khalaf and Lewis [25] first proposed an off-line policy iteration algorithm to solve an optimal control problem of nonlinear systems with input constraints.To implement the policy iteration algorithm, they employed aforementioned actor-critic structure. By using the same structure, Modareset al.[26 ] reported an online policy iteration algorithm together with the experience replay technique to obtain an optimal control of nonlinear constrained-input systems with totally unavailable systems’information. After that, Zhuet al.[27] suggested an ADP combined with the concurrent learning technique to design an optimal event-triggered controller for nonlinear systems with input constraints as well as partially available systems’knowledge. Recently, Wanget al.[28] reported various ACD methods to obtain the time/event-triggered robust (optimal)control of constrained-input nonlinear systems. Later, Zhanget al.[29] proposed an ADP-based robust optimal control method for nonlinear constrained-input systems with unknown systems’ prior information. More recently, unlike [28] and[29] studying nonlinear-constrained regulation problems, Cuiet al.[30] solved the nonlinear-constrained optimal tracking control problem via a single network event-triggered ADP.

    Though nonlinear-constrained optimization problems were successfully solved in aforementioned literature, all of them assumed that the system’s input/actuator suffered fromsymmetricinput constraints. Actually, in engineering industries, there exist many nonlinear plants subject toasymmetricinput constraints [31]. Thus, one needs to develop adaptive control strategies, especially adaptive optimal neurocontrol schemes for such systems. Recently, Konget al.[32]proposed an asymmetric bound adaptive control for uncertain robots by using NNs and the backstepping method together.They tackled asymmetric control constraints via introducing a switching function. In general, it is challengeable to find such a switching function owing to the complexity of nonlinear systems. More recently, Zhouet al.[33] presented an ADP-based neuro-optimal tracking controller for continuous stirred tank reactor subject to asymmetric input constraints. They analyzed the convergence of the proposed ADP algorithm.But they did not discuss the stability of the closed-loop system. Moreover, they designed the optimal tracking controller for DT nonlinear systems, not for CT nonlinear systems. To the best of authors’ knowledge, there lacks the work on designing optimal neuro-controller for CT nonlinear systems with asymmetric input constraints. This motivates our investigation.

    In this study, we develop an optimal neuro-control scheme for CT nonlinear systems subject to asymmetric input constraints. First, we introduce a discounted cost function for the CT nonlinear systems in order to deal with asymmetric input constraints. Then, we present the Hamilton-Jacobi-Bellman equation (HJBE) originating from the discountedcost optimal control problem. After that, under the framework of RL, we use a unique CNN to solve the HJBE in order to acquire the optimal neuro-controller. The CNN’s weight vector is updated through the gradient descent approach.Finally, uniform ultimate boundedness (UUB) of the CNN’s weight vector and the closed-loop system is proved via the Lyapunov method.

    The novelties of this paper are three aspects.

    1) In comparison with [25]–[30], this paper presents an optimal neuro-control strategy for CT nonlinear systems with asymmetric input constraints rather than symmetric input constraints. Thus, the present optimal control scheme is suitable for a wider range of dynamical systems, in particular,those nonlinear systems subject to asymmetric input constraints.

    2) Unlike [32] handling asymmetric input constraints via proposing a switching function, this paper introduces a modified hyperbolic tangent function into the cost function to tackle such constraints (Note: here “the modified hyperbolic tangent function” means that the equilibrium point of the hyperbolic tangent function is nonzero). Thus, the present optimal control scheme can obviate the challenge arising in constructing the switching function.

    3) Though both this paper and [31], [33] study optimal control problems of nonlinear systems with asymmetric input constraints, an important difference between this paper and[31], [33] is that, this paper develops an optimal neruo-control strategy for CT nonlinear systems rather than DT nonlinear systems. In general, control methods developed for DT nonlinear systems are not applicable to those CT nonlinear systems. Furthermore, in comparison with [31] and [33], this papers provided stability analyses of the closed-loop system,which guarantee the validity of the obtained optimal neurocontrol policy.

    Notations:anddenote the set of real numbers,the Euclidean space of realand the space ofreal matrices, respectively.is a compact subset ofrepresents theidentity matrix.means the function with continuous derivative.anddenote the norms of the vectorand the matrixrespectively.denotes the set of admissible control on

    II. Problem Formulation

    We consider the following CT nonlinear systems

    Remark 1:Generally speaking, the knowledge of system dynamics is not necessary to be known when one applies RL to design neuro-controllers for nonlinear systems, such as [34]and [35]. Here we need the prior information of system (1)(i.e.,andThis is because the neuro-controller will be designed only using a unique critic NN rather than the typical actor-critic dual NNs.

    Assumption 1:is the equilibrium point of system (1) if lettingIn addition,satisfies the Lipschitz condition guaranteeing thatis the unique equilibrium point on

    Assumption 2:For everywiththe known constant. Moreover,

    Considering that system (1) suffers from asymmetric input constraints, we propose a discounted cost function as follows

    where

    Remark 2:Two notes are provided to make (2) and (3)better for understanding, i.e.,

    b) Owing to the asymmetric input constraints handled via(3), the optimal control will not converge to zero when the steady states are obtained (Note: According toin later(8), we can findMoreover, simulation results also verify this conclusion). Therefore, if letting(i.e., no the decay termthenmight be unbounded. That is why we introduce the discounted cost function (2).

    Applying the stationary condition [36, Theorem 5.8] to (7)(that is,we have the optimal control formulated as

    where

    Inserting (8) into (6), we are able to rewrite the HJBE as

    III. Optimal Neuro-control Strategy

    The approximation characteristic of NNs indicated in [37]guarantees thatin (5) can be restated onin the form whereis the ideal weight vector often unavailable,denotes the number of neurons used in the NN,is the vector activation function comprised oflinearly independent elementsandandis the error originating from reconstructing

    Then, we obtain from (10) that

    Inserting (11) into (8), it follows:

    where

    Remark 3:To make (12) easy for understanding, we present the detailed procedure as follows. Let

    where

    Then, using the mean value theorem [36, Theorem 5.10], we find

    This verifies that (12) holds.

    So, the estimated control policy ofcan be expressed as

    where

    where

    Then, we can describe the error betweenandas

    To summarize aforementioned descriptions of the proposed optimal control scheme, we present a block diagram in Fig. 1.

    IV. Stability Analysis

    Before proceeding further, we give two indispensable assumptions, which were employed in [38] and [39].

    Assumption 3:For allthere areandwhereandare positive constants.

    Fig. 1. Block diagram of the present optimal control scheme.

    Assumption 4:in (17) satisfies the persistence of excitation (PE) condition. Specifically, we have constantsandsuch that, for arbitrary time

    Theorem 1:Consider system (1) with the related control(14). Given that Assumptions 1–4 hold and the update rule for CNN’s weight vector is described as (16). Meanwhile, let the initial control for system (1) be admissible. Then, UUB of all signals in the closed-loop system is guaranteed.

    Proof:Let the Lyapunov function candidate be

    Considering the derivative ofalong the solution ofwe have

    According to (6)–(8), there holds

    Then, after performing calculations, (20) can be restated as

    with

    holds. Then, using (12) and (14), we havein (21) satisfied

    Similar to the proof of [42, Theorem 1], after performing some calculations, we can restatein (24) as

    Thus, combining (22), (23), and (25), we find that (21)yields

    where

    Second, we consider the time derivative ofUsing (17), we can see thatbecomes

    Based on aforementioned inequalityand the fact thatwe get

    Then, using Assumptions 3 and 4 as well as (30), we can further write (29) as

    Combining (27) and (31), it can be observed thatin(19) satisfies

    Remark 4:The key to making the inequality (31) valid lies in that there isObviously, (18) guarantees thatholds. That is why we needto satisfy the PE condition in Assumption 4.

    Theorem 2:With the same condition as Theorem 1, the estimated control policyin (14) can converge toin(12) within an adjustable bound.

    Proof:According to (12) and (14) and using the mean value theorem [36, Theorem 5.10], it follows

    where

    According to Theorem 1, the ultimate bound ofisin(33). Hence, from (35), we have

    V. Simulation Results

    To test the effectiveness of established theoretical results,we perform simulations of two examples in this section.

    A. Example 1

    We study the plant described by

    where (Note: according to (4),and

    Remark 5:In this example, we determine the value of the discount factorvia experiment studies. In fact, there is no general method to determine the accurate range ofWe find that selectingin this example can lead to satisfactory results.

    To approximate (37), we use the CNN described as (13)withMeanwhile, we choose the vector activation function asand denote its associated weight vector asThe initial weight vector is set asin order to guarantee the initial control policy for system (36) to be admissible (Note: according to (14), the initial control is associated with the initial weight vector. Thus, we can choose an appropriate initial weight vector to make the initial control admissible). The parameter used in (16) isMeanwhile, an exponential decay signal is added to system’s input to guaranteein (17) to be persistently exciting.

    By performing simulations via the MATLAB (2017a)software package, we obtain Figs. 2–4. As displayed in Fig. 2,is convergent after the first 6 s. Here we denote the converged value ofThen, from Fig. 2,we findThe evolution of system statesandis shown in Fig. 3. Meanwhile,the control policyis illustrated in Fig. 4 . It can be observed from Figs. 3 and 4 that the system states converge to the equilibrium point (i.e.,while the control policy converges to a nonzero value (i.e.,This feature is in accordance with the analyses provided in Remark 2-b). In addition, Fig. 4 indicates that the asymmetric control constraints are overcome.

    Fig. 2. Performance of

    Fig. 3. System states and in Example 1.

    Fig. 4. Control in Example 1.

    B. Example 2

    We investigate the nonlinear system given as

    Fig. 5. Performance of

    Fig. 6. System states and in Example 2.

    Fig. 7. Control in Example 2.

    We perform simulations via the MATLAB (2017a) software package and then obtain Figs. 5–7. Fig. 5 shows that the CNN’s weight vectorconverges toafter the first 24 s. Figs. 6 and 7 present the evolution of system statesandand the control policyrespectively. We can see from Figs. 6 and 7 that the system states converge to the equilibrium pointwhile the control policy converges to a nonzero value (i.e.,This verifies the analyses provided in Remark 2-b). Moreover, Fig. 7 indicates that the asymmetric control constraints are conquered.

    VI. Conclusion

    An optimal neuro-control scheme has been proposed for CT nonlinear systems with asymmetric input bounds. To implement such a neuro-control strategy, only a CNN is employed, which enjoys a simpler implementation structure compared with the actor-critic structure. However, the PE condition is needed to implement the present neuro-optimal control scheme. Indeed, the PE condition is a strict limitation because of it difficult to verify. Recently, the experience replay technique was introduced to relax the PE condition[43], [44]. In our consecutive work, we shall work on combining RL with the experience replay technique to obtain optimal control policies for nonlinear systems.

    On the other hand, it is worth emphasizing here that the steady states generally do not stay at zero, when the optimal control policy does not converge to zero. That is why we need the control matrix in system (1) to satisfy(see Assumption 2). Thus, this assumption excludes those nonlinear systems with the control matrixTo remove this restriction, a promising way is to allow the equilibrium point to be nonzero. Accordingly, our future work also aims at developing optimal nuero-control laws for nonlinear systems with nonzero equilibrium points. More recently, ACDs have been introduced to derive the optimal tracking control policy and the optimal fault-tolerant control policy for DT nonlinear systems, respectively [45], [46]. Therefore, whether the present optimal neuro-control strategy can be extended to solve the nonlinear optimal tracking control problems or the nonlinear optimal fault-tolerant control problems is another issue to be addressed in our consecutive study.

    插阴视频在线观看视频| 秋霞伦理黄片| 亚洲精品成人av观看孕妇| 又粗又硬又长又爽又黄的视频| 日日啪夜夜撸| 肉色欧美久久久久久久蜜桃 | 国产精品久久久久久av不卡| 精品99又大又爽又粗少妇毛片| 毛片一级片免费看久久久久| 高清av免费在线| 久久99蜜桃精品久久| 国产精品综合久久久久久久免费| 亚洲在久久综合| 国产久久久一区二区三区| 欧美激情在线99| 美女国产视频在线观看| 中文天堂在线官网| 久久鲁丝午夜福利片| 欧美高清成人免费视频www| 99久久人妻综合| 久久久色成人| 欧美日韩视频高清一区二区三区二| 九九久久精品国产亚洲av麻豆| 日韩一本色道免费dvd| 成年版毛片免费区| 国产伦理片在线播放av一区| 一级爰片在线观看| 女的被弄到高潮叫床怎么办| 精品欧美国产一区二区三| 少妇裸体淫交视频免费看高清| 色吧在线观看| av播播在线观看一区| 在线天堂最新版资源| 搞女人的毛片| 欧美97在线视频| 亚洲精品乱码久久久v下载方式| 好男人在线观看高清免费视频| 国产高清有码在线观看视频| 一边亲一边摸免费视频| 五月伊人婷婷丁香| 国产极品天堂在线| 精品国产一区二区三区久久久樱花 | 女人十人毛片免费观看3o分钟| 777米奇影视久久| 久久久久精品久久久久真实原创| 只有这里有精品99| 国产有黄有色有爽视频| av在线亚洲专区| 夜夜爽夜夜爽视频| 18禁动态无遮挡网站| 免费黄色在线免费观看| 欧美成人一区二区免费高清观看| 久久久久久久午夜电影| 菩萨蛮人人尽说江南好唐韦庄| 午夜福利在线在线| 免费观看在线日韩| 亚洲欧美日韩东京热| 赤兔流量卡办理| 国产高清三级在线| 国产乱人偷精品视频| 麻豆av噜噜一区二区三区| 国产淫片久久久久久久久| 午夜福利视频精品| 国产综合精华液| 一级a做视频免费观看| 美女黄网站色视频| 国产成人91sexporn| 亚洲熟女精品中文字幕| 中文天堂在线官网| 在线天堂最新版资源| 三级经典国产精品| 91狼人影院| 美女被艹到高潮喷水动态| 中文在线观看免费www的网站| 免费看日本二区| 亚洲精品第二区| 男女边吃奶边做爰视频| 看非洲黑人一级黄片| 久久久亚洲精品成人影院| 午夜福利高清视频| 国产一区二区三区综合在线观看 | 国产精品麻豆人妻色哟哟久久 | 十八禁网站网址无遮挡 | 两个人的视频大全免费| 女的被弄到高潮叫床怎么办| 欧美另类一区| 黄色日韩在线| 亚洲熟女精品中文字幕| 免费观看精品视频网站| 日日干狠狠操夜夜爽| 免费看a级黄色片| 欧美区成人在线视频| 岛国毛片在线播放| 中国美白少妇内射xxxbb| 免费少妇av软件| av线在线观看网站| 成人二区视频| 欧美丝袜亚洲另类| 久久国内精品自在自线图片| 亚洲欧美日韩卡通动漫| 国产精品女同一区二区软件| 久久久久久久午夜电影| 五月玫瑰六月丁香| www.色视频.com| 男女下面进入的视频免费午夜| 亚洲国产精品sss在线观看| 午夜日本视频在线| 亚洲电影在线观看av| h日本视频在线播放| 亚洲欧美日韩东京热| 欧美日本视频| 国产激情偷乱视频一区二区| 亚洲人成网站高清观看| 亚洲国产成人一精品久久久| 欧美3d第一页| 久久久久性生活片| 精品人妻熟女av久视频| 男人和女人高潮做爰伦理| 欧美成人一区二区免费高清观看| 国产亚洲最大av| 日本猛色少妇xxxxx猛交久久| 美女国产视频在线观看| 婷婷六月久久综合丁香| 日韩中字成人| 街头女战士在线观看网站| 午夜福利在线在线| 久久精品人妻少妇| 人体艺术视频欧美日本| 亚洲美女搞黄在线观看| 一夜夜www| av播播在线观看一区| 亚洲欧美成人精品一区二区| av女优亚洲男人天堂| 亚洲一级一片aⅴ在线观看| 成人亚洲精品一区在线观看 | 国产综合精华液| 街头女战士在线观看网站| av在线亚洲专区| 又爽又黄无遮挡网站| 日本爱情动作片www.在线观看| 青春草亚洲视频在线观看| 91在线精品国自产拍蜜月| 最近中文字幕高清免费大全6| 日本av手机在线免费观看| 亚洲av一区综合| 欧美日韩视频高清一区二区三区二| 超碰av人人做人人爽久久| 中国国产av一级| 乱人视频在线观看| 亚洲欧美日韩卡通动漫| 欧美zozozo另类| 在线观看免费高清a一片| 亚洲高清免费不卡视频| 欧美成人一区二区免费高清观看| 精品久久久久久久末码| 一本久久精品| 日韩亚洲欧美综合| 国产片特级美女逼逼视频| 男人和女人高潮做爰伦理| 精品欧美国产一区二区三| 简卡轻食公司| 秋霞在线观看毛片| 免费看av在线观看网站| 亚洲av电影不卡..在线观看| 国产久久久一区二区三区| 精品久久久久久久久久久久久| 中文字幕人妻熟人妻熟丝袜美| 真实男女啪啪啪动态图| 精品久久久噜噜| av专区在线播放| 波野结衣二区三区在线| freevideosex欧美| 久久热精品热| 在线观看av片永久免费下载| 2021天堂中文幕一二区在线观| 国产一区二区三区av在线| 少妇丰满av| 日韩大片免费观看网站| 国产成年人精品一区二区| 亚洲精品国产成人久久av| 久久草成人影院| 狠狠精品人妻久久久久久综合| 国产又色又爽无遮挡免| 内射极品少妇av片p| 国产黄片美女视频| 在线a可以看的网站| 免费观看av网站的网址| 两个人的视频大全免费| 亚洲av国产av综合av卡| 97人妻精品一区二区三区麻豆| 精品国产三级普通话版| 在线免费观看的www视频| 少妇的逼好多水| 一级二级三级毛片免费看| 69av精品久久久久久| 国语对白做爰xxxⅹ性视频网站| 亚洲精品日本国产第一区| 久久精品夜色国产| 久热久热在线精品观看| 国产色爽女视频免费观看| 天堂av国产一区二区熟女人妻| 伦精品一区二区三区| 亚洲经典国产精华液单| 麻豆久久精品国产亚洲av| 蜜臀久久99精品久久宅男| av国产免费在线观看| 免费电影在线观看免费观看| 国产男人的电影天堂91| 我要看日韩黄色一级片| 丝袜美腿在线中文| 国产亚洲精品久久久com| 亚洲人与动物交配视频| 特大巨黑吊av在线直播| 国产在视频线在精品| 少妇的逼水好多| 国产毛片a区久久久久| 国产精品一区二区性色av| 亚洲精品久久久久久婷婷小说| 久久精品国产自在天天线| 国产精品国产三级国产av玫瑰| 男女国产视频网站| 丝袜美腿在线中文| av女优亚洲男人天堂| 晚上一个人看的免费电影| 亚洲av成人精品一区久久| 亚洲精品一二三| 亚洲av二区三区四区| 永久免费av网站大全| 精品人妻视频免费看| 国产一区亚洲一区在线观看| 乱人视频在线观看| 成人无遮挡网站| 国产乱来视频区| 丝瓜视频免费看黄片| 久久这里有精品视频免费| 国内精品一区二区在线观看| 国产一级毛片七仙女欲春2| 国产极品天堂在线| 国产成人91sexporn| 丰满乱子伦码专区| 日韩欧美精品免费久久| 非洲黑人性xxxx精品又粗又长| 丝瓜视频免费看黄片| 日韩欧美一区视频在线观看 | 国产成人一区二区在线| 人体艺术视频欧美日本| 蜜臀久久99精品久久宅男| 精品一区二区免费观看| 精品一区在线观看国产| 美女内射精品一级片tv| 久久人人爽人人片av| 精品久久久久久久久久久久久| 亚洲av中文字字幕乱码综合| 免费大片黄手机在线观看| 日韩欧美 国产精品| 日韩不卡一区二区三区视频在线| 九色成人免费人妻av| 国产免费视频播放在线视频 | 夜夜看夜夜爽夜夜摸| 日韩欧美精品v在线| 亚洲av福利一区| 丝袜美腿在线中文| 亚洲人与动物交配视频| av线在线观看网站| 特级一级黄色大片| 中文天堂在线官网| 国产伦精品一区二区三区视频9| 国产精品三级大全| av卡一久久| 麻豆精品久久久久久蜜桃| 中文在线观看免费www的网站| 尾随美女入室| 永久网站在线| 久久久成人免费电影| 亚洲最大成人av| 午夜福利视频1000在线观看| 91精品国产九色| 国产伦精品一区二区三区四那| 大陆偷拍与自拍| av在线观看视频网站免费| 亚洲欧美日韩卡通动漫| 国产成人a区在线观看| 国产高清不卡午夜福利| 亚洲av国产av综合av卡| 亚洲av免费在线观看| 亚洲婷婷狠狠爱综合网| 99热6这里只有精品| 丝袜喷水一区| 大香蕉久久网| 亚洲精品,欧美精品| 午夜激情久久久久久久| av免费在线看不卡| 日本免费a在线| 亚洲成人久久爱视频| 夜夜爽夜夜爽视频| 夫妻性生交免费视频一级片| 亚洲乱码一区二区免费版| 国产av不卡久久| 一级毛片我不卡| 亚洲精品国产av蜜桃| 国产又色又爽无遮挡免| 日本黄大片高清| 久久99热这里只有精品18| 校园人妻丝袜中文字幕| 成人av在线播放网站| 日日啪夜夜爽| 久久久久国产网址| 午夜日本视频在线| 又粗又硬又长又爽又黄的视频| 18禁在线无遮挡免费观看视频| 婷婷色av中文字幕| 国产午夜精品一二区理论片| 国产一级毛片七仙女欲春2| 2018国产大陆天天弄谢| 午夜老司机福利剧场| 成年av动漫网址| 麻豆成人av视频| 日韩av不卡免费在线播放| 久久久久久久久久黄片| 18禁在线无遮挡免费观看视频| 晚上一个人看的免费电影| 91狼人影院| 国产极品天堂在线| 丰满乱子伦码专区| 久久久色成人| 男女那种视频在线观看| 国产高清不卡午夜福利| 久久久久精品久久久久真实原创| 在线观看美女被高潮喷水网站| 午夜激情福利司机影院| 成年女人在线观看亚洲视频 | 精品国产一区二区三区久久久樱花 | 精品人妻偷拍中文字幕| 国产成人精品婷婷| 亚洲va在线va天堂va国产| 亚洲精品一区蜜桃| 成年版毛片免费区| 精品久久久久久久久亚洲| 中文天堂在线官网| 免费av毛片视频| 女人十人毛片免费观看3o分钟| 一级av片app| 日韩国内少妇激情av| 亚洲欧美精品专区久久| av一本久久久久| 国产人妻一区二区三区在| 成人美女网站在线观看视频| 美女脱内裤让男人舔精品视频| 精品久久久久久电影网| 国产精品久久久久久av不卡| 狠狠精品人妻久久久久久综合| 国产成人freesex在线| 日韩欧美精品v在线| 亚洲av一区综合| 欧美xxxx性猛交bbbb| 国产伦精品一区二区三区四那| av网站免费在线观看视频 | 亚洲国产最新在线播放| 久久久久久久久久久丰满| 国产精品一区二区在线观看99 | 一级毛片久久久久久久久女| 99热6这里只有精品| 日韩成人伦理影院| 亚洲欧美精品专区久久| 免费看美女性在线毛片视频| 天堂俺去俺来也www色官网 | 日韩av不卡免费在线播放| 久久久久久国产a免费观看| 亚洲人与动物交配视频| 免费看不卡的av| 自拍偷自拍亚洲精品老妇| 日本免费a在线| 亚洲精品456在线播放app| 欧美人与善性xxx| 欧美日韩精品成人综合77777| 国产高清有码在线观看视频| 午夜福利成人在线免费观看| 白带黄色成豆腐渣| 精品久久久久久电影网| 能在线免费看毛片的网站| 日日啪夜夜爽| 国产精品久久久久久久电影| 中文精品一卡2卡3卡4更新| 国产老妇伦熟女老妇高清| 免费人成在线观看视频色| 久久久亚洲精品成人影院| 国产亚洲午夜精品一区二区久久 | 精品欧美国产一区二区三| 一级毛片aaaaaa免费看小| 久久精品人妻少妇| 嫩草影院精品99| 亚洲久久久久久中文字幕| .国产精品久久| 黑人高潮一二区| 乱系列少妇在线播放| 亚洲欧美成人精品一区二区| 91aial.com中文字幕在线观看| 久久99热这里只频精品6学生| 中文字幕人妻熟人妻熟丝袜美| 91aial.com中文字幕在线观看| 高清欧美精品videossex| 国产精品不卡视频一区二区| 国产精品福利在线免费观看| 免费av毛片视频| 国产精品久久久久久av不卡| 国产精品蜜桃在线观看| 久久精品熟女亚洲av麻豆精品 | 中文精品一卡2卡3卡4更新| 精品人妻熟女av久视频| 午夜福利视频1000在线观看| 丝袜喷水一区| ponron亚洲| 深爱激情五月婷婷| 午夜精品国产一区二区电影 | 精品99又大又爽又粗少妇毛片| 老司机影院毛片| 久久人人爽人人爽人人片va| 免费在线观看成人毛片| 免费看光身美女| 亚洲国产精品专区欧美| 老司机影院成人| 看黄色毛片网站| 亚洲成人中文字幕在线播放| 美女内射精品一级片tv| 精品久久久噜噜| 久久99精品国语久久久| 一个人免费在线观看电影| 伊人久久国产一区二区| 纵有疾风起免费观看全集完整版 | 非洲黑人性xxxx精品又粗又长| 久久精品国产亚洲av涩爱| 亚洲国产精品专区欧美| 久久久色成人| 亚洲无线观看免费| 亚洲欧洲国产日韩| 五月天丁香电影| 日韩国内少妇激情av| 色吧在线观看| 三级毛片av免费| www.av在线官网国产| 97超视频在线观看视频| 久久精品夜色国产| 九草在线视频观看| 国产一区亚洲一区在线观看| 久久人人爽人人片av| 成年版毛片免费区| 五月玫瑰六月丁香| 成年免费大片在线观看| 国产精品久久久久久久电影| 激情五月婷婷亚洲| 亚洲激情五月婷婷啪啪| 亚洲性久久影院| 免费人成在线观看视频色| 日韩欧美精品v在线| 卡戴珊不雅视频在线播放| 99久国产av精品| av.在线天堂| 在线观看美女被高潮喷水网站| 国产乱人偷精品视频| 日韩av在线免费看完整版不卡| 丝袜美腿在线中文| 成人亚洲精品av一区二区| 大话2 男鬼变身卡| 午夜亚洲福利在线播放| 亚洲av成人精品一区久久| 亚洲精品,欧美精品| 能在线免费看毛片的网站| 欧美变态另类bdsm刘玥| 美女主播在线视频| 精品欧美国产一区二区三| 国产伦一二天堂av在线观看| av免费在线看不卡| 国产精品国产三级国产专区5o| 午夜免费观看性视频| 91av网一区二区| 在现免费观看毛片| 天天一区二区日本电影三级| 国产欧美另类精品又又久久亚洲欧美| 超碰97精品在线观看| 只有这里有精品99| 老司机影院成人| 最近中文字幕2019免费版| 91在线精品国自产拍蜜月| 小蜜桃在线观看免费完整版高清| 2021天堂中文幕一二区在线观| 插阴视频在线观看视频| 91精品一卡2卡3卡4卡| 最近最新中文字幕免费大全7| 国产乱来视频区| 免费观看av网站的网址| 国产综合精华液| 精品一区二区三卡| 亚洲欧美成人综合另类久久久| 国产精品一区二区三区四区免费观看| 五月玫瑰六月丁香| 国产亚洲av片在线观看秒播厂 | 精品不卡国产一区二区三区| 中国国产av一级| 亚洲在线观看片| 美女主播在线视频| 国产麻豆成人av免费视频| 欧美日韩综合久久久久久| 久久久精品欧美日韩精品| 久久久a久久爽久久v久久| 国产 一区精品| 人妻少妇偷人精品九色| 成年女人看的毛片在线观看| 国产黄片视频在线免费观看| 国产欧美日韩精品一区二区| 精品久久久久久电影网| 色视频www国产| 国产高潮美女av| 久久午夜福利片| 国产精品99久久久久久久久| 2018国产大陆天天弄谢| 色尼玛亚洲综合影院| 91aial.com中文字幕在线观看| 中文乱码字字幕精品一区二区三区 | 精品一区二区三区人妻视频| 欧美激情在线99| 亚洲欧美成人精品一区二区| av又黄又爽大尺度在线免费看| 精品99又大又爽又粗少妇毛片| 午夜福利在线在线| 久久久久网色| 插逼视频在线观看| 成人午夜高清在线视频| 91精品一卡2卡3卡4卡| 久久人人爽人人爽人人片va| 精品亚洲乱码少妇综合久久| 亚洲精品日韩av片在线观看| 97精品久久久久久久久久精品| 亚洲精品亚洲一区二区| 欧美丝袜亚洲另类| 天堂中文最新版在线下载 | 亚洲自拍偷在线| 51国产日韩欧美| 国产精品一区二区性色av| 欧美日韩国产mv在线观看视频 | 日本免费a在线| 国产午夜精品一二区理论片| xxx大片免费视频| av在线老鸭窝| 色综合亚洲欧美另类图片| 男人狂女人下面高潮的视频| 亚洲精品久久久久久婷婷小说| 国产淫片久久久久久久久| 熟女电影av网| 大片免费播放器 马上看| 亚洲最大成人中文| 超碰av人人做人人爽久久| 小蜜桃在线观看免费完整版高清| 中文精品一卡2卡3卡4更新| 老师上课跳d突然被开到最大视频| 久久精品久久久久久噜噜老黄| 女人被狂操c到高潮| 日产精品乱码卡一卡2卡三| 三级毛片av免费| 午夜福利高清视频| 国产精品熟女久久久久浪| 高清午夜精品一区二区三区| 亚洲精品影视一区二区三区av| 久久鲁丝午夜福利片| 超碰av人人做人人爽久久| 97超碰精品成人国产| 激情五月婷婷亚洲| 日韩一区二区视频免费看| 欧美精品国产亚洲| 又黄又爽又刺激的免费视频.| 国产精品久久久久久精品电影| 欧美成人午夜免费资源| 26uuu在线亚洲综合色| 色尼玛亚洲综合影院| 日韩精品有码人妻一区| 91精品国产九色| 久久国产乱子免费精品| 免费看av在线观看网站| 亚洲欧美精品专区久久| 久久99热6这里只有精品| 国产av在哪里看| 国产视频内射| 久久99精品国语久久久| 三级国产精品片| 国产亚洲5aaaaa淫片| 韩国av在线不卡| 日本与韩国留学比较| 美女高潮的动态| 91aial.com中文字幕在线观看| 国产v大片淫在线免费观看| 美女大奶头视频| 嘟嘟电影网在线观看| 精品久久久久久久久亚洲| 国产精品蜜桃在线观看| 欧美bdsm另类| 精品99又大又爽又粗少妇毛片| 最新中文字幕久久久久| 免费黄网站久久成人精品| 成人国产麻豆网| 亚洲av在线观看美女高潮| 国产成人91sexporn| 在线观看人妻少妇| 亚洲精品乱久久久久久| 国产成人精品一,二区| 午夜激情久久久久久久| 美女被艹到高潮喷水动态| 亚洲熟妇中文字幕五十中出| 成年女人在线观看亚洲视频 | av又黄又爽大尺度在线免费看| 亚洲av成人精品一区久久| 国产男人的电影天堂91| 啦啦啦韩国在线观看视频| 麻豆国产97在线/欧美| 成人午夜精彩视频在线观看| a级毛片免费高清观看在线播放| 亚洲精华国产精华液的使用体验|