• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Post-Processing Time-Aware Optimal Scheduling of Single Robotic Cluster Tools

    2020-05-22 02:58:54QingHuaZhuYanQiaoNaiQiWuandYanHou
    IEEE/CAA Journal of Automatica Sinica 2020年2期

    QingHua Zhu,, Yan Qiao,, NaiQi Wu,, and Yan Hou

    Abstract—Integrated circuit chips are produced on silicon wafers.Robotic cluster tools are widely used since they provide a reconfigurable and efficient environment for most wafer fabrication processes. Recent advances in new semiconductor materials bring about new functionality for integrated circuits. After a wafer is processed in a processing chamber, the wafer should be removed from there as fast as possible to guarantee its high-quality integrated circuits. Meanwhile, maximization of the throughput of robotic cluster tools is desired. This work aims to perform post-processing time-aware scheduling for such tools subject to wafer residency time constraints. To do so, closed-form expression algorithms are derived to compute robot waiting time accurately upon the analysis of particular events of robot waiting for singlearm cluster tools. Examples are given to show the application and effectiveness of the proposed algorithms.

    I. Introduction

    TO produce integrated circuit chips, a silicon wafer goes through a great number of fabrication procedures, up to hundreds of steps. Many of these wafer fabrication steps are performed using cluster tools [1], [2]. Typically, four to six processing machines/modules (PM) radially surround a robot to form a cluster tool in a vacuum environment, as illustrated in Fig. 1. The loadlock cassette modules (LL) are used to import/export raw/processed wafers. The robot in the center is responsible for transferring wafers between PMs/LLs. Depending on the number of blades (one or two), a single or dual-arm robot can handle one or two wafers at a time, respectively. The robot unloads a raw wafer from LLs, transfers it to PMs for processing pursuant to a predefined recipe, and returns the completed wafer to LLs [2], [3].

    Fig. 1. A single-arm cluster tool.

    Cluster tools can perform most wafer fabrication processes,including etching, vapor deposition, wafer cleaning and so on,making them increasingly prevalent in the fabrication processes. Just as done for scheduling complex production systems [4]–[7], much effort has been made on modeling,analysis and scheduling of cluster tools [8]–[24]. Chemical vapor deposition (CVD) used in various wafer fabrication processes require the avoidance of excessive exposure to mixed chemical gases at high temperatures. A wafer thus must be unloaded within a short time from a processing chamber after its processing is completed.

    Abundant work has been done for scheduling cluster tools that are subject to such wafer residency time constraints [3],[25]–[29]. In particular, Kimet al. [30], Lee and Park [31],and Zuberek [29] have investigated the optimal scheduling problems of dual-arm cluster tools subject to wafer residency time constraints. For cluster tools under such constraints,further work is done in [32]–[35] and analytical-expressionbased algorithms are proposed to find periodic optimal schedules whenever a feasible schedule exists. Petri nets have been effectively applied to model cluster tools [32]–[36] and other discrete event systems [37], [38].

    A cluster tool starts its operation via a start-up transient process when its robot unloads the first wafer from LLs [39].Then, it enters the steady state [40], and eventually it undergoes a close-down transient process to terminate its operation when no raw wafers are released from LLs. Yiet al.[40] handle the operations under the steady state. Under the steady state, cycle time is referred to as the time taken for finishing a wafer in a repetitive manner [1]. In recent years,due to preferences for small lot production [14], [41], [42] and maintenance demands [43], [44], transient periods including start-up and close-down processes increase to a large proportion during the whole wafer fabrication. The work in[45] studies a generalized backward sequence and workloadbased conditions to minimize makespan for scheduling such transient processes of single-arm cluster tools with parallel PMs. Kimet al. [46] developed latest and earliest starting policies to minimize start-up and close-down periods for dualarm cluster tools under wafer residency time constraints. For start-up and close-down periods of single-arm cluster tools with wafer residency time constraints, the work in [47]–[49]analyzes schedulability conditions and finds optimal schedules. Kimet al. [50] investigate the scheduling problem of start-up and close-down periods for cluster tools subject to task time variation and wafer residency time constraints.

    Thanks to significant advancements of semiconductor nanomaterial [51], such as carbon nanotubes and graphene,up-to-date wafer circuit line width has been reduced to less than ten nanometers. As an example, CVD involves a chemical reaction between a mixture of gasses and a wafer’s surface that takes place at temperatures up to 1000oC. For thin line width circuits, there are complex and delicately controllable growth kinetic and reactions to form the circuit layer (s) through CVD. The duration of certain sub-steps has a great influence on the high-quality synthesis of monolayer,bilayer, or few-layer graphene [52]. The quality of devices fabricated on a wafer is heavily dependent on reaction time[51], [53]. Thus, there is an upper-limit with regards to time for which a wafer may stay in a chamber after its processing.If the wafer remains in the chamber past this time limit, it would typically be scrapped. It is crucial to minimize postprocessing time for large wafers so that their surfaces absorb fewer by-products in the chamber and can be fabricated uniformly [52]. Therefore, it is desirable to maximize the productivity of wafer fabrication, while minimizing the postprocessing time to satisfy the requirement for yielding highquality circuits.

    To the authors’ best knowledge, this issue has not been tackled in the literature yet. The main difference between this work and the prior work on scheduling cluster tools is that the latter [3], [10], [13], [54], including our previous work [32],[49], does not consider post-processing time minimization.Since post-processing time minimization and throughput maximization may be in conflict, it can be extremely challenging to find an optimal schedule to optimize both.Furthermore, determining a one-wafer schedule which is simple and easy to understand and implement by practitioners is not obvious. The semiconductor industry prefers one-wafer cyclic scheduling during which after a sequence of robot actions is performed, a cluster tool maintains the exact same state throughout the entire process [10]. Owing to the high capital cost of cluster tools, maximizing throughout is of significant importance in wafer fabrication, we aim to achieve minimization of post-processing time. Despite the scheduling algorithms in prior work which guarantees that postprocessing time does not exceed its upper-limit, it is not advised that the post-processing time of a wafer is longer at some steps while it is shorter at other steps because of quality considerations.

    This work has twofold contributions: 1) an optimal onewafer cyclic schedule that maximizes a cluster tool’s throughput is found and then the post-processing time is minimized for single-arm cluster tools; and 2) the postprocessing time difference among the processing steps is minimized as much as possible. This work proposes algorithms to get an exactly optimal solution in linear-time method instead of a population-based optimization one[55]–[58].

    The remainder of this paper is structured as follows. Section II presents the fundamental temporal properties of scheduling single-arm cluster tools. Section III presents algorithms to find a schedule that can minimize cycle time and total postprocessing time for single-arm cluster tools. Section IV demonstrates the application of the proposed algorithms.Section V summarizes this work.

    II. Temporal Properties of Single-arm Cluster Tools

    Withnprocessing steps in a cluster tool, letandFor easy presentation, suppose that each processing step is configured with one PM. For the example shown in Fig. 1, without loss of generality, it is assumed that the wafer processing route is 〈 LL→ PM1→PM2→ PM3→ PM4→ LL〉. For single-arm cluster tools, letλandμdenote the time taken for robot loading/unloading a wafer into/from LLs, and robot moving between any two PMs or between a PM and an LL, respectively. Letωidenote robot waiting time before unloading a wafer from PMi. If the workload bottleneck is the robot, the cluster tool runs in a transport-bound mode; while if the bottleneck is a PM, it runs in a process-bound mode. Backward scheduling is optimal for the steady state of single-arm cluster tools operating in a process-bound mode [10]. By this scheduling rule, the robot performs the operation sequence as follows:

    〈 moving to PMn→ waiting there forωntime units →unloading a wafer from PMn→ moving to LLs → loading the wafer into LLs → moving to PMn–1→ waiting there forωn–1time units → unloading a wafer from PMn–1→ moving to PMn→ loading the wafer into PMn→ moving to PMn–2→waiting there forωn–2time units → unloading a wafer from PMn–2→…→ unloading a wafer from PM1→…→ moving to LLs → waiting there forω0time units → unloading a wafer from LLs → moving to PM1→ loading the wafer into PM1→moving to PMnagain〉.

    Letαidenote the wafer processing time at Stepior PMi.After a wafer is completed at Stepi, it cannot stay there for more thanδi(≥ 0) time units, which is also the upper limit of post-processing time at Stepi. Some temporal properties of single-arm cluster tools are recalled as follows [32].

    The robot cycle time is

    where the robot’s task timeψ1= 2(n+ 1)(λ+μ) is a constant,whileis its waiting time in a cycle.

    At Stepi, the lower bound time required to finish a wafer is

    and the upper bound time required to finish a wafer is

    Letτidenote the wafer sojourn time at Stepi. A wafer should stay in PMiforτi≥αitime to complete its processing,which can be calculated as

    III. Post-processing Time-aware Scheduling

    Letri=τi–αidenote the post-processing time at Stepi. By(4), it is known that ifωi–1increases, thenridecreases. The key issue is to minimize the total postprocessing time

    For a single-arm cluster tool in a process-bound mode, its lower bound of cycle time isWhen a cluster tool operates in a one-wafer cyclic schedule, the robot and all the processing steps operate in a paced way, i.e.,ψ=Π. Our goal is to schedule the robot to achieve its cycle time as Π so as to minimize the cycle time for a tool. To avoid violating wafer residency time constraints, schedulability conditions must be established. Upon these conditions,schedules are found to optimize these two objectives. In (1),we havewhich implies that if a feasible schedule exists, we must properly assignintosuch that the obtained schedule is feasible. When the cycle time is minimal and wafer residency time constraints are satisfied,must be minimized in order to guarantee high-quality circuits on a wafer. Furthermore, whenis minimized,one must have a uniform substrate across the wafer, or the post-processing time should be evenly distributed among the processing steps. Note that there may be a variety of feasible schedules by assigningintoThe optimal one achieves the uniformity amongri’s orri=rj,i,. To obtain such a result, we minimize the sum of post-processing timeri’s, which is one of the objectives. In this work, sinceλ,μ, andαi’sare constants, ifωi’s are determined, a schedule is found as well.

    Based on the above discussion, we propose Algorithm 1 to assignψ2intoso as to obtain a schedule. To calculate a schedule, we must ensure that a feasible schedule exists, since otherwise, it is meaningless. There are two cases where a feasible schedule exists.Case 1:One of the following conditions should be met:1) Π ≤ ΠiUandand 2)Note that |V| denotes the cardinality of setV. Condition 1)means that the workloads of all processing step are relatively balanced and the cluster tool is process-bound, while Condition 2 says that the robot is always busy, i.e., the cluster tool is transport-bound.

    Algorithm 1. Scheduling single-arm cluster tools for Case 1 i ∈Nn Input: λ, μ, αi, δi ( )Output: ωi (i Ωn)1. ψ1 ← 2(n + 1)(λ + μ)∈2. ΠiL ← αi + 4λ + 3μ and ΠiU ← ΠiL + δi, i ∈ n N i ∈Nn 3. Π ← max{ΠiL, }i ∈Nn 4. If Π ≤ ΠiU and ψ1 ≤ Π, Then 6. ωi–1 ← min{Π – (αi + 4λ + 3μ), Π –ψ1 – }for {1}5. ω0 ← min{Π – (α1 + 4λ + 3μ), Π –ψ1} ∑k∈?i?1{i?1}ωk i ∈Nn

    ∑n?1 i=0 ωi 7. ωn ← Π –ψ1 –i ∈Nn 8. ri ← Π – (αi + 4λ + 3μ + ωi–1) for 9. r0← Π – (4λ + 3μ + ωn)i ∈Nn 10. V ← {i| (ΠiL < Π and ωi–1> 0) or (ri > 0 and ωi–1 = 0),}11. If (ωn > 0 and r0 = 0) Then V ← V ∪ {0} EndIf∑i∈V ri 12. Δ ← / |V|13. If Δ ≤ Π – (αi + 4λ + 3μ) and i V Then∈∈14. For each i V do 15. ri ← Δ 16. If i ≠ 0 Then ωi–1 ← Π – (αi + 4λ + 3μ + ri)17. Else ω0 ← Π – (α1 + 4λ + 3μ + r1)18. EndIf 19. EndFor 20. EndIf 21. EndIf i ∈Nn 22. If ΠiL ≤ ψ1 ≤ ΠiU ( ) Then 23. ωi ← 0, for i Ωn 24. EndIf∈

    The following result is given to show the optimality of the obtained schedule via Algorithm 1.

    Theorem 1:For single-arm cluster tools subject to wafer residency time constraints, if one of the two conditions: 1) Π ≤ΠiUand ψ1≤ Π,and 2)is satisfied, Algorithm 1 finds a schedule to reach the lower bound of cycle time and minimize total post-processing time.

    Proof:Set the lower bound Π as the cycle time of a cluster toolψ= Π, or the minimal cycle time. Next, we check: a)whether a feasible schedule with cycle time Π can be constructed or not to meet the residency constraints under one of the given conditions; and b) minimize the post-processing time

    By Line 5 of Algorithm 1, ifω0= Π – (α1+ 4λ+ 3μ) < Π–ψ1, thenτ1= Π – (4λ+ 3μ+ω0) =α1is minimized and[α1,α1+δ1]. Ifω0= Π –ψ1< Π – (α1+ 4λ+ 3μ),ω0is maximized because no more time than Π –ψ1can be assigned toω0. Then,τ1is minimized andτ1= Π – (4λ+ 3μ+ω0) = Π –(4λ+ 3μ) – (Π –ψ1) ≥ Π – (4λ+ 3μ) – (Π – (α1+ 4λ+ 3μ)) =α1,τ1= Π – (4λ+ 3μ+ω0) ≤ Π1U– (4λ+ 3μ+ω0) ≤ Π1U– (4λ+ 3μ) =α1+δ1.

    By Line 6 of Algorithm 1, ifωi–1= Π – (αi+ 4λ+ 3μ) < Π–ψ1, thenτi= Π – (4λ+ 3μ+ωi–1) =αiis minimized andIfωi–1= Π –ψ1–≤ Π – (αi+ 4λ+3μ),ωi–1is maximized because no more time than Π –ψ1–can be assigned toωi–1. Then,τiis minimized andτi= Π – (4λ+ 3μ+ωi–1) ≥ Π – (4λ+ 3μ+ (Π – (αi+ 4λ+3μ))) =αi, andτi= Π – (4λ+ 3μ+ωi–1) ≤ ΠiU– (4λ+ 3μ+ωi–1) =αi+δi–ωi–1≤αi+δi.

    Thus, wafer residency constraints are satisfied whenΩn) is set by Lines 5–7 of Algorithm 1 whileminimized. Then, Lines 8–20 intend to readjust the postprocessing time evenly for Steps inand0) or (ri> 0 andωi–1= 0),Furthermore, during the adjustment process,keeps unchanged.

    If Δ ≤ Π – (αi+ 4λ+ 3μ)holds in Line 13, then, by Lines 16 and 17, we haveωi–1= Π – (αi+ 4λ+ 3μ+ Δ) ≥ Π –(αi+ 4λ+ 3μ+ Π – (αi+ 4λ+ 3μ)) = 0 (i≠ 0) andω0= Π – (α1+ 4λ+ 3μ+ Δ) ≥ Π – (αi+ 4λ+ 3μ+ Π – (αi+ 4λ+ 3μ)) = 0.Obviously, forri= Δ > 0 andri= Δ ≤ Π – (αi+ 4λ+ 3μ)≤ ΠiU– (αi+ 4λ+ 3μ) =δi.

    So far, we can conclude that if one of the given conditions in this theorem is satisfied, Algorithm 1 can find a schedule that minimizes both the cycle time and wafer post-processing time. ■

    By Lines 5–7, Algorithm 1 initially finds a schedule with both cycle time and wafer post-processing time being minimized. Lines 8–20 make efforts to readjust postprocessing time evenly for some steps. This adjustment can avoid unnecessarily excessive post-processing time, which is beneficial in improving the quality of the fabricated wafer.

    In Algorithm 1, all the statements make calculations based on closed-form expressions. The number of iterations in the For-loop of Lines 14–19 cannot be greater thann. It is obvious that the computational complexity of Algorithm 1 is

    Case 2:which implies that the workloads of the processing steps are unbalanced. In this case,Algorithm 2 is proposed to determine whether a feasible schedule can be found, and whether the lower bound of cycle time of the found schedule is reached.

    Algorithm 2. Scheduling single-arm cluster tools for Case 2 i ∈Nn Input: λ, μ, αi, δi ( )Output: Γ, ωi (i Ωn)1. Γ ← True, ψ1 ← 2(n + 1)(λ + μ)∈2. ΠiL ← αi + 4λ + 3μ, ΠiU ← ΠiL + δi, i ∈Nn i ∈Nn 3. Π ← max{ΠiL, }∈Nn Nn 4. E ← {k|ΠkU < Π, k }, F ← E 5. ωi–1 ← Π – (αi + δi + 4λ + 3μ), for i E∈∈6. ωi–1 ← 0, for i F∑i∈E ωi?1 7. If > Π – ψ1 Then 10. G ← {i| i F and ΠiL < Π}∈8. Γ ← False, return //Unschedulable.9. EndIf∈11. ωi–1 ← 0, i F G∑i∈E ωi?1 12. ψ ← Π – ψ1 –i∈G(Π?(αi+4λ+3μ))13. h ←∑14. If ψ > h Then 15. ωi–1 ←Π – (αi + 4λ + 3μ), i G 16. ωn ← ψ – h∈∈Nn 17. ri ← Π – (αi + 4λ + 3μ + ωi–1) for i 18. Else Υ 19. ← h –ψ, H ← G 20. ωn ← 0 21. Do∈ Υ/|H|22. A ← {i| i H and > Π – (αi + 4λ + 3μ)}?23. If A ≠ Then∈24. ri ← Π – (αi + 4λ + 3μ), i A

    25. ωi–1 ← Π – (αi + 4λ + 3μ + ri), i A Υ Υ ∑i∈A ri 26. ← – , H ← H A∈27. If < 0 Then goto Adjust EndIf 28. Else Υ Υ/|H|∈29. ri ← , i H 30. ωi–1 ← Π – (αi + 4λ + 3μ + ri), i H Υ Υ ∑i∈H ri 31. ← –∈32. H ←33. EndIf?34. While H ≠Υ?35. If < 0 Then 36. Adjust: ψG ← 0∈37. For i G 38. ωi–1 ← min{Π – (αi + 4λ + 3μ), ψ – ψG}39. ri ← Π – (αi + 4λ + 3μ + ωi–1)40. ψG ← ψG + ωi–1 41. EndFor 42. EndIf 43. EndIf

    Theorem 2:IfAlgorithm 2 can determine whether a feasible schedule exists. If it does,Algorithm 2 can find a schedule that minimizes both the cycle time and post-processing time.

    Proof:By Line 4 of Algorithm 2, we haveFor Stepsi∈E, since the cycle time of every step must be identical to obtain a one-wafer cyclic schedule,ωi’s (i∈E) must be set by Line 5, which means thatωi’s (i∈E) have been maximized. Thus, byτi= Π – (4λ+ 3μ+ωi–1),τi’s (i∈E) are minimized.

    Case A:ψ>h.

    Case B:ψ≤h.

    Lines 4, 12, 20, and 22 of Algorithm 2 present thatA= {i|iimplying that ΠiL< Π ≤ΠiUand> Π – (αi+ 4λ+ 3μ).

    IfA≠> Π – (αi+ 4λ+ 3μ), then by Lines 24 and 25, we haveωi–1= Π – (αi+4λ+ 3μ+ Π – (αi+ 4λ+ 3μ))= 0 for StepsThus, by Line 24,ri= Π – (αi+ 4λ+ 3μ) ≥ΠiL– (αi+ 4λ+ 3μ) = 0,ri≤ ΠiU– (αi+ 4λ+ 3μ) =δi. By Line 27, ifi.e., there aretime units that can be assigned to the post-processing time at the steps inH. Ifholds, then it leads to a contradictory as follows. Ifthenh–ψ–orIf Line 27 is removed and allare set by this “do-while” loop in Lines 21–34, then4λ+3μ))?. Equation (1) and Lines 11, 12 and 20 implyThus,which is contradictory to the aforementionedbecause ofThereby, ifoccurs in Line 27, Lines 36–41 can resetωi–1’sBy Line 38, ifωi–1= Π – (αi+4λ+ 3μ) <ψ–ψG, thenri= Π – (αi+ 4λ+ 3μ+ωi–1) = 0 is minimized. By Line 38, ifψ–ψG< Π – (αi+ 4λ+ 3μ), then there areψ–ψGtime units available to be assigned toωi–1, orωi–1=ψ–ψGis maximized. Then,ri= Π – (αi+ 4λ+ 3μ+ωi–1) = Π – (αi+ 4λ+ 3μ+ψ–ψG) > Π – (αi+ 4λ+ 3μ+ (Π –(αi+ 4λ+ 3μ))) = 0 andri= Π – (αi+ 4λ+ 3μ+ψ–ψG) ≤ Π –(αi+ 4λ+ 3μ+ 0) ≤ ΠiU– (αi+ 4λ+ 3μ) =δibecause ofψ–ψG≥ 0.

    Algorithm 2 deals with the situation ofwhich indicates that some steps have heavier workloads than others. Given the lower bound of cycle time, robot waiting timeis assigned in advance. After its assignment,one can decide if the cluster tool is schedulable as done in Line 7. Then we compare the workload of the robot with those of the processing steps, and if the robot is fast enough, the post-processing time can be minimized to be zero, which is implemented in Lines 15–17. If not, there is non-zero postprocessing time for StepsThen, the sum of them, i.e.,is minimized andis set evenly, as implemented in Lines 19–42.

    In Algorithm 2, all the statements make calculations based on closed-form expressions. The count of iterations in Lines 21–34 and 37–41 cannot be greater thann. It is obvious that the computational complexity of Algorithm 2 isO(n).

    IV. Examples

    In this section, we demonstrate how to apply the proposed method to find schedules for bi-objective problems. The time unit is seconds and is omitted thereafter. Letdenote the post-processing time if a cluster tool is scheduled by a conventional method that does not consider minimizing the post-processing time.

    Example 1:There are four steps in a single-arm cluster tool where every step is equipped with one PM. The robot waiting time is found by Algorithm 1. The activity time, wafer residency time constraints and the post-processing time at each step (excluding Step 0 or LLs) is given as follows:

    If the existing algorithms in [32] are applied to find an optimal schedule, we obtain post-processing time as= (16, 0, 14, 16) andBy our algorithm, the total post-processing time is decreased by 60.9%. Furthermore,is evenly distributed among the four steps.

    The schedules obtained by Algorithm 1 and previous work in [32] are shown by Gantt charts in Fig. 2 . The postprocessing time is indicated by red bars in Figs. 2–4.

    Example 2:There are four steps in a single-arm cluster tool where every step is equipped with one PM. It satisfiesThe schedulability condition≤ Π –ψ1holds. Thus, the robot waiting time are found by Algorithm 2. The activity time, wafer residency time constraints, and the post-processing time at each step(excluding Step 0 or LLs) are

    Case 1:ψ>h.

    If the algorithms in [32] are applied to find an optimal schedule, we have= (20, 0, 10, 20) andThe total post-processing time is decreased by 20%. The schedules obtained by Algorithm 2 and previous work in [32] are shown by Gantt charts in Fig. 3.

    Case 2:ψ

    The algorithms in [32] find an optimal schedule with= (10, 0, 2, 14) andThe total postprocessing time is decreased by 30.8%. The schedules obtained by Algorithm 2 and previous work in [32] are shown by Gantt charts in Fig. 4.

    We conclude that the proposed algorithms can find the same optimal-cycle-time schedule as the existing ones [32] but with significantly reduced post-processing time.

    V. Conclusions

    Fig. 2. Gantt chart for Example 1.

    Fig. 3. Gantt chart for Case 1 of Example 2.

    Fig. 4. Gantt chart for Case 2 of Example 2.

    Cluster tools are extensively adopted for wafer fabrication equipment in the semiconductor manufacturing industry.Wafers are fabricated in a complex chemical reaction environment where there are mixed gases and hightemperature heat. Characteristics of new materials and highquality chips require that after their processing is completed,they should leave the processing chamber as soon as possible.The existing research ensures that post-processing time does not exceed the upper limit only. In order to obtain high-quality integrated circuits with advanced process control, this work considers two optimization objectives for single-arm cluster tools subject to wafer residency time constraints. It not only considers the maximization of the throughput but also minimizes wafer post-processing time in processing chambers. When the throughput is maximized and wafer residency time constraints are satisfied, we make efforts to shorten wafer sojourn time after a wafer is processed to avoid uneven post-processing time among the processing steps.Therefore, the obtained schedules are significantly better for fabricating high-quality wafers which are not seen in the existing reports to our best knowledge. In the future, we intend to answer how to schedule multi-cluster tools with multiple optimization goals.

    最新的欧美精品一区二区| 亚洲精品久久成人aⅴ小说| 9热在线视频观看99| 精品国产乱子伦一区二区三区 | 精品一区二区三区四区五区乱码| 久久天堂一区二区三区四区| 午夜视频精品福利| 中文字幕高清在线视频| 亚洲国产av新网站| 一区在线观看完整版| 母亲3免费完整高清在线观看| 国产一区二区三区在线臀色熟女 | 亚洲专区字幕在线| 色视频在线一区二区三区| 高清av免费在线| 国产男人的电影天堂91| 国产熟女午夜一区二区三区| 俄罗斯特黄特色一大片| 亚洲国产日韩一区二区| av视频免费观看在线观看| av天堂在线播放| 精品国产超薄肉色丝袜足j| 亚洲自偷自拍图片 自拍| 亚洲精品久久午夜乱码| 搡老乐熟女国产| 少妇的丰满在线观看| 在线观看免费日韩欧美大片| 国产黄色免费在线视频| 美女脱内裤让男人舔精品视频| avwww免费| 亚洲伊人色综图| 老汉色∧v一级毛片| 亚洲成人手机| 日本av手机在线免费观看| 桃花免费在线播放| 日本wwww免费看| 成年人黄色毛片网站| av超薄肉色丝袜交足视频| 黑丝袜美女国产一区| 精品久久久久久久毛片微露脸 | 国产免费福利视频在线观看| 99国产综合亚洲精品| www.av在线官网国产| 欧美黑人欧美精品刺激| 另类亚洲欧美激情| 91麻豆精品激情在线观看国产 | 一区福利在线观看| 日本91视频免费播放| 久久久精品区二区三区| 精品福利观看| 天堂俺去俺来也www色官网| 亚洲熟女毛片儿| 韩国高清视频一区二区三区| 欧美 亚洲 国产 日韩一| 91大片在线观看| 人妻久久中文字幕网| 午夜成年电影在线免费观看| 制服人妻中文乱码| 国产成人av激情在线播放| 夫妻午夜视频| 日本猛色少妇xxxxx猛交久久| 日本猛色少妇xxxxx猛交久久| 正在播放国产对白刺激| 久久ye,这里只有精品| 高潮久久久久久久久久久不卡| 免费在线观看日本一区| 精品国内亚洲2022精品成人 | 一二三四在线观看免费中文在| 高清欧美精品videossex| 91精品国产国语对白视频| 制服人妻中文乱码| av天堂久久9| 免费在线观看日本一区| 免费在线观看日本一区| 美女福利国产在线| xxxhd国产人妻xxx| av又黄又爽大尺度在线免费看| 国产成人啪精品午夜网站| 久久久久国产一级毛片高清牌| 国产成人免费观看mmmm| 亚洲国产欧美在线一区| 欧美少妇被猛烈插入视频| 色婷婷av一区二区三区视频| 免费在线观看黄色视频的| 免费人妻精品一区二区三区视频| 欧美精品一区二区大全| 在线看a的网站| 欧美xxⅹ黑人| 国产精品自产拍在线观看55亚洲 | 国产精品欧美亚洲77777| bbb黄色大片| 视频区图区小说| 18在线观看网站| 国产成人啪精品午夜网站| 亚洲国产av新网站| 午夜福利影视在线免费观看| 亚洲国产日韩一区二区| 国产xxxxx性猛交| 精品人妻在线不人妻| 国产精品一二三区在线看| av线在线观看网站| 日韩 欧美 亚洲 中文字幕| 国产又色又爽无遮挡免| 国产三级黄色录像| 成年美女黄网站色视频大全免费| 欧美精品一区二区免费开放| 桃花免费在线播放| 中国国产av一级| 国产免费一区二区三区四区乱码| 超碰成人久久| 手机成人av网站| 韩国高清视频一区二区三区| 国产日韩欧美亚洲二区| 精品乱码久久久久久99久播| 女性生殖器流出的白浆| av超薄肉色丝袜交足视频| 久久性视频一级片| 极品人妻少妇av视频| www.精华液| 精品高清国产在线一区| a 毛片基地| 午夜精品国产一区二区电影| 午夜免费观看性视频| 女人久久www免费人成看片| 永久免费av网站大全| 午夜精品久久久久久毛片777| 国产精品免费大片| 精品国内亚洲2022精品成人 | 久久人人97超碰香蕉20202| 欧美 日韩 精品 国产| 国产精品久久久av美女十八| www.av在线官网国产| 丝袜人妻中文字幕| 日本vs欧美在线观看视频| 精品少妇久久久久久888优播| 成年人午夜在线观看视频| 自线自在国产av| 国产淫语在线视频| 久久久国产精品麻豆| 中国美女看黄片| 一区在线观看完整版| 中文精品一卡2卡3卡4更新| 久久久久久久精品精品| 精品久久久精品久久久| 纯流量卡能插随身wifi吗| 亚洲,欧美精品.| 国产一区二区激情短视频 | 视频区图区小说| 熟女少妇亚洲综合色aaa.| 免费在线观看日本一区| 午夜激情av网站| 亚洲精品一区蜜桃| 一本一本久久a久久精品综合妖精| 一二三四社区在线视频社区8| 国产精品av久久久久免费| 大香蕉久久成人网| 精品久久久久久电影网| 免费av中文字幕在线| 一区二区三区四区激情视频| 在线 av 中文字幕| www.自偷自拍.com| 在线观看人妻少妇| 国产在线一区二区三区精| 青春草视频在线免费观看| tube8黄色片| 成年人免费黄色播放视频| 天天操日日干夜夜撸| 99热网站在线观看| 久久人人爽av亚洲精品天堂| 亚洲自偷自拍图片 自拍| 黄网站色视频无遮挡免费观看| www.自偷自拍.com| 日韩欧美一区视频在线观看| 国产精品一区二区在线不卡| 亚洲免费av在线视频| 亚洲欧美日韩高清在线视频 | a 毛片基地| 人人妻,人人澡人人爽秒播| 精品少妇黑人巨大在线播放| 久久久久久久久久久久大奶| 精品久久久久久电影网| 天堂8中文在线网| 曰老女人黄片| 十八禁高潮呻吟视频| 国产精品二区激情视频| 国产成人精品无人区| 老司机午夜十八禁免费视频| 91大片在线观看| 国产精品久久久久久精品电影小说| 999久久久国产精品视频| 一本一本久久a久久精品综合妖精| 伊人亚洲综合成人网| 少妇的丰满在线观看| 精品国产国语对白av| 日韩中文字幕欧美一区二区| 精品国产一区二区三区四区第35| 五月开心婷婷网| 91国产中文字幕| 午夜激情久久久久久久| 亚洲av片天天在线观看| 纯流量卡能插随身wifi吗| 亚洲男人天堂网一区| 亚洲黑人精品在线| 老司机午夜十八禁免费视频| 丰满迷人的少妇在线观看| 欧美激情久久久久久爽电影 | 欧美成狂野欧美在线观看| 久久久精品94久久精品| 我要看黄色一级片免费的| 亚洲精品国产区一区二| 日韩欧美一区视频在线观看| 久久中文字幕一级| 国产极品粉嫩免费观看在线| 欧美精品av麻豆av| 国产成+人综合+亚洲专区| 日韩欧美国产一区二区入口| www.999成人在线观看| 美女大奶头黄色视频| 一本色道久久久久久精品综合| 精品少妇久久久久久888优播| 精品少妇一区二区三区视频日本电影| 国产野战对白在线观看| 国产一区二区三区综合在线观看| 老鸭窝网址在线观看| 夜夜夜夜夜久久久久| 王馨瑶露胸无遮挡在线观看| 亚洲精品中文字幕在线视频| 亚洲精品久久成人aⅴ小说| 亚洲欧美一区二区三区黑人| 免费在线观看黄色视频的| 夫妻午夜视频| www日本在线高清视频| 老熟妇仑乱视频hdxx| av视频免费观看在线观看| 天堂中文最新版在线下载| 女警被强在线播放| 久久99热这里只频精品6学生| 老司机在亚洲福利影院| 日韩视频在线欧美| 中文字幕另类日韩欧美亚洲嫩草| 在线观看免费午夜福利视频| 大片电影免费在线观看免费| 日韩免费高清中文字幕av| 自线自在国产av| 99国产精品免费福利视频| 嫁个100分男人电影在线观看| 国产精品欧美亚洲77777| 欧美激情久久久久久爽电影 | 精品久久蜜臀av无| 一区二区三区四区激情视频| 丝袜在线中文字幕| 十八禁网站免费在线| 成人黄色视频免费在线看| 国产精品欧美亚洲77777| 老司机深夜福利视频在线观看 | 欧美成狂野欧美在线观看| 黑人猛操日本美女一级片| 久久国产亚洲av麻豆专区| 18禁观看日本| 深夜精品福利| 久久香蕉激情| 日本av手机在线免费观看| 蜜桃国产av成人99| 亚洲男人天堂网一区| 嫁个100分男人电影在线观看| 午夜成年电影在线免费观看| 美女国产高潮福利片在线看| 国产精品久久久av美女十八| 精品国产乱码久久久久久男人| 桃花免费在线播放| 精品高清国产在线一区| 亚洲专区中文字幕在线| 欧美激情极品国产一区二区三区| 久久久国产成人免费| 日本av手机在线免费观看| 一本大道久久a久久精品| a级毛片黄视频| 91字幕亚洲| 91成人精品电影| 久久99一区二区三区| 亚洲成国产人片在线观看| 中文字幕精品免费在线观看视频| 少妇精品久久久久久久| 国产成人精品久久二区二区91| av网站在线播放免费| 免费在线观看视频国产中文字幕亚洲 | 欧美激情久久久久久爽电影 | 久久天躁狠狠躁夜夜2o2o| 99香蕉大伊视频| 真人做人爱边吃奶动态| 伊人久久大香线蕉亚洲五| 国产男女超爽视频在线观看| 99久久国产精品久久久| 9191精品国产免费久久| av在线老鸭窝| 久久人妻熟女aⅴ| 欧美一级毛片孕妇| 国产精品久久久久成人av| 天天躁狠狠躁夜夜躁狠狠躁| 男女免费视频国产| 国产精品欧美亚洲77777| 建设人人有责人人尽责人人享有的| 99国产精品免费福利视频| 免费观看a级毛片全部| 王馨瑶露胸无遮挡在线观看| 无遮挡黄片免费观看| 欧美精品一区二区大全| 欧美大码av| 亚洲精品在线美女| 亚洲久久久国产精品| 精品国产一区二区久久| 美女福利国产在线| 日本五十路高清| 日韩视频一区二区在线观看| 十分钟在线观看高清视频www| 我要看黄色一级片免费的| 美女午夜性视频免费| 亚洲av欧美aⅴ国产| 在线av久久热| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩熟女老妇一区二区性免费视频| 视频区图区小说| 亚洲欧美清纯卡通| 久久狼人影院| 久久性视频一级片| 啦啦啦视频在线资源免费观看| av天堂在线播放| 岛国毛片在线播放| 在线av久久热| 国产亚洲av高清不卡| 黄色视频不卡| 亚洲国产av影院在线观看| 色播在线永久视频| 欧美97在线视频| 汤姆久久久久久久影院中文字幕| 男女国产视频网站| 12—13女人毛片做爰片一| 国产男女超爽视频在线观看| 精品欧美一区二区三区在线| 亚洲va日本ⅴa欧美va伊人久久 | 一区二区三区精品91| 国产一区二区 视频在线| 亚洲精品国产av蜜桃| 欧美xxⅹ黑人| 搡老乐熟女国产| 纯流量卡能插随身wifi吗| 免费女性裸体啪啪无遮挡网站| 欧美一级毛片孕妇| 韩国高清视频一区二区三区| 女人久久www免费人成看片| 中文字幕色久视频| 午夜两性在线视频| 亚洲成av片中文字幕在线观看| 极品人妻少妇av视频| 成年人午夜在线观看视频| 亚洲精品一二三| 亚洲伊人久久精品综合| 老司机在亚洲福利影院| 国产伦理片在线播放av一区| 精品国产乱码久久久久久小说| 热99国产精品久久久久久7| 国产又色又爽无遮挡免| 亚洲天堂av无毛| 欧美日韩国产mv在线观看视频| 国产精品久久久av美女十八| 国产成人影院久久av| 少妇猛男粗大的猛烈进出视频| 在线观看一区二区三区激情| 制服诱惑二区| 不卡av一区二区三区| 欧美黑人欧美精品刺激| 极品人妻少妇av视频| 午夜激情av网站| 国产免费现黄频在线看| 欧美少妇被猛烈插入视频| 亚洲精品国产区一区二| 免费观看av网站的网址| 亚洲精品国产色婷婷电影| 亚洲精品国产av蜜桃| 亚洲av日韩在线播放| 久久99热这里只频精品6学生| 天天影视国产精品| 69精品国产乱码久久久| 亚洲自偷自拍图片 自拍| 久久亚洲国产成人精品v| 爱豆传媒免费全集在线观看| 精品第一国产精品| 啦啦啦啦在线视频资源| 亚洲av日韩精品久久久久久密| 老司机午夜福利在线观看视频 | 久久99热这里只频精品6学生| av天堂在线播放| 亚洲精品自拍成人| 亚洲 欧美一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 这个男人来自地球电影免费观看| 美女福利国产在线| av在线app专区| 国产黄色免费在线视频| 天天躁日日躁夜夜躁夜夜| 日本精品一区二区三区蜜桃| 日韩大片免费观看网站| 免费日韩欧美在线观看| 国产不卡av网站在线观看| 夜夜夜夜夜久久久久| 麻豆乱淫一区二区| 丝袜美腿诱惑在线| 国产成人av激情在线播放| 国产真人三级小视频在线观看| 制服诱惑二区| 岛国在线观看网站| 日韩,欧美,国产一区二区三区| 精品久久蜜臀av无| 妹子高潮喷水视频| 国产av精品麻豆| 欧美少妇被猛烈插入视频| 97在线人人人人妻| 国产成人影院久久av| 啦啦啦视频在线资源免费观看| 久久亚洲精品不卡| 午夜老司机福利片| 麻豆乱淫一区二区| 精品国产乱码久久久久久男人| 又紧又爽又黄一区二区| 亚洲精品国产精品久久久不卡| 高清av免费在线| 久久人人97超碰香蕉20202| 精品福利永久在线观看| 男男h啪啪无遮挡| 另类亚洲欧美激情| 日本撒尿小便嘘嘘汇集6| 亚洲中文字幕日韩| 性色av乱码一区二区三区2| 国产精品一区二区免费欧美 | 国产成人av教育| 国产精品99久久99久久久不卡| 国产在线免费精品| 免费av中文字幕在线| 国产在线一区二区三区精| 免费人妻精品一区二区三区视频| av电影中文网址| a级片在线免费高清观看视频| 亚洲国产av影院在线观看| 亚洲综合色网址| 精品久久久精品久久久| 欧美变态另类bdsm刘玥| 最新在线观看一区二区三区| 老熟妇乱子伦视频在线观看 | 三级毛片av免费| 亚洲成人免费电影在线观看| 91av网站免费观看| av国产精品久久久久影院| 亚洲精品久久成人aⅴ小说| 性少妇av在线| 侵犯人妻中文字幕一二三四区| 肉色欧美久久久久久久蜜桃| 啦啦啦视频在线资源免费观看| 欧美黑人精品巨大| 精品国产一区二区久久| 妹子高潮喷水视频| 亚洲av欧美aⅴ国产| 午夜91福利影院| 在线天堂中文资源库| 青青草视频在线视频观看| 巨乳人妻的诱惑在线观看| 99热网站在线观看| 免费在线观看影片大全网站| 一个人免费在线观看的高清视频 | 欧美国产精品va在线观看不卡| 精品少妇黑人巨大在线播放| 国产成人欧美在线观看 | 日韩大片免费观看网站| 亚洲精品成人av观看孕妇| 大陆偷拍与自拍| 日日夜夜操网爽| 国产成人系列免费观看| 国产极品粉嫩免费观看在线| 日韩中文字幕欧美一区二区| 国产成人精品久久二区二区91| 一区二区三区乱码不卡18| 精品少妇黑人巨大在线播放| 国产成人啪精品午夜网站| av在线app专区| 精品熟女少妇八av免费久了| 亚洲国产精品成人久久小说| 午夜福利免费观看在线| 我的亚洲天堂| 午夜免费观看性视频| 老司机福利观看| 精品亚洲成国产av| 亚洲国产av新网站| 少妇粗大呻吟视频| 如日韩欧美国产精品一区二区三区| 少妇 在线观看| 黄频高清免费视频| 99久久综合免费| 在线天堂中文资源库| 中国国产av一级| 亚洲成人国产一区在线观看| 欧美少妇被猛烈插入视频| 日韩电影二区| 成年女人毛片免费观看观看9 | 久久人妻熟女aⅴ| 国产免费视频播放在线视频| 成年动漫av网址| 欧美黄色淫秽网站| 国产在线一区二区三区精| 国产精品偷伦视频观看了| 97精品久久久久久久久久精品| 久久免费观看电影| 美女国产高潮福利片在线看| 久久人妻福利社区极品人妻图片| 99久久综合免费| www.av在线官网国产| 国产日韩一区二区三区精品不卡| 人妻 亚洲 视频| 高清av免费在线| 国产真人三级小视频在线观看| 可以免费在线观看a视频的电影网站| 91字幕亚洲| 中国美女看黄片| 一边摸一边抽搐一进一出视频| 亚洲欧美精品自产自拍| 国产精品久久久久成人av| 国产亚洲精品久久久久5区| 丰满少妇做爰视频| 亚洲九九香蕉| 99九九在线精品视频| av有码第一页| 精品国内亚洲2022精品成人 | 在线av久久热| videos熟女内射| 国产97色在线日韩免费| 男女午夜视频在线观看| 日本vs欧美在线观看视频| 国产在线一区二区三区精| 人人妻人人澡人人看| av线在线观看网站| 亚洲伊人久久精品综合| 国产精品影院久久| 久久久精品国产亚洲av高清涩受| 老司机靠b影院| 99热国产这里只有精品6| 999久久久国产精品视频| 精品熟女少妇八av免费久了| 韩国精品一区二区三区| 三级毛片av免费| 亚洲 国产 在线| bbb黄色大片| 国产深夜福利视频在线观看| 99热网站在线观看| 亚洲成人免费av在线播放| 性少妇av在线| 精品亚洲成国产av| 777米奇影视久久| 欧美97在线视频| 法律面前人人平等表现在哪些方面 | 视频区欧美日本亚洲| 热re99久久国产66热| 精品国产一区二区三区久久久樱花| 久久精品国产综合久久久| 精品国产一区二区三区久久久樱花| 国产免费一区二区三区四区乱码| 俄罗斯特黄特色一大片| 热re99久久国产66热| 叶爱在线成人免费视频播放| 国产精品久久久久成人av| 亚洲七黄色美女视频| 亚洲欧美精品综合一区二区三区| 一级片免费观看大全| 欧美成人午夜精品| 国产成人影院久久av| 性色av一级| 中文字幕高清在线视频| 岛国毛片在线播放| 丝袜美足系列| 中文字幕人妻丝袜制服| 国产老妇伦熟女老妇高清| 欧美精品一区二区大全| 少妇 在线观看| 久久九九热精品免费| 久久久久久久国产电影| 三级毛片av免费| 亚洲少妇的诱惑av| 亚洲国产欧美在线一区| 久久狼人影院| 欧美精品av麻豆av| 久久久久精品人妻al黑| 一区二区三区四区激情视频| 久久精品人人爽人人爽视色| 一本综合久久免费| 高清黄色对白视频在线免费看| 午夜激情av网站| 免费人妻精品一区二区三区视频| 国产成人欧美| 99热网站在线观看| 久久国产精品男人的天堂亚洲| www.精华液| 欧美黄色片欧美黄色片| 日日爽夜夜爽网站| 最近中文字幕2019免费版| 热99国产精品久久久久久7| 母亲3免费完整高清在线观看| 日韩一区二区三区影片| 久9热在线精品视频| 亚洲精品一区蜜桃| 熟女少妇亚洲综合色aaa.| 国产伦理片在线播放av一区| 精品国内亚洲2022精品成人 | 麻豆国产av国片精品| 在线观看www视频免费| 免费人妻精品一区二区三区视频| 欧美精品亚洲一区二区| 亚洲九九香蕉| 在线观看舔阴道视频|