• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pressure-induced phase transition in transition metal trifluorides

    2022-10-26 09:47:10PengLiu劉鵬MeilingXu徐美玲JianLv呂健PengyueGao高朋越ChengxiHuang黃呈熙YinweiLi李印威JianyunWang王建云YanchaoWang王彥超andMiZhou周密
    Chinese Physics B 2022年10期
    關(guān)鍵詞:周密劉鵬美玲

    Peng Liu(劉鵬) Meiling Xu(徐美玲) Jian Lv(呂健) Pengyue Gao(高朋越) Chengxi Huang(黃呈熙)Yinwei Li(李印威) Jianyun Wang(王建云) Yanchao Wang(王彥超) and Mi Zhou(周密)

    1State Key Laboratory of Superhard Materials&International Center for Computational Method and Software,College of Physics,Jilin University,Changchun 130012,China

    2Laboratory of Quantum Functional Materials Design and Application,School of Physics and Electronic Engineering,Jiangsu Normal University,Xuzhou 221116,China

    3MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing,Nanjing University of Science and Technology,Nanjing 210094,China

    Keywords: high-pressure structure transition,crystal structure prediction,high-pressure x-ray diffraction experiments,transition metal

    1. Introduction

    Transition metal trifluorides,a class of materials with the chemical formulaMF3(M=Sc, Ti, V,Cr, Mn, and so forth)have attracted considerable attentions owing to their versatile applications in negative thermal expansion materials,[1–4]batteries,[5–7]and hydrogen storage materials.[8–12]More importantly, they have been demonstrated to be ideal materials to study the Jahn–Teller and spin–orbit coupling effects.[13,14]Under ambient conditions,MF3usually adopts a simple perovskite-like structure with a completely vacant A site,[15–19]in which the metal atom is surrounded by a tilted octahedron of corner-shared fluorine atoms. Moreover, the tilting angle of the octahedron decreases with increasing temperature, causing a high-temperature phase transition to the cubic ReO3-type structure.[17,20]It is essential to note that the physical and chemical properties ofMF3are generally associated with structural parameters, such as polyhedral volume and octahedral tilt.[21–28]Therefore, investigating the structural changes inMF3will provide new insights for designing functional materials.

    It is well known that pressure is a key thermodynamic variable that modifies the crystal structure and effectively controls material properties. For example, high-pressure experiments have led to the discovery of novel materials with unique properties (e.g., high-temperature superconductors such as H3S,[29,30]LaH10,[31,32]and C–S–H[33]). The high pressure thus offers exciting opportunities for discovering new materials that do not exist under ambient conditions.[34–40]Highpressure does not necessitate the destruction of theMF6octahedron inMF3systems. In practice, the pressure-induced structural evolution is only the cooperative tilting of theMF6octahedra,[41–43]which can be summarized as follows: (i) an elongation of theMF6octahedra along thecaxis leads to a small octahedral strain, (ii) theMF6octahedral strain disappears, and(iii)MF6octahedral elongation occurs along theaaxis.

    In this work,we adopted a combination of first-principle calculations and experiments to explore the high-pressure phase of TiF3. Our results suggest that TiF3transforms from the rhombohedral (R–3c) phase to an orthorhombic (Pnma)phase at high pressure,accompanied by the destruction of the TiF6octahedra and formation of TiF8square antiprismatic units. The high-pressurePnmaphase of TiF3is confirmed by the laser-heated diamond-anvil-cell experiment and shows semiconducting character with a band gap of 2.65 eV.We further confirmed that the pressure-induced transition fromR–3ctoPnmaphase is a general trend in transition metal trifluorides,such as ScF3,VF3,CrF3,and MnF3.

    2. Methods

    Ab initiocalculations The search for TiF3structures(1–4 formula units) was performed at pressures of 20 GPa and 50 GPa via an unbiased swarm intelligence based method,Crystal structure AnaLYsis by Particle Swarm Optimization(CALYPSO),[44–46]which is designed to search for the most stable or metastable structures of given compounds.[47–57]Our first-principle calculations were based on density functional theory,[58]as implemented in the VASP package.[59]The core electrons were treated by the projector-augmented wave approximation,[60]and the exchange–correlation functional was given by the generalized gradient approximation parameterized by Perdew, Burke, and Ernzerhof.[61]The planewave cutoff energy was set to 800 eV, and Monkhorst–Packkmeshes with a spacing of 2π×0.03 ?A-1were chosen for Brillouin zone sampling to ensure that all the energy calculations converged well to~1 meV/atom. The Heyd–Scuseria–Ernzerhof(HSE)hybrid functional[62]was employed to accurately evaluate the electronic properties.The dynamic stability of the predicted structure was verified by phonon dispersion analysis using the direct supercell method,as implemented in the PHONOPY code.[63]

    Experimental procedures TiF3was obtained from Alfa Aesar and verified by powder x-ray diffraction (XRD).[16]TiF3powder, together with a ruby ball, was loaded into a symmetric diamond-anvil-cell (DAC) with a culet size of 320 μm with no pressure transmitting medium, and the pressure was determined by ruby fluorescence.[64]The sample was first compressed to 20 GPa and then heated to approximately 2000 K using a laser heating system with a diode-pumped CW ytterbium fiber laser(central wavelength of 1080 nm and maximum power of 100 W).Synchrotron XRD patterns were recorded at beamline BL10XU of Spring-8 (Japan) with a wavelength of 0.414 ?A,and the refinement was fitted using the GSAS software[65]and EXPGUI interface.[66]In situelectrical conductivity measurements, under high pressure and low temperature, were conducted in a DAC equipped with a van der Pauw-type microcircuit.[67]

    3. Results and discussion

    TiF3usually adopts a VF3-type structure with a space group ofR–3cat ambient pressure,[16,68]in which Ti is surrounded by a tilted octahedron of corner-shared fluorine atoms. The tilting angle of the octahedra decreases with an increase in temperature,leading to a phase transformation from rhombohedral to cubic at 370 K.[20]The cubic structure with thePm-3mspace group is isostructural in ReO3, consisting of the TiF6octahedra without tilt fluctuations. To determine the high-pressure structure of TiF3, we performed extensive structural searches at pressures of 20 GPa and 50 GPa. In our structural searches, all the experimental structures of the TiF3,R–3c,andPm-3mphases were successfully reproduced using the CALYPSO method, validating the reliability of our structure-searching method. In addition to the known experimental structures, an orthorhombic structure with the space group ofPnmawas successfully observed at 20 GPa.

    Enthalpy as a function of pressure for thePnmaphase relative to theR-3cphase is shown in Fig. 1(a). It is apparent that the ambient-pressure phase ofR–3ctransforms to thePnmaphase at 12 GPa, where the F atoms are in square antiprismatic coordination of the Ti atoms (Fig. 1(b)), which is isostructural to YF3at ambient pressure.[69]It is generally accepted that high-pressure phases of lighter elements or compounds in the periodic table are expected to be identical to the ambient structures of the corresponding heavier elements or compounds.[70]At 20 GPa,the largest and average Ti–F bond lengths in thePnmaphase are 2.12 ?A and 2.05 ?A,respectively,while all the bond lengths of Ti–F are equal to 1.93 ?A in theR–3cphase. Furthermore, the coordination number of Ti increases from 6 to 8,weakening individual Ti–F bonds and inducing longer Ti–F bond lengths.Interestingly,compared with theR–3cphase of TiF3,in which the A-cation site of the perovskite structure is unoccupied,the newly found high-pressurePnmaphase of TiF3can be considered a variant perovskite structure with a completely vacant B site. Thus,under certain circumstances,increasing the pressure has demonstrated to be an efficient strategy to tune the vacant coordination sites of cations in perovskites.

    We calculated the phonon dispersions of the predictedPnmaphase of TiF3at 20 GPa (Fig. 1(c)) and observed no imaginary frequencies, indicating that the predicted structure is dynamically stable. Our systematic assessment of energetic and dynamic stabilities suggests that thePnmaphase of TiF3could be realized experimentally. To verify our theoretical predictions,we performed high-pressure measurements on TiF3. The synchrotron XRD pattern of TiF3was obtained at 20 GPa after laser heating to approximately 2000 K,with Rietveld fitting as shown in Fig.1(d). The obtained peaks agree well with the predicted orthorhombicPnmastructure. The refined lattice parameters of the orthorhombicPnmastructure area=5.14 ?A,b=6.25 ?A, andc=4.38 ?A, which are in excellent agreement with our theoretical results.

    After the successful synthesis of thePnmaphase in TiF3,we investigated its bonding characteristics and electronic properties. To determine the nature of the bonding,we examined the electron localization function. A less localized charge distribution is observed in the Ti–F bonds(Fig.2(a)),indicating a significant degree of ionicity between the F anions and Ti cations. Furthermore, from Bader charge analysis,[71]the charge values on Ti and F were calculated at 20 GPa. There is a charge transfer of 1.89efrom Ti to F,comparable to that of typical ionic compounds of NaCl.[72]Moreover,the electronic band structure calculations at the HSE hybrid functional level demonstrated that thePnmaphase of TiF3is a semiconductor with a band gap of 2.65 eV(Fig.2(b)). To verify the electrical characteristics of the newly foundPnmaTiF3,anin situhigh pressure electrical conductivity measurement was conducted,based on the van der Pauw-type microcircuit technique.[73]As shown in Fig.2(c),the electrical resistance monotonically increases with decreasing temperature,confirming the semiconductor characteristics ofPnmaTiF3.

    Fig.1. (a)Enthalpy vs. pressure curves for Pnma phase of TiF3 relative to the R–3c phase. (b)Crystal structure of the Pnma phase formed by TiF8 square antiprismatic units. The Pnma structure contains 16 atoms/cell,wherein Ti atoms occupy the 4c(0.13,0.75,0.47)positions and the F atoms occupy the 8d (0.17, 0.06, 0.65) and 4c (0.03, 0.25, 0.13) positions. At 20 GPa, the optimized structural parameters are a=5.30 ?A, b=6.24 ?A,and c=4.40 ?A.(c)Phonon dispersion relations of the Pnma phase at 20 GPa. Here,the fractional coordinates of high-symmetry k points are given as follows:Γ(0,0,0),X(1/2,0,0),Y(0,1/2,0),Z(0,0,1/2),R(1/2,1/2,1/2),S(1/2,1/2,0),T(0,1/2,1/2),U(1/2,0,1/2). (d)Measured powder x-ray diffraction(XRD)pattern of TiF3 at 20 GPa with Le Bail method(XRD 2D image is given on the top).Vertical ticks correspond to Bragg peaks of the Pnma structure(pink). The refined lattice parameters of the orthorhombic Pnma structure from the XRD data are a=5.14 ?A,b=6.25 ?A,and c=4.38 ?A.The x-ray wavelength is 0.414 ?A.

    Fig. 2. (a) Calculated ELF of the Pnma phase on the (0 1 0) plane at 20 GPa, in which the bond lengths (in units of ?A) of the Ti–F bonds are shown. (b) Band structures of the Pnma structures at 20 GPa. The red and green colors denote the spin-up and spin-down bands, respectively.The energy of the topmost valence band state is set to 0 eV.Here,the high-symmetry k points are the same as those in Fig.1(c). (c)Experimental resistance–temperature curve of TiF3 at 20 GPa.

    Considering that theR–3cphase is a prototype structure of transition metal trifluorides under ambient conditions and the discovery of the high-pressure phase ofPnmain TiF3,we deliberated whether this pressure-induced phase transition is a common phenomenon in transition metal trifluorides. Thus,the neighboring metal elements Sc, V, Cr, and Mn were chosen. The enthalpies of thePmnaphase as a function of pressure with respect to theR-3cphase for ScF3, VF3, CrF3, and MnF3were calculated and shown in Fig. 3. The phase transition fromR–3ctoPnmais a general trend in those metal trifluorides,and the corresponding pressures are calculated to be 5 GPa,33 GPa,112 GPa,and 40 GPa for ScF3,VF3,CrF3,and MnF3,respectively. Therefore,the predictedPnmaphase could be a prototype structure widely adopted by transition metal trifluorides at high pressure.

    Fig. 3. Calculated enthalpies of Pmna phase as functions of pressure with respect to R–3c phase for ScF3(a),VF3(b),MnF3(c),and CrF3(d)systems.

    4. Conclusion

    In summary, by combining structure-searching methods with first-principle calculations, a pressure-inducedR-3ctoPnmaphase transition was predicted in TiF3, which was further confirmed by high-pressure experimental synthesis.The first-principle calculations and electrical measurements demonstrated that the high-pressurePnmaphase of TiF3exhibits semiconducting characteristics. Further,since theR–3cphase of TiF3is a prototype structure for transition metal trifluorides at ambient pressure, it was shown that the pressureinduced phase transition fromR-3ctoPnmais a general trend in transition metal trifluorides.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12034009, 91961204, and 11974134). Part of the calculation was performed in the high-performance computing center of Jilin University and the School of Physics and Electronic Engineering of Jiangsu Normal University.

    猜你喜歡
    周密劉鵬美玲
    Rotational manipulation of massive particles in a 2D acoustofluidic chamber constituted by multiple nonlinear vibration sources
    《公園創(chuàng)意拼貼》
    照應(yīng)周密,行文流暢
    美玲:我的幸福是與萌貨親密接觸
    金色年華(2017年10期)2017-06-21 09:46:49
    趙美玲
    Cyclic strength of sand under a nonstandard elliptical rotation stress path induced by wave loading*
    春天的早晨
    夏天的風(fēng)秋天的霧
    梅花綻放 滿園春香
    在线观看一区二区三区激情| 大陆偷拍与自拍| 国产精华一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 手机成人av网站| 少妇粗大呻吟视频| 国产精品二区激情视频| a在线观看视频网站| 精品欧美一区二区三区在线| 女性被躁到高潮视频| 日本五十路高清| 国产黄a三级三级三级人| 久久久久九九精品影院| av天堂久久9| 午夜激情av网站| 亚洲自拍偷在线| 国产黄a三级三级三级人| 中文欧美无线码| 国产av一区在线观看免费| 久久精品亚洲熟妇少妇任你| 男人舔女人下体高潮全视频| 老鸭窝网址在线观看| 99久久精品国产亚洲精品| 看黄色毛片网站| ponron亚洲| 亚洲精品美女久久久久99蜜臀| 免费看十八禁软件| 精品第一国产精品| 一级a爱视频在线免费观看| 亚洲成人精品中文字幕电影 | 熟女少妇亚洲综合色aaa.| 午夜福利影视在线免费观看| 一级a爱片免费观看的视频| 99精国产麻豆久久婷婷| 91麻豆av在线| av免费在线观看网站| 女人高潮潮喷娇喘18禁视频| 亚洲人成77777在线视频| 日本一区二区免费在线视频| 亚洲国产欧美网| 好男人电影高清在线观看| 国产一区二区三区综合在线观看| 黄色片一级片一级黄色片| 窝窝影院91人妻| 悠悠久久av| 亚洲成av片中文字幕在线观看| a在线观看视频网站| 国产人伦9x9x在线观看| 久久婷婷成人综合色麻豆| 国产精品二区激情视频| bbb黄色大片| 可以在线观看毛片的网站| 国产成人欧美| 国产精品日韩av在线免费观看 | 国产成人av激情在线播放| 国产精品98久久久久久宅男小说| 他把我摸到了高潮在线观看| 国产色视频综合| 久久人人爽av亚洲精品天堂| 日韩中文字幕欧美一区二区| 99热只有精品国产| 在线观看免费高清a一片| 国产一区二区三区视频了| 欧美黄色片欧美黄色片| 亚洲人成电影免费在线| 91九色精品人成在线观看| 亚洲精品在线观看二区| 午夜福利在线免费观看网站| 中出人妻视频一区二区| 亚洲精品成人av观看孕妇| 欧美在线黄色| 18美女黄网站色大片免费观看| 午夜成年电影在线免费观看| 久久国产精品影院| 长腿黑丝高跟| 亚洲欧美激情综合另类| 国产精品国产高清国产av| 国产又色又爽无遮挡免费看| 亚洲av熟女| 国产成人欧美在线观看| 又黄又粗又硬又大视频| 日韩欧美一区二区三区在线观看| 日韩大码丰满熟妇| 看免费av毛片| 最好的美女福利视频网| 日韩人妻精品一区2区三区| 欧洲精品卡2卡3卡4卡5卡区| 久久精品91蜜桃| 99热只有精品国产| aaaaa片日本免费| 亚洲一区二区三区不卡视频| 亚洲精品久久成人aⅴ小说| a级毛片在线看网站| svipshipincom国产片| 国产精品99久久99久久久不卡| 亚洲成人精品中文字幕电影 | 亚洲aⅴ乱码一区二区在线播放 | 亚洲男人天堂网一区| 成人亚洲精品一区在线观看| 大香蕉久久成人网| 成年女人毛片免费观看观看9| 国产亚洲精品综合一区在线观看 | 国产xxxxx性猛交| 免费观看人在逋| 成人三级做爰电影| 久久久久久免费高清国产稀缺| 99热只有精品国产| av片东京热男人的天堂| 国产精品免费视频内射| 欧美黑人欧美精品刺激| av片东京热男人的天堂| 一边摸一边做爽爽视频免费| 成人亚洲精品一区在线观看| 美女扒开内裤让男人捅视频| 三上悠亚av全集在线观看| 国产精品爽爽va在线观看网站 | 男女下面插进去视频免费观看| 国产激情久久老熟女| 久热爱精品视频在线9| 岛国视频午夜一区免费看| 久9热在线精品视频| 成人精品一区二区免费| 午夜a级毛片| 嫁个100分男人电影在线观看| 欧美最黄视频在线播放免费 | av福利片在线| 国产精品乱码一区二三区的特点 | 亚洲五月婷婷丁香| 一本综合久久免费| 久久天堂一区二区三区四区| 99久久精品国产亚洲精品| 色老头精品视频在线观看| 久久精品国产清高在天天线| 免费在线观看亚洲国产| 一级黄色大片毛片| 十八禁网站免费在线| 精品一区二区三区四区五区乱码| 侵犯人妻中文字幕一二三四区| 亚洲,欧美精品.| 久久香蕉激情| 老熟妇乱子伦视频在线观看| 91麻豆精品激情在线观看国产 | 国产又爽黄色视频| 男人操女人黄网站| 欧美国产精品va在线观看不卡| 国产av一区二区精品久久| 男人操女人黄网站| 欧美不卡视频在线免费观看 | 男人的好看免费观看在线视频 | 国产精品一区二区三区四区久久 | 国产亚洲精品久久久久5区| 国产激情久久老熟女| 999久久久精品免费观看国产| 国产精品九九99| 少妇的丰满在线观看| 黄色成人免费大全| 大陆偷拍与自拍| √禁漫天堂资源中文www| 久久精品91蜜桃| 久久久久久大精品| 亚洲精品国产色婷婷电影| 亚洲国产欧美日韩在线播放| 日韩av在线大香蕉| 一区二区三区国产精品乱码| 国产精品国产av在线观看| 久久久国产成人免费| 亚洲专区字幕在线| 亚洲精品美女久久久久99蜜臀| 亚洲成a人片在线一区二区| 老司机在亚洲福利影院| 淫秽高清视频在线观看| 两个人看的免费小视频| 久久国产精品男人的天堂亚洲| 这个男人来自地球电影免费观看| 久久精品亚洲精品国产色婷小说| 国产一区二区三区综合在线观看| 精品欧美一区二区三区在线| 天天躁夜夜躁狠狠躁躁| 超色免费av| 美女福利国产在线| 亚洲成人国产一区在线观看| 欧美丝袜亚洲另类 | 在线免费观看的www视频| 国产精品美女特级片免费视频播放器 | 欧美日本亚洲视频在线播放| 一区二区三区精品91| 精品卡一卡二卡四卡免费| 国产高清激情床上av| 久久久国产成人免费| 国产免费男女视频| 19禁男女啪啪无遮挡网站| 大码成人一级视频| www.自偷自拍.com| 桃红色精品国产亚洲av| 国产精品电影一区二区三区| 一进一出好大好爽视频| 性欧美人与动物交配| 亚洲欧美激情在线| 久久99一区二区三区| 高潮久久久久久久久久久不卡| 日韩成人在线观看一区二区三区| 别揉我奶头~嗯~啊~动态视频| 老司机亚洲免费影院| 亚洲久久久国产精品| e午夜精品久久久久久久| 侵犯人妻中文字幕一二三四区| 91成年电影在线观看| 免费久久久久久久精品成人欧美视频| 国产av在哪里看| 99riav亚洲国产免费| 亚洲国产欧美网| 亚洲精品一二三| 老司机午夜十八禁免费视频| 亚洲一区二区三区色噜噜 | 亚洲中文日韩欧美视频| 岛国视频午夜一区免费看| 国产成人欧美在线观看| 妹子高潮喷水视频| 久久久久久久久久久久大奶| 国产精品久久久久成人av| 国产成年人精品一区二区 | 男女床上黄色一级片免费看| 免费av中文字幕在线| 男人舔女人的私密视频| 黄片大片在线免费观看| 777久久人妻少妇嫩草av网站| 国产一区二区在线av高清观看| 欧美另类亚洲清纯唯美| 91成人精品电影| 一区二区三区精品91| 老司机深夜福利视频在线观看| 国产精品二区激情视频| 级片在线观看| av欧美777| 热99re8久久精品国产| 一二三四在线观看免费中文在| 90打野战视频偷拍视频| 午夜免费鲁丝| 亚洲,欧美精品.| 精品午夜福利视频在线观看一区| 男女午夜视频在线观看| 黄色片一级片一级黄色片| 女同久久另类99精品国产91| 亚洲精品中文字幕一二三四区| 高潮久久久久久久久久久不卡| 午夜福利欧美成人| 亚洲免费av在线视频| 麻豆久久精品国产亚洲av | 午夜视频精品福利| a在线观看视频网站| 两性午夜刺激爽爽歪歪视频在线观看 | 久久青草综合色| 欧美在线黄色| 首页视频小说图片口味搜索| 亚洲全国av大片| 久久天躁狠狠躁夜夜2o2o| 国产精品野战在线观看 | 麻豆一二三区av精品| 国产精品国产av在线观看| 少妇的丰满在线观看| 三上悠亚av全集在线观看| 久久久久国内视频| a级毛片黄视频| 午夜福利免费观看在线| 免费观看精品视频网站| 日本精品一区二区三区蜜桃| 法律面前人人平等表现在哪些方面| 久久欧美精品欧美久久欧美| 一区在线观看完整版| 久久国产精品影院| 日韩人妻精品一区2区三区| 美国免费a级毛片| 天堂动漫精品| 欧美大码av| 啦啦啦免费观看视频1| 国产欧美日韩综合在线一区二区| 妹子高潮喷水视频| 国产精华一区二区三区| 亚洲欧美激情在线| www.www免费av| 欧美人与性动交α欧美软件| 成在线人永久免费视频| 男男h啪啪无遮挡| 在线免费观看的www视频| 欧美另类亚洲清纯唯美| 午夜福利欧美成人| 欧美成人免费av一区二区三区| 久久人人97超碰香蕉20202| 一区二区三区精品91| 老司机在亚洲福利影院| 欧美在线一区亚洲| 欧美乱色亚洲激情| 中文字幕人妻丝袜制服| 好看av亚洲va欧美ⅴa在| 国产午夜精品久久久久久| 最新美女视频免费是黄的| 美女午夜性视频免费| 精品国产一区二区久久| 亚洲全国av大片| 如日韩欧美国产精品一区二区三区| 一二三四在线观看免费中文在| 黄频高清免费视频| 老司机深夜福利视频在线观看| 久久久久久大精品| 精品国内亚洲2022精品成人| 人人妻人人爽人人添夜夜欢视频| 国产高清国产精品国产三级| 丰满的人妻完整版| 伦理电影免费视频| 午夜免费观看网址| 最近最新中文字幕大全电影3 | 少妇 在线观看| 狠狠狠狠99中文字幕| 欧美乱码精品一区二区三区| 成在线人永久免费视频| 国产熟女xx| 亚洲精品粉嫩美女一区| 看免费av毛片| 国产一区二区在线av高清观看| 亚洲在线自拍视频| 亚洲av成人av| 久久青草综合色| 88av欧美| 看免费av毛片| 国产精品九九99| 高潮久久久久久久久久久不卡| 国产91精品成人一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 婷婷六月久久综合丁香| 久久伊人香网站| 搡老岳熟女国产| 桃色一区二区三区在线观看| 无遮挡黄片免费观看| 精品一区二区三区四区五区乱码| 久久久久亚洲av毛片大全| 国产极品粉嫩免费观看在线| 欧美一区二区精品小视频在线| 中文欧美无线码| 日韩中文字幕欧美一区二区| 香蕉国产在线看| 天堂俺去俺来也www色官网| 又大又爽又粗| 亚洲精品在线美女| 久久午夜亚洲精品久久| 成人av一区二区三区在线看| 精品熟女少妇八av免费久了| 伊人久久大香线蕉亚洲五| 欧美日韩一级在线毛片| 国产精品综合久久久久久久免费 | 少妇的丰满在线观看| 亚洲美女黄片视频| www国产在线视频色| 在线播放国产精品三级| 久久精品国产亚洲av香蕉五月| 久久久国产一区二区| 免费少妇av软件| 亚洲第一欧美日韩一区二区三区| 国产不卡一卡二| 国产成人欧美在线观看| 精品久久久久久,| 欧美丝袜亚洲另类 | 黄色视频,在线免费观看| 色播在线永久视频| 天天添夜夜摸| 国产免费男女视频| 亚洲aⅴ乱码一区二区在线播放 | 国产麻豆69| 亚洲伊人色综图| 热99re8久久精品国产| 97碰自拍视频| 欧美色视频一区免费| 热re99久久精品国产66热6| 日韩大码丰满熟妇| 久久婷婷成人综合色麻豆| 真人一进一出gif抽搐免费| 日韩中文字幕欧美一区二区| 一区在线观看完整版| 悠悠久久av| 欧美日韩福利视频一区二区| 伊人久久大香线蕉亚洲五| 三级毛片av免费| 欧美+亚洲+日韩+国产| 精品一区二区三区四区五区乱码| 亚洲成人精品中文字幕电影 | 国产深夜福利视频在线观看| 成人国语在线视频| 天天影视国产精品| 夫妻午夜视频| 国产一卡二卡三卡精品| 亚洲欧美日韩高清在线视频| 视频区欧美日本亚洲| 一级毛片高清免费大全| 久久中文字幕人妻熟女| 又黄又爽又免费观看的视频| 这个男人来自地球电影免费观看| 身体一侧抽搐| 女警被强在线播放| 无遮挡黄片免费观看| 精品欧美一区二区三区在线| 精品人妻在线不人妻| 久久久久精品国产欧美久久久| 欧美老熟妇乱子伦牲交| 亚洲精品久久午夜乱码| 亚洲av日韩精品久久久久久密| 国产亚洲精品综合一区在线观看 | 黄网站色视频无遮挡免费观看| 高清毛片免费观看视频网站 | 18美女黄网站色大片免费观看| 国产亚洲av高清不卡| 亚洲五月婷婷丁香| 男人舔女人的私密视频| 久久精品国产99精品国产亚洲性色 | 免费在线观看影片大全网站| 免费在线观看亚洲国产| 国产一区在线观看成人免费| 亚洲国产中文字幕在线视频| 88av欧美| 真人做人爱边吃奶动态| 一夜夜www| 欧美激情久久久久久爽电影 | 中文字幕最新亚洲高清| 啦啦啦 在线观看视频| 国产成人免费无遮挡视频| 99精国产麻豆久久婷婷| 成年版毛片免费区| 在线观看午夜福利视频| 热re99久久精品国产66热6| 午夜精品久久久久久毛片777| 韩国精品一区二区三区| 国产单亲对白刺激| 80岁老熟妇乱子伦牲交| 人妻丰满熟妇av一区二区三区| 久久久久久久午夜电影 | a在线观看视频网站| 麻豆久久精品国产亚洲av | 国产高清激情床上av| 制服人妻中文乱码| 色综合站精品国产| 欧美日韩瑟瑟在线播放| 男人的好看免费观看在线视频 | 亚洲美女黄片视频| 婷婷精品国产亚洲av在线| 一区二区三区精品91| 欧美成人午夜精品| 交换朋友夫妻互换小说| 又黄又爽又免费观看的视频| 亚洲av熟女| 曰老女人黄片| 最近最新中文字幕大全免费视频| 国产精品乱码一区二三区的特点 | 国产又色又爽无遮挡免费看| 桃红色精品国产亚洲av| 黑人操中国人逼视频| 99国产精品免费福利视频| 国产欧美日韩一区二区精品| 国产一区二区三区视频了| 99香蕉大伊视频| 久热爱精品视频在线9| 久久亚洲真实| 九色亚洲精品在线播放| 国产精品久久久久久人妻精品电影| 亚洲自偷自拍图片 自拍| 天堂动漫精品| 久久久久久久久免费视频了| www.999成人在线观看| 亚洲在线自拍视频| 精品国产一区二区三区四区第35| 国产精品美女特级片免费视频播放器 | 18禁黄网站禁片午夜丰满| 午夜视频精品福利| 国产成人影院久久av| 国产精品1区2区在线观看.| 一夜夜www| 看黄色毛片网站| 日韩欧美免费精品| 成人永久免费在线观看视频| 琪琪午夜伦伦电影理论片6080| 看黄色毛片网站| 大陆偷拍与自拍| 日日爽夜夜爽网站| 日本精品一区二区三区蜜桃| 久久国产精品人妻蜜桃| www.999成人在线观看| 黄色毛片三级朝国网站| 一个人免费在线观看的高清视频| 丁香六月欧美| 99国产精品免费福利视频| 成人18禁在线播放| 精品一区二区三卡| 欧美中文日本在线观看视频| 久久人人97超碰香蕉20202| 欧美日韩视频精品一区| 久久香蕉精品热| 国产精品 国内视频| 亚洲自偷自拍图片 自拍| 丝袜美腿诱惑在线| 午夜91福利影院| 亚洲狠狠婷婷综合久久图片| 国产成人精品久久二区二区免费| 国产一区二区激情短视频| 国产99久久九九免费精品| 美女高潮喷水抽搐中文字幕| 精品第一国产精品| 亚洲男人天堂网一区| 精品久久久久久久久久免费视频 | 亚洲色图 男人天堂 中文字幕| 夜夜看夜夜爽夜夜摸 | 看免费av毛片| 亚洲熟妇熟女久久| 日日爽夜夜爽网站| 午夜福利免费观看在线| 欧美日韩国产mv在线观看视频| 亚洲av日韩精品久久久久久密| 香蕉丝袜av| 亚洲色图av天堂| 中文字幕人妻熟女乱码| 美女大奶头视频| 国产精品一区二区免费欧美| 国产精品av久久久久免费| 精品少妇一区二区三区视频日本电影| 日本wwww免费看| 午夜福利一区二区在线看| 日日夜夜操网爽| 国产成人精品久久二区二区91| 丝袜在线中文字幕| 成人三级做爰电影| 日韩三级视频一区二区三区| 国产精品国产高清国产av| 一区在线观看完整版| 免费少妇av软件| 怎么达到女性高潮| 最近最新中文字幕大全免费视频| 麻豆久久精品国产亚洲av | 深夜精品福利| 日韩国内少妇激情av| 中文欧美无线码| 亚洲国产精品999在线| 国产在线精品亚洲第一网站| 国产亚洲精品久久久久5区| 亚洲中文字幕日韩| 久久久国产成人精品二区 | 99久久99久久久精品蜜桃| 久久人妻福利社区极品人妻图片| 日韩国内少妇激情av| 一区二区日韩欧美中文字幕| 少妇裸体淫交视频免费看高清 | 亚洲国产中文字幕在线视频| 欧美国产精品va在线观看不卡| 亚洲人成网站在线播放欧美日韩| 久久人妻熟女aⅴ| 亚洲专区字幕在线| 亚洲欧美一区二区三区黑人| 两性午夜刺激爽爽歪歪视频在线观看 | videosex国产| 精品卡一卡二卡四卡免费| 少妇裸体淫交视频免费看高清 | 一边摸一边做爽爽视频免费| 国产色视频综合| 精品电影一区二区在线| 极品人妻少妇av视频| 精品久久久久久,| 午夜久久久在线观看| 久久中文看片网| 欧美最黄视频在线播放免费 | 91麻豆av在线| 国产精品国产av在线观看| 亚洲精品av麻豆狂野| 日韩欧美免费精品| 国产免费男女视频| 色精品久久人妻99蜜桃| 波多野结衣高清无吗| 久久影院123| 男女之事视频高清在线观看| 国产高清视频在线播放一区| 夫妻午夜视频| 欧美日韩亚洲综合一区二区三区_| 精品国产超薄肉色丝袜足j| 自拍欧美九色日韩亚洲蝌蚪91| 日韩三级视频一区二区三区| 亚洲欧美精品综合一区二区三区| 色婷婷av一区二区三区视频| 中文字幕人妻丝袜一区二区| 亚洲午夜精品一区,二区,三区| 日本wwww免费看| 亚洲男人天堂网一区| 日韩精品中文字幕看吧| 精品国产一区二区久久| 欧美黄色片欧美黄色片| a级毛片黄视频| 免费在线观看亚洲国产| 亚洲成av片中文字幕在线观看| 美女国产高潮福利片在线看| 很黄的视频免费| 国产精品二区激情视频| 国产乱人伦免费视频| 操美女的视频在线观看| 老汉色av国产亚洲站长工具| 欧美精品亚洲一区二区| 欧美丝袜亚洲另类 | 精品无人区乱码1区二区| 日韩欧美三级三区| 欧美精品啪啪一区二区三区| 热99re8久久精品国产| 欧美激情 高清一区二区三区| 亚洲国产精品合色在线| 黄色片一级片一级黄色片| 午夜福利,免费看| 成年版毛片免费区| 国产97色在线日韩免费| 国产一区二区在线av高清观看| 国产亚洲av高清不卡| 精品午夜福利视频在线观看一区| 90打野战视频偷拍视频| 亚洲精品国产区一区二| www.熟女人妻精品国产|