• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fault Prediction Based on Dynamic Model and Grey Time Series Model in Chemical Processes*

    2014-07-18 12:09:48TIANWende田文德HUMinggang胡明剛andLIChuankun李傳坤CollegeofChemicalEngineeringQingdaoUniversityofScienceTechnologyQingdao6604ChinaZiboWeichuangPetrochemicalDesignCoLtdZibo55400ChinaStateKeyLaboratoryofChemicalsSafetyQingdaoSafet

    TIAN Wende (田文德)**, HU Minggang (胡明剛)and LI Chuankun (李傳坤)College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 6604, ChinaZibo Weichuang Petrochemical Design Co., Ltd, Zibo 55400, ChinaState Key Laboratory of Chemicals Safety, Qingdao Safety Engineering Institute, SINOPEC, Qingdao 6607 China

    Fault Prediction Based on Dynamic Model and Grey Time Series Model in Chemical Processes*

    TIAN Wende (田文德)1,**, HU Minggang (胡明剛)2and LI Chuankun (李傳坤)31College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China2Zibo Weichuang Petrochemical Design Co., Ltd, Zibo 255400, China3State Key Laboratory of Chemicals Safety, Qingdao Safety Engineering Institute, SINOPEC, Qingdao 266071, China

    This paper combines grey model with time series model and then dynamic model for rapid and in-depth fault prediction in chemical processes. Two combination methods are proposed. In one method, historical data is introduced into the grey time series model to predict future trend of measurement values in chemical process. These predicted measurements are then used in the dynamic model to retrieve the change of fault parameters by model based diagnosis algorithm. In another method, historical data is introduced directly into the dynamic model to retrieve historical fault parameters by model based diagnosis algorithm. These parameters are then predicted by the grey time series model. The two methods are applied to a gravity tank example. The case study demonstrates that the first method is more accurate for fault prediction.

    fault prediction, dynamic model, grey model, time series model

    1 INTRODUCTION

    Chemical processes frequently involve flammable and explosive chemicals and operate under high temperature and pressure conditions. Its accidents not only result in huge economic losses but also threaten operator’s life. Detecting minor abnormal symptom and predicting its trend in time is a key to guarantee chemical production safety [1]. Some severe accidents can be avoided if operators take advantage of early warnings to detect and separate possible system faults. Fault diagnosis and fault prediction are two main methods for improving the safety of chemical industry. Fault diagnosis analyzes the data collected from chemical processes to determine whether a fault currently occurs in the process [2-4], while fault prediction utilizes the running state of chemical processes and some non-first principles model to forecast possible fault development in the near future [5-7]. In these different time domains, none of them can fulfill monitoring task completely.

    The fault prediction models in literature can be classified as qualitative trend analysis, support vector regression, kernel regression, linear regression model, grey model, and time series model [8-14]. The grey model requires a small amount of data and can give an accurate trend prediction, but has a poor adaptability to data fluctuation [15-17]. In this paper, the grey model is combined with the time series model in series to correct its residuals and improve its adaptability to data oscillation. In addition, based on our earlier work on dynamic simulation based fault diagnosis [18, 19], we combine the dynamic model with grey time series model to form a hybrid fault prediction model. We will predict non-measurable fault parameters that are critical to reflect the running state of chemical process in the near future [20-22]. The two methods of combination are discussed and their effectiveness is demonstrated with a gravity tank example.

    2 FAULT PREDICTION MODEL

    2.1 Multi-variable grey model

    General steps to build multi-variable grey model for prediction are as follows [21].

    (1) Generate original sequence using untreated data

    (2) Calculate the following sequence by summarizing the original sequence

    where ngdenotes the number of variables and Ngdenotes the sampling number for each variable. abouWte can establish continuous-time state-space model

    where

    In Eqs. (23) to (25), k is the order of criterion function and Ntis the number of sampling data. The value of k that minimizes criterion function is the suitable order for Eq. (16), so that the time series model has the best prediction accuracy.

    2.3 Combination of grey model with time series model and then dynamic model

    Grey model accumulates untreated data [Eq. (2)] to average variations between adjacent-time data and smoothes the data slightly. It excels overall trend prediction but may introduce lagging time responding to data variation. In time series model, each data at time t is considered as a linear combination of n pieces of data before time t. Because the combination reserves variation trend between adjacent-time data as much as possible, it benefits local trend prediction greatly. The combining point between grey model and time series model lies in overall smooth trend predicted by the former plus local fluctuation trend predicted by the latter to give complete data prediction.

    Grey model and time series model are good at prediction of smoothly changed data and frequently changed data, respectively. Therefore, hybrid grey time series model is proposed to utilize their advantages. It uses the grey model to predict the overall trend of data and uses the time series model to correct the prediction error produced by grey model. The prediction is done through two steps: (1) untreated data are predicted by grey model to obtain errors; (2) future data predicted by grey model plus future errors predicted by time series model are equal to final prediction values. The combination formula is The main structure of combination model is depicted in Fig. 1.

    The grey time series model is essentially a history based method, so it predicts according to existing data and cannot find the abnormal changes behind data variation. Dynamic model formulated by identifying the mathematical relationship among variables can accurately reflect the non-steady state characteristics of chemical processes. When some of measured variables change, it determines which inner variable causes such change through this dynamic mathematical relationship. This is the core ideal of fault diagnosis using dynamic model. Although some history data based fault diagnosis methods, such as principal component analysis, has simple models [23, 24], dynamic model based fault diagnosis facilitates the mapping from measurement space to fault parameter space that reflects the operating status of process. Based on our earlier work on dynamic model based fault diagnosis [18, 19], grey time series model is further combined with dynamic model to predict future development of fault when system is currently running in a controllable range. This combination model actually inputs the measurement predicted by grey time series model into dynamic model based fault diagnosis algorithm. Because these two types of model are connected from outer measurement to inner parameter in series, their combination increases fault prediction depth.

    Figure 1 The structure of grey time series model

    Figure 2 Hybrid fault prediction structure of two methods

    There are two methods to combine the grey time series model with the dynamic model, as shown in Fig. 2. In the first method, dynamic model uses the future measurement predicted by grey time series model to predict future development of fault parameters. In the second method, the past fault parameters deduced by dynamic model are used by grey time series model to predict future development of fault parameters. These two methods focus on different type of data, so their prediction of fault parameter has different accuracy. Their effectiveness is demonstrated through thesimulation of a gravity tank example in the next section.

    3 CASE STUDY

    The proposed hybrid fault prediction method is applied to a gravity tank system [25] to test its feasibility for prediction of fault parameters.

    3.1 Example description

    The gravity tank system is described in Fig. 3. It consists of a tank, an inlet pipe and an outlet pipe. The initial level in the tank is 0 m and the initial flow rate of outlet pipe is 0 m3·s?1. The inlet flow rate Fiis constant. The outlet flow rate Foincreases with liquid level h in the tank because Fois directly proportional to the bottom pressure of the tank. The tank reaches a dynamic mass balance when h approaches a value that makes Foequal to Fi.

    Because water temperature is constant in this process, heat balance is not needed and mass balance can be changed to water volume balance

    Figure 3 Diagram of gravity tank system

    Table 1 Parameters for water tank example

    Floor area, S/m2Flow rate coefficient for leaving pipe, Co/m0.5·kg1.5·s?3Water density, ρ /kg·m?3Initial flow rate coefficient for inlet pipe, Ci/m0.5·kg1.5·s?3Ambient pressure, Po/Pa Source pressure for inlet flow, Pi/Pa 1.0 0.08 1000 1.0 1.010×1051.011×105

    where

    Table 1 provides the system parameters in Eqs. (29) to (32). The leakage in the inlet pipeline, represented by the decrease of Ciin Eq. (30) from 1.0 to 0.7 at 20 h, is set as the single fault in this tank system. The measurement of Fiis located before leakage point. Although the leakage does not affect the measured input flow rate Fi, the fault does reduce the true input flow rate to the tank, which is unmeasured. It further affects water level h and output flow rate Fo. The measurement of h comes from dynamic simulation with Eq. (29) solved by fourth order Runge-Kutta algorithm. The simulation period is 60 h. The noise of h is added using normal distribution with mean and stand deviations of 0 and 0.02, respectively. The fault diagnosis and prediction program is coded in Matlab environment and tested in a computer.

    3.2 Data collection

    Data during 60 h are collected when Fi, Fo, and h arrive at steady values, shown as Fig. 4. The tank reaches a dynamic equilibrium when Fois equal to Fi. Foand h begin to decrease at 20 h, but Fikeeps unchanged. However, Eq. (29) indicates that dh/dt should increase, leading to an increasing h when Fodecreases and Fiis fixed. Disagreement between measurement and dynamic model indicates that some fault occurs in the tank system. As measurement values of Foand h conform to Eq. (29) but Fidoes not, leakage is inferred occurring at the entrance pipe of tank.

    3.3 Fault diagnosis model

    Fault diagnosis with the dynamic model in Fig. 2is based on linear square least method. With the differential of h replaced by difference, Eq. (29) can be rearranged to the following linear form

    Figure 4 The data from measurement of tank system

    3.4 Fault prediction model

    In this section, the two methods depicted in Fig. 2 for hybrid fault prediction model are applied to the gravity tank example. After leakage occurs for 20 h, 40 measurement points about h and Foare collected with a sampling interval of 1.0 h. These data, spanning 40 h, constitute training set to build grey model and then time series model. The next 5 measurement points are collected to constitute testing set to verify fault prediction result.

    3.4.1 The first prediction method

    Two-variable grey model about h and Fois built with training set. After estimating its parameters using Eq. (9), the grey prediction model [Eq. (15)] changes to the following formula

    40 measurement points about h and Foare predicted using Eq. (37). The prediction errors are shown in Fig. 5.

    Figure 5 The error of grey prediction model

    Figure 6 The value of BIC criteria function for time series model

    Figure 7 The simulation and prediction result of outlet flow rate

    To build time series model with the prediction errors from the grey model, the order of prediction error of Foand h is first determined by the BIC criteria function. Fig. 6 gives the BIC value versus order and demonstrates a minimum BIC function value when the order is equal to 20. Thus 20 is chosen as the suitable order of time series model [Eq. (16)]. The coefficients in Eq. (16) are estimated by linear least square method and listed in Table 2. Eq. (16) with coefficients listed in Table 2 is combined with Eq. (37) to obtain the grey time series model about outlet flow rate [Eq. (38)] and liquid level [Eq. (39)] of tank. Figs. 7 and 8 depictsimulation result of the 40 measurement points and prediction result for the next 5 measurement points with Eqs. (38) and (39), respectively.

    Table 2 Coefficient estimation of time series model

    Figure 8 The simulation and prediction result of liquid level

    The predicted 5 measurement points about h and Foare put into the dynamic tank model [Eqs. (29) to (32)] and then Cithat reflects leakage extent in entrance pipe are obtained through linear square method [Eq. (36)] and listed in Table 3, which shows that the first type of hybrid prediction model can predict fault parameter accurately.

    Table 3 Predicted Ciusing the first method

    3.4.2 The second prediction method

    In this section, the second method depicted in Fig. 2 is applied in the gravity tank system. After leakage occurs in tank entrance for 20 h, 40 measurement points about h and Foare put into the dynamic model [Eqs. (29) to (32)], and then entrance flow rate coefficients Cifor these time points are calculated, shown as Fig. 9.

    Figure 9 The calculated Cifor past 40 time points

    Because only Cineeds to be predicted, singlevariable grey model is chosen. Using the value of Cigiven in Fig. 9 to get its coefficients, the grey model [Eq. (15)] becomes

    Figure 10 contains the prediction error of Ciwith Eq. (40) for those 40 time points. The error value is put into the time series model [Eq. (16)] to determine its order with BIC function as criteria. Fig. 11 demonstrates the BIC value versus order, showing that BIC function is minimal when the order is equal to 20. Thus 20 is chosen as the suitable order of Eq. (16).

    Figure 10 The prediction error of Ci with grey model with the second method

    Figure 11 The value of BIC criteria function for time series model with the second method

    The time series model with coefficients obtained by linear least square method is combined with the grey model to predict Ci. The grey time series model is

    The values of Cirepresenting leakage extent in the past 40 and next 5 time points are calculated using Eq. (41), as shown in Fig. 12. Prediction error for the next 5 time points is listed in Table 4.

    Figure 12 The simulation and prediction result of of Ci

    Table 4 Predicted Ciusing the second method

    Table 4 shows that the second model also predicts fault parameters accurately. The difference between the two hybrid prediction models is specified by posterior variance test. Let S1and Si2be the variance of untreated data and prediction error, respectively. The ratio of posterior variance C is defined as

    where i denotes prediction model index.

    The ratio C is used to test prediction accuracy for these two methods. The data necessary for evaluation are listed in Table 5, which manifests that C1is less than C2, so the first method presents better prediction accuracy than the second one. Two reasons are behind such difference. The grey time series model amplifies the fault diagnosis error arising from dynamic model in the second method; the multi-variable grey model used in the first method is more accurate than the single-variable grey model used in the second method.

    Table 5 Posterior variance test data

    4 CONCLUSIONS

    Grey model is combined with time series model in series to increase its adaptability to data oscillations for fault prediction. Further, the grey time series model is combined with dynamic model because the former is good at measurement prediction while the latter is good at fault parameter acquisition through fault diagnosis. Two combination methods for such hybrid fault prediction model are proposed and successfully implemented to predict entrance flow rate coefficient in a gravity tank system. The result shows that the first method is more accurate than the second one due to its control on dynamic model error and multi-variable grey model employed. Future research will focus on the application of the first method to large-scale systems.

    NOMENCLATURE

    REFERENCES

    1 Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N., “A review of process fault detection and diagnosis Part I: Quantitative model-based methods”, Comput. Chem. Eng., 27, 293-311 (2003).

    2 Min, H.K., Chang, K.Y., “Multivariate monitoring for time-derivative non-gaussian batch process”, Korean J. Chem. Eng., 25, 947-954 (2008).

    3 Bin Shams, M.A., Budman, H.M., Duever, T.A., “Fault detection, identification and diagnosis using CUSUM based PCA”, Chem. Eng. Sci., 66 (20), 4488-4498 (2011).

    4 Srinivasan, R., Qian, M.S., “Online fault diagnosis and state identification during process transitions using dynamic locus analysis”, Chem. Eng. Sci., 61 (18), 6109-6132 (2006).

    5 Zheng, X.P., Liu, M.T., “An overview of accident forecasting methodologies”, J. Loss Prevent. Proc., 22 (4), 484-491 (2009).

    6 Yoo, C.K., Kim, M.K., Hwang S.J., Jo, Y.M., Oh, J.M., “Online predictive monitoring and prediction model for a periodic process through multiway non-gaussian modeling”, Chin. J. Chem. Eng., 16 (1), 48-51 (2008).

    7 Kim, M.J., Jiang, R., Makis, V., Lee, C.G., “Optimal Bayesian fault prediction scheme for a partially observable system subject to random failure”, Eur. J. Oper. Res., 214 (2), 331-339 (2011).

    8 Suo, R.X., Wang, F.L., “The application of combination forecasting model in Chinese energy consumption”, Mathematics in Practice and Theory, 40 (18), 80-85 (2010).

    9 Wu, Y.G., Zhu, X.F., Shi, B.H., “Control study of long time delay process based on grey predictive model”, Control Engineering of China, 14 (3), 278-280 (2007).

    10 Wang, H.Z., Yang, J.P., Yu, N., “A fault prediction based on a grey nonlinear regression model”, Journal of Ordnance Engineering College, 22 (1), 46-48 (2010).

    11 Wang, Z., Wang, Y., Zhang, J., “Grey correlation analysis of corrosion on oil atmospheric distillation equipment”, In: Proceedings of the 5th International Conference on Fuzzy System and Knowledge Discovering, Yin, Y.L., ed., IEEE, Jinan, China, 13-17 (2008).

    12 Gao, D., Wu, C.G., Zhang, B.K., Ma, X., “Signed directed graph and qualitative trend analysis based fault diagnosis in chemical industry”, Chin. J. Chem. Eng., 18 (2), 265-276 (2010).

    13 Zhang, X., Ma, S.L., Yan, W.W., Zhao, X., Shao, H.H., “A novel systematic method of quality monitoring and prediction based on FDA and kernel regression”, Chin. J. Chem. Eng., 17 (3), 427-436 (2009).

    14 Lahiri, S.K., Ghanta, K.C., “Prediction of pressure drop of slurry flow in pipeline by hybrid support vector regression and genetic algorithm model”, Chin. J. Chem. Eng., 16 (6), 841-848 (2008).

    15 Liu, S.F., Forrest, J., “The role and position of grey system theory in science development”, The Journal of Grey System, 9 (4), 351-356 (1997).

    16 Hsu, C.C., Chen, C.Y., “Applications of improved grey prediction model for power demand forecasting”, Energ. Convers. Manage., 44 (14), 2241-2249 (2003).

    17 Mao, M.Z., Chirwa, E.C., “Application of grey model GM(1, 1) to vehicle fatality risk estimation”, Technological and Social Change, 73 (5), 588-605 (2006).

    18 Tian, W. D., Sun, S.L., “On-line dynamic model correction based fault diagnosis in chemical processes”, The Chinese Journal of Process Engineering, 7 (5), 952-959 (2007).

    19 Tian, W.D., Guo, Q.J., Sun, S.L., “Dynamic simulation based fault detection and diagnosis for distillation column”, Korean J. Chem. Eng., 29, 9-17 (2012).

    20 Isermann, R., “Model-based fault detection and diagnosis—Status and application”, Annual Reviews in Control, 29, 71-85 (2005).

    21 Zhang, Z.D., Hu, S.S., “A new method for fault prediction of model-unknown nonlinear system”, Journal of the Franklin Institute, 345 (2), 136-153 (2008).

    22 Frank, P.M., Ding, S.X., Marcu, T., “Model-based fault diagnosis in technical processes”, Transactions of the Institute of Measurement and Control, 22 (1), 57-101 (2000).

    23 Li, R.Y., Rong, G.Z., “Fault isolation by partial dynamic principal component analysis in dynamic process”, Chin. J. Chem. Eng., 14 (4), 486-493 (2006).

    24 Wang, Z.F., Yuan, J.Q., “Online supervision of penicillin cultivations based on rolling MPCA”, Chin. J. Chem. Eng., 15 (1), 92-96 (2007). 25 Chiang, L.H., Russel, E.L., Braatz, R.D., “Parameter estimation”, In: Fault Detection and Diagnosis in Industrial Systems, China Machine Press, Beijing, 179-189 (2003).

    2013-08-13, accepted 2013-11-13.

    * Supported by the Shandong Natural Science Foundation (ZR2013BL008).

    ** To whom correspondence should be addressed. E-mail: tianwd@qust.edu.cn

    亚洲精品自拍成人| 国产老妇伦熟女老妇高清| 咕卡用的链子| 日韩伦理黄色片| 美女大奶头黄色视频| 日韩精品免费视频一区二区三区| 欧美成人午夜精品| 一边摸一边抽搐一进一出视频| 狂野欧美激情性xxxx| 少妇人妻 视频| 高清视频免费观看一区二区| av在线老鸭窝| 99热全是精品| 日韩免费高清中文字幕av| 久久精品久久精品一区二区三区| 夫妻午夜视频| 各种免费的搞黄视频| 黄片小视频在线播放| 热99久久久久精品小说推荐| 丝袜在线中文字幕| 欧美精品亚洲一区二区| 国语对白做爰xxxⅹ性视频网站| 亚洲色图综合在线观看| 亚洲 欧美一区二区三区| 成人三级做爰电影| 亚洲一卡2卡3卡4卡5卡精品中文| 最新的欧美精品一区二区| 十八禁人妻一区二区| 亚洲欧美精品自产自拍| 成人免费观看视频高清| 日韩欧美一区视频在线观看| a 毛片基地| 超碰成人久久| 午夜免费鲁丝| 欧美少妇被猛烈插入视频| cao死你这个sao货| 欧美在线一区亚洲| 久久国产精品大桥未久av| 久久久久精品人妻al黑| 国产欧美日韩一区二区三 | av有码第一页| 日韩 欧美 亚洲 中文字幕| 欧美亚洲日本最大视频资源| 亚洲午夜精品一区,二区,三区| 人妻人人澡人人爽人人| 啦啦啦中文免费视频观看日本| 在线观看国产h片| 国产色视频综合| 男人操女人黄网站| 亚洲激情五月婷婷啪啪| 黑丝袜美女国产一区| 成在线人永久免费视频| 黄色视频不卡| 国产精品久久久人人做人人爽| 男女午夜视频在线观看| 飞空精品影院首页| 久久人人爽人人片av| 国产精品99久久99久久久不卡| 国产精品免费视频内射| 国产精品久久久久成人av| 91九色精品人成在线观看| 国产1区2区3区精品| 亚洲欧美日韩高清在线视频 | 亚洲中文字幕日韩| 无限看片的www在线观看| 一级毛片我不卡| av国产精品久久久久影院| 日日爽夜夜爽网站| 中文字幕最新亚洲高清| xxx大片免费视频| 女警被强在线播放| 国产精品一国产av| 久久人妻熟女aⅴ| 亚洲,欧美,日韩| 男人添女人高潮全过程视频| videos熟女内射| 纯流量卡能插随身wifi吗| 婷婷成人精品国产| 一级a爱视频在线免费观看| 亚洲精品国产色婷婷电影| 日韩大片免费观看网站| 性高湖久久久久久久久免费观看| 国产精品二区激情视频| 国产不卡av网站在线观看| 欧美黑人精品巨大| 久久亚洲精品不卡| 一区在线观看完整版| 97人妻天天添夜夜摸| 97人妻天天添夜夜摸| 一本大道久久a久久精品| 亚洲色图综合在线观看| 亚洲欧洲精品一区二区精品久久久| 国产一区亚洲一区在线观看| 在线av久久热| 性少妇av在线| 后天国语完整版免费观看| 后天国语完整版免费观看| 如日韩欧美国产精品一区二区三区| 满18在线观看网站| 国产三级黄色录像| 久久毛片免费看一区二区三区| 国产真人三级小视频在线观看| 午夜免费成人在线视频| 亚洲专区中文字幕在线| 欧美日韩黄片免| 性色av一级| 亚洲欧美日韩另类电影网站| 老司机在亚洲福利影院| 高清av免费在线| bbb黄色大片| 成人手机av| 男女高潮啪啪啪动态图| 亚洲熟女精品中文字幕| 免费女性裸体啪啪无遮挡网站| 香蕉丝袜av| 免费观看人在逋| 精品国产一区二区三区久久久樱花| 一级毛片黄色毛片免费观看视频| 久久女婷五月综合色啪小说| 国产在线免费精品| 久久久精品免费免费高清| 午夜福利视频在线观看免费| 亚洲欧美激情在线| 一区二区三区四区激情视频| 国产人伦9x9x在线观看| 狂野欧美激情性xxxx| 国产97色在线日韩免费| 可以免费在线观看a视频的电影网站| 菩萨蛮人人尽说江南好唐韦庄| bbb黄色大片| 黄色片一级片一级黄色片| 国产极品粉嫩免费观看在线| 最黄视频免费看| 亚洲人成电影免费在线| 精品熟女少妇八av免费久了| 99精品久久久久人妻精品| 69精品国产乱码久久久| 婷婷色综合大香蕉| 精品久久久久久电影网| 18禁黄网站禁片午夜丰满| 免费在线观看黄色视频的| 亚洲天堂av无毛| 国产熟女欧美一区二区| 狠狠婷婷综合久久久久久88av| 国产有黄有色有爽视频| 天堂中文最新版在线下载| 久久精品人人爽人人爽视色| 大话2 男鬼变身卡| 丝袜人妻中文字幕| 一区二区av电影网| 国产男女内射视频| 多毛熟女@视频| √禁漫天堂资源中文www| 亚洲免费av在线视频| 一级毛片电影观看| 久久影院123| 久久午夜综合久久蜜桃| 成人18禁高潮啪啪吃奶动态图| 日日夜夜操网爽| 色播在线永久视频| 亚洲 欧美一区二区三区| 欧美精品啪啪一区二区三区 | 老汉色∧v一级毛片| 一级片'在线观看视频| 如日韩欧美国产精品一区二区三区| 大型av网站在线播放| 欧美变态另类bdsm刘玥| 天天躁夜夜躁狠狠躁躁| av在线app专区| 日韩精品免费视频一区二区三区| 久久精品国产综合久久久| 国产成人精品久久二区二区免费| 在线观看免费高清a一片| 一边摸一边做爽爽视频免费| 丁香六月天网| 亚洲国产看品久久| 日韩,欧美,国产一区二区三区| 日韩熟女老妇一区二区性免费视频| 亚洲成av片中文字幕在线观看| 日韩熟女老妇一区二区性免费视频| 国产伦人伦偷精品视频| 免费看十八禁软件| a级毛片在线看网站| 一区在线观看完整版| 日本wwww免费看| 最新的欧美精品一区二区| 国产一区二区激情短视频 | 免费不卡黄色视频| 女警被强在线播放| 久久精品久久久久久噜噜老黄| www.自偷自拍.com| 亚洲精品在线美女| 国产免费又黄又爽又色| 久久精品国产亚洲av高清一级| 十分钟在线观看高清视频www| 国产精品一区二区免费欧美 | 久久精品久久久久久噜噜老黄| 欧美日韩视频高清一区二区三区二| 精品少妇一区二区三区视频日本电影| 巨乳人妻的诱惑在线观看| 久久精品国产亚洲av高清一级| 精品久久蜜臀av无| 曰老女人黄片| 午夜影院在线不卡| 免费女性裸体啪啪无遮挡网站| 亚洲av男天堂| 亚洲国产欧美网| 91字幕亚洲| 九草在线视频观看| 国产成人影院久久av| 亚洲精品一区蜜桃| 午夜福利视频在线观看免费| 日本欧美视频一区| 国产伦理片在线播放av一区| 成年人免费黄色播放视频| 国产在线观看jvid| 精品人妻在线不人妻| 久久人人97超碰香蕉20202| av欧美777| 热99国产精品久久久久久7| av国产精品久久久久影院| 欧美另类一区| 观看av在线不卡| 午夜激情久久久久久久| 50天的宝宝边吃奶边哭怎么回事| 午夜激情久久久久久久| 操出白浆在线播放| 777米奇影视久久| 亚洲综合色网址| 真人做人爱边吃奶动态| 国产精品久久久久成人av| 国产精品99久久99久久久不卡| 国产av国产精品国产| 久久热在线av| 国产av国产精品国产| 老司机在亚洲福利影院| 老熟女久久久| 久久亚洲精品不卡| 中文字幕人妻丝袜一区二区| 黄色视频不卡| 人成视频在线观看免费观看| 欧美日韩福利视频一区二区| 夫妻午夜视频| 精品久久久精品久久久| 欧美 亚洲 国产 日韩一| 啦啦啦中文免费视频观看日本| 欧美成人午夜精品| 国产欧美日韩精品亚洲av| 国产熟女欧美一区二区| 亚洲五月婷婷丁香| 亚洲国产欧美在线一区| 国产视频首页在线观看| 99久久99久久久精品蜜桃| www日本在线高清视频| 女性被躁到高潮视频| 少妇 在线观看| 一级毛片我不卡| 亚洲精品日本国产第一区| 亚洲国产欧美日韩在线播放| 亚洲图色成人| 亚洲欧美清纯卡通| 丝袜美足系列| 国产精品熟女久久久久浪| 亚洲熟女毛片儿| 国产精品麻豆人妻色哟哟久久| 蜜桃在线观看..| 99国产精品免费福利视频| av有码第一页| 日本a在线网址| 日韩av不卡免费在线播放| 麻豆国产av国片精品| 日韩大片免费观看网站| 菩萨蛮人人尽说江南好唐韦庄| cao死你这个sao货| 嫁个100分男人电影在线观看 | 亚洲欧美一区二区三区黑人| 成人午夜精彩视频在线观看| 日韩电影二区| 国产不卡av网站在线观看| 欧美日韩亚洲综合一区二区三区_| 日本av免费视频播放| 熟女少妇亚洲综合色aaa.| 青青草视频在线视频观看| 亚洲国产欧美网| 老司机在亚洲福利影院| av天堂在线播放| 国产在线观看jvid| 黄片小视频在线播放| 一区二区日韩欧美中文字幕| 亚洲国产日韩一区二区| 天堂中文最新版在线下载| av有码第一页| 国产又色又爽无遮挡免| 久久毛片免费看一区二区三区| 性色av乱码一区二区三区2| 最新的欧美精品一区二区| 狂野欧美激情性xxxx| 好男人视频免费观看在线| 9191精品国产免费久久| 婷婷色av中文字幕| 免费看不卡的av| 午夜福利免费观看在线| 19禁男女啪啪无遮挡网站| 日韩av在线免费看完整版不卡| 各种免费的搞黄视频| 在线观看免费高清a一片| 999精品在线视频| 亚洲精品久久成人aⅴ小说| 90打野战视频偷拍视频| 亚洲七黄色美女视频| 国产成人91sexporn| 久久人人爽av亚洲精品天堂| 精品福利观看| 极品少妇高潮喷水抽搐| www.999成人在线观看| 日韩av在线免费看完整版不卡| 日韩中文字幕视频在线看片| 亚洲欧洲日产国产| 国产精品人妻久久久影院| 看免费av毛片| 建设人人有责人人尽责人人享有的| 青春草视频在线免费观看| 久久女婷五月综合色啪小说| 美女主播在线视频| 午夜免费鲁丝| 久久国产精品影院| 国产在线视频一区二区| 97精品久久久久久久久久精品| 午夜91福利影院| 亚洲欧美色中文字幕在线| 1024视频免费在线观看| 久久青草综合色| 精品亚洲乱码少妇综合久久| 亚洲av欧美aⅴ国产| 天堂8中文在线网| 又紧又爽又黄一区二区| 国产成人一区二区在线| 亚洲伊人久久精品综合| 国产精品免费视频内射| 久久久久精品人妻al黑| 女人精品久久久久毛片| 国产精品一区二区精品视频观看| 看十八女毛片水多多多| 日韩av免费高清视频| 黄网站色视频无遮挡免费观看| 国产精品一区二区在线观看99| 一边亲一边摸免费视频| 国产无遮挡羞羞视频在线观看| 久久中文字幕一级| 中国国产av一级| 伊人久久大香线蕉亚洲五| 黄频高清免费视频| 人人澡人人妻人| 午夜免费成人在线视频| 亚洲av国产av综合av卡| 91精品国产国语对白视频| 国产真人三级小视频在线观看| 久久免费观看电影| 日日摸夜夜添夜夜爱| 在线观看一区二区三区激情| 免费人妻精品一区二区三区视频| 一区二区三区乱码不卡18| av视频免费观看在线观看| 亚洲人成电影免费在线| 亚洲精品日本国产第一区| 99re6热这里在线精品视频| 十分钟在线观看高清视频www| 亚洲精品国产av成人精品| 亚洲国产精品999| 久久这里只有精品19| 777久久人妻少妇嫩草av网站| 日韩,欧美,国产一区二区三区| 成年女人毛片免费观看观看9 | 夫妻午夜视频| 91字幕亚洲| 亚洲欧美精品自产自拍| 欧美日韩视频高清一区二区三区二| tube8黄色片| 大香蕉久久成人网| 欧美乱码精品一区二区三区| 午夜福利一区二区在线看| 99香蕉大伊视频| 日本欧美国产在线视频| 国产精品二区激情视频| 亚洲av男天堂| 麻豆乱淫一区二区| 成在线人永久免费视频| 国产高清国产精品国产三级| www.自偷自拍.com| 亚洲激情五月婷婷啪啪| 亚洲国产欧美网| 蜜桃在线观看..| 亚洲伊人久久精品综合| 欧美成人午夜精品| 爱豆传媒免费全集在线观看| 老司机在亚洲福利影院| 人人妻人人澡人人爽人人夜夜| 久久久精品94久久精品| 欧美+亚洲+日韩+国产| 视频在线观看一区二区三区| 日日摸夜夜添夜夜爱| 成年动漫av网址| 视频区图区小说| 777久久人妻少妇嫩草av网站| 成人免费观看视频高清| 免费av中文字幕在线| 亚洲少妇的诱惑av| 久久精品亚洲av国产电影网| 男男h啪啪无遮挡| 午夜免费男女啪啪视频观看| 亚洲国产av新网站| 一二三四在线观看免费中文在| 午夜福利免费观看在线| 男女国产视频网站| 国产一区有黄有色的免费视频| 免费观看a级毛片全部| 9热在线视频观看99| 久久精品人人爽人人爽视色| 国产片内射在线| 涩涩av久久男人的天堂| 国产色视频综合| 老司机影院成人| 90打野战视频偷拍视频| 91老司机精品| 欧美在线黄色| 国产精品秋霞免费鲁丝片| 亚洲三区欧美一区| 久久鲁丝午夜福利片| www.精华液| 十八禁高潮呻吟视频| 欧美亚洲 丝袜 人妻 在线| 我要看黄色一级片免费的| 看免费成人av毛片| 欧美另类一区| 精品人妻1区二区| 亚洲天堂av无毛| 亚洲精品第二区| 丝袜美腿诱惑在线| 精品少妇久久久久久888优播| 国产精品香港三级国产av潘金莲 | 亚洲欧美激情在线| 51午夜福利影视在线观看| 高清不卡的av网站| 久久精品aⅴ一区二区三区四区| 免费不卡黄色视频| 国产欧美日韩一区二区三区在线| 男女边摸边吃奶| 国产在视频线精品| 国产欧美日韩精品亚洲av| 国产视频首页在线观看| 国产欧美日韩一区二区三区在线| 日韩av不卡免费在线播放| 国产精品熟女久久久久浪| 久久精品人人爽人人爽视色| 国产精品一区二区在线不卡| 国产成人系列免费观看| 大香蕉久久成人网| 久久久久国产精品人妻一区二区| 香蕉丝袜av| 久久 成人 亚洲| 亚洲久久久国产精品| 免费久久久久久久精品成人欧美视频| 女人高潮潮喷娇喘18禁视频| 别揉我奶头~嗯~啊~动态视频 | 久久精品亚洲熟妇少妇任你| 午夜福利免费观看在线| 午夜久久久在线观看| 十八禁高潮呻吟视频| 两人在一起打扑克的视频| 丰满饥渴人妻一区二区三| 叶爱在线成人免费视频播放| 日日爽夜夜爽网站| 捣出白浆h1v1| 又粗又硬又长又爽又黄的视频| 女人高潮潮喷娇喘18禁视频| 99热国产这里只有精品6| 国产无遮挡羞羞视频在线观看| 国产黄色免费在线视频| 欧美性长视频在线观看| 性高湖久久久久久久久免费观看| av天堂久久9| 亚洲人成网站在线观看播放| 亚洲国产欧美在线一区| 涩涩av久久男人的天堂| 久久久精品国产亚洲av高清涩受| 蜜桃国产av成人99| cao死你这个sao货| 免费日韩欧美在线观看| 亚洲九九香蕉| 男男h啪啪无遮挡| 成年人免费黄色播放视频| av在线播放精品| 在线精品无人区一区二区三| 久久热在线av| 人人妻人人爽人人添夜夜欢视频| 亚洲欧洲日产国产| 日韩电影二区| 成人三级做爰电影| 国产xxxxx性猛交| 各种免费的搞黄视频| 十八禁高潮呻吟视频| 亚洲av成人精品一二三区| 亚洲专区中文字幕在线| 成人黄色视频免费在线看| 亚洲精品在线美女| 中国美女看黄片| 久久国产精品影院| 男女边摸边吃奶| 丝袜脚勾引网站| 最近最新中文字幕大全免费视频 | 日本黄色日本黄色录像| 青青草视频在线视频观看| 亚洲,欧美精品.| 色综合欧美亚洲国产小说| 亚洲av综合色区一区| 亚洲激情五月婷婷啪啪| 免费在线观看视频国产中文字幕亚洲 | 日本a在线网址| 亚洲精品国产av成人精品| 国产三级黄色录像| av国产精品久久久久影院| 大香蕉久久网| 高清不卡的av网站| 欧美日本中文国产一区发布| 中国国产av一级| 欧美老熟妇乱子伦牲交| 黑人欧美特级aaaaaa片| 欧美激情 高清一区二区三区| 一级毛片电影观看| 精品一品国产午夜福利视频| av网站在线播放免费| 国产日韩一区二区三区精品不卡| 久久精品aⅴ一区二区三区四区| 国产男女内射视频| 一区福利在线观看| 亚洲国产欧美在线一区| 欧美97在线视频| 日本猛色少妇xxxxx猛交久久| 一区二区日韩欧美中文字幕| 精品久久蜜臀av无| 天天躁狠狠躁夜夜躁狠狠躁| 日本vs欧美在线观看视频| 91成人精品电影| 99久久精品国产亚洲精品| 伊人久久大香线蕉亚洲五| av福利片在线| 欧美+亚洲+日韩+国产| 欧美黄色淫秽网站| 黄网站色视频无遮挡免费观看| 免费人妻精品一区二区三区视频| 亚洲中文日韩欧美视频| 天天添夜夜摸| 精品卡一卡二卡四卡免费| 人人妻人人澡人人爽人人夜夜| 大片免费播放器 马上看| 国产精品av久久久久免费| 热99国产精品久久久久久7| 51午夜福利影视在线观看| 黄色视频在线播放观看不卡| 伊人亚洲综合成人网| 一边摸一边抽搐一进一出视频| 亚洲欧美精品自产自拍| 手机成人av网站| 国产精品 国内视频| 麻豆乱淫一区二区| 免费人妻精品一区二区三区视频| 国产精品一二三区在线看| 青草久久国产| 亚洲专区中文字幕在线| 极品人妻少妇av视频| 天天影视国产精品| 日韩av免费高清视频| av视频免费观看在线观看| 久久影院123| 捣出白浆h1v1| 丝袜美足系列| 性色av乱码一区二区三区2| 亚洲欧美中文字幕日韩二区| 亚洲黑人精品在线| 国产亚洲一区二区精品| 男人操女人黄网站| 欧美+亚洲+日韩+国产| 亚洲av男天堂| 美女中出高潮动态图| 国产人伦9x9x在线观看| www.999成人在线观看| 亚洲成人手机| 你懂的网址亚洲精品在线观看| 亚洲国产精品成人久久小说| 亚洲人成电影观看| 中文字幕亚洲精品专区| 日本vs欧美在线观看视频| 美女午夜性视频免费| 国产精品 欧美亚洲| 亚洲视频免费观看视频| 看免费av毛片| 黑丝袜美女国产一区| 亚洲午夜精品一区,二区,三区| 国产精品国产三级专区第一集| 国产精品久久久久久精品古装| 两性夫妻黄色片| 韩国精品一区二区三区| 午夜激情久久久久久久| 免费在线观看完整版高清| 人人妻人人添人人爽欧美一区卜| 精品人妻熟女毛片av久久网站| 午夜日韩欧美国产| 亚洲成色77777| 国产成人精品久久二区二区免费| 99re6热这里在线精品视频| 亚洲精品国产色婷婷电影| 在线观看一区二区三区激情| 69精品国产乱码久久久| 亚洲专区国产一区二区| 肉色欧美久久久久久久蜜桃|