• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Kinetic simulation of an electronegative plasma with a cut-off distribution and modified Bohm criterion

    2020-05-06 05:59:06SureshBASNETandRajuKHANAL
    Plasma Science and Technology 2020年4期

    Suresh BASNET and Raju KHANAL

    Central Department of Physics,Tribhuvan University,Kirtipur,Kathmandu 44613,Nepal

    Abstract

    Keywords:Bohm condition,kinetic simulation,plasma–wall interaction,electronegative plasma

    1.Introduction

    Study of the plasma–wall interaction mechanism is of considerable interest as it has wide range of growing applications including in divertors of fusion device,plasma etching,sputtering,chemical vapor deposition and many more [1–4].The formation of a non-linear plasma sheath in the immediate vicinity of the material wall or electrode and its characteristics determine the flow of particles,the impact energy of projectiles and heat flow,which in turn affect the lifetime of plasma-facing materials (PFMs) used in fusion devices.Therefore,appropriate design of the divertor wall along with material selection is very important [5–7].In a plasma with negative ions (e.g.H-,O-),often called an electronegative plasma,the presence of negative ions can significantly affect the characteristics of the plasma sheath as these differ from electrons in mass,thermal velocity,mobility and energy[8,9].Much research has also been devoted to multi-component plasma–wall interactions,in both the absence and presence of negative ions,in the presence of two temperature groups of electrons [10–14].The presence of a second ion species (positive or negative ions) in a multi-component plasma affects the sheath characteristics,namely potential function,sheath thickness and energy flow towards the wall.In the past few decades,the study of plasma–surface transition in an electronegative plasma has become an area of interest both experimentally and theoretically [15–20].The electrostatic potential distribution is a monotonic function in the sheath region.The pre-sheath–sheath structure and its characteristics,such as floating potential and sheath thickness,are governed by the negative ions instead of electrons.Also,it is reported that the electric field in the sheath region has a stepwise structure due to reflection of negative ions [21,22].

    Experimentally,Sarma et al [23] studied a steady state multi-component plasma with negative ions and found that the presence of negative ions affects the sheath structure and obeys the modified Child–Langmuir law.Yasserian et al[24]investigated an electronegative discharge in the presence of a constant uniform magnetic field,whose strength also determines the nature of the particle density profile,potential distribution and the velocity of positive ions.When an intermediate magnetic field is present in an electronegative plasma,the electric potential has oscillatory structure; while for strong magnetic field,these oscillations vanish.Stamate[25] studied the charge distribution on the surface of biased electrodes in the presence of negative ions by simulation and experiments.The discrete and model focusing effects were identified and discussed.Discrete focusing is concerned with the formation of a passive surface whereas model focusing is concerned with the formation of a certain model line or model spots.Crespo et al [26] examined the positive ion sheath formed around a cylindrical electrode and its transition from electropositive to electronegative behavior.The concentration of negative ions and temperature affect the potential distribution and sheath thickness.

    Figure 1.Schematic geometry of a magnetized plasma sheath in which ∣∣v and ⊥v are the parallel and perpendicular velocities with respect to the magnetic field.

    The present work is concerned with the properties of an electronegative magnetized plasma sheath,which is crucial in industrial applications of plasma,for example semiconductor fabrication and dry etching.In order to study the plasma–wall interaction process,we employ the kinetic trajectory simulation(KTS)method to solve the related kinetic equations.The fundamental kinetic Bohm condition for the formation of a stable plasma sheath has been derived for the case of an electronegative magnetized plasma.Moreover,the obtained results have useful applications such as in modeling of the divertor wall in a fusion device,generation of a negative ion beam source and sputtering.

    2.Kinetic model and basic equations

    The kinetic modeling of various situations of interest yields results of high accuracy compared with the fluid approach[27],and in the KTS method the characteristics of spatially bounded plasma are studied following an iterative scheme[28].A fundamental element of KTS is to trace the particle trajectories in the phase space to discover the related ion velocity distribution functions.In order to trace the trajectories,the simulation region is discretized and the ion equation of motion is solved in a time-centered manner[28–30].An initial potential distribution and particle distributions are taken as input to the iteration and the governing kinetic and the Maxwell equations are solved self-consistently for prescribed boundary conditions.Further detail about discretization and the KTS method is given in our previous work [31].

    The geometry of the magnetized plasma sheath is shown schematically in figure 1,and the plasma consists of singly charged positive ions,negative ions and electrons.Our simulation region lies between x = 0 (the plasma-facing electrode or wall)andx=xp(the bulk plasma boundary from where plasma particles flow towards the wall or electrode).The external applied magnetic field B acts in the x–z plane which makes an angle ψ with the normal to the material wall.The simulation region is considered to be 10 electron Debye lengths,which is smaller than the collision mean free path so that the simulation region is assumed collision free.The positive ion velocity distribution function at x = xpis assumed to be Maxwellian,such that the quasineutrality of plasma at the sheath entrance,continuity of physical parameters and the kinetic Bohm sheath criterion are all satisfied at the pre-sheath–sheath boundary.In addition,for smooth flow of the plasma parameters between pre-sheath–sheath boundary,we use the 1d3v coupling scheme that couples the pre-sheath side fluid parameters with kinetic sheath parameters [31].For a collisionless plasma,the Boltzmann equation becomes the Vlasov equation,which for the timeindependent case is

    in which ms,qsandfs(r ,vs) are the mass,charge and the distribution function of the particle species s,respectively,and the termis the macroscopic acceleration of particle species s.

    The space charge density is calculated as

    and the electric field is calculated as

    in which the electrostatic potentialφ(r) satisfies the Poisson equation

    where ?0and nsare the electric permittivity for free space and density of particle species s,respectively.

    The positive ion velocity distribution function at x = xpis considered to be

    As the wall will be at negative potential,its reflective nature causes the electron and negative ion distribution functions to be cut-off Maxwellians as

    npssis the density of particle species s at the pre-sheath–sheath interface,kBis the Boltzmann constant,is the thermal velocity,Tsis the temperature of particle species s,Θ(x) is the Heaviside step function,is the cut-off velocity at position x,φwis the wall potential andvxim(xp)is the Maxwellian maximum velocity of ion at x = xp.

    The density of particle species s at the pre-sheath–sheath boundary is calculated as

    which yields

    and

    The average fluid velocity of particle species s at the presheath–sheath interface is

    such that

    where

    and

    where

    and i is the unit vector along the direction of motion of the particles.

    The temperature distribution of particle species s is

    which yields

    and

    The cut-off density distributions for electrons and negative ions are

    2.1.Kinetic Bohm condition for electronegative plasmas

    A stationary non-neutral plasma sheath is formed only if the ion speed at the sheath entrance satisfies the Bohm sheath condition,which implies the ions must enter from the sheath entrance with sufficiently high speed.The Bohm criterion is not considered to be a physical law as it sometimes requires a few modifications because it depends on the ion velocity distribution at the pre-sheath–sheath boundary [32].In this section,we extend and derive the generalized kinetic Bohm criterion for the electronegative plasma,which ensures the formation of a positive space charge region near the material wall.The generalized Bohm sheath condition for such an electronegative plasma can be written as

    which yields

    Table 1.Physical parameters and simulation conditions.

    With the assumption of a Maxwellian distribution of electrons and negative ionsthe kinetic Bohm condition equation (25) becomes

    Equation (26) is the well-known Bohm condition for an electronegative plasma [33].In the absence of negative ions,i.e.δ = 0,equation (25) becomes

    in whichis the normal component of fluid velocity at the magnetic pre-sheath entrance.Equation (27) is a kinetic Bohm sheath condition in the presence of cut-off Maxwellian electrons,which is similar to the previous work [34].

    3.Results and discussion

    For the numerical stability of the kinetic simulation,we adopt the stability conditions as

    and

    where△xis the mesh size,λDeis electron Debye length,△tis the numerical time step of the simulation and ωpeis the electron plasma frequency.The condition for the convergence check at each point is

    in whichφ m(xk)andφm-1(xk)are readjusted new potential and old potential distributions,respectively,with Δφ defined as an accuracy parameter.

    To solve the compiled basic kinetic equations,the physical parameters and simulation conditions considered are shown in table 1.

    The parallel and perpendicular positive ion velocity distributions at the particle injection sidex=xpand at the wall x = 0 are shown in figure 2.It is seen that both the distributions are half Maxwellian at the injection side and at the wall.The parallel distribution has a higher Maxwellian maximum velocity (0.863vtiin figure 2(a)) than the perpendicular distribution (0.487vtiin figure 2(b)) at the injection.The magnitude of this Maxwellian maximum velocity of the distributions increases at the wall and the increment is higher for the parallel distribution,as depicted in figures 2(c) and (d).At the entrance side,the ions have different velocities with which they follow the trajectory and enter into the sheath region.The (x,vx) phase-space diagram for positive ions is shown in figure 3.

    The presence of negative ions in the plasma reduces the Bohm velocity of positive ions,which is a necessary condition for the formation of a stable plasma sheath.The kinetic Bohm velocity with and without cut-off distributions is shown in figure 4.When the concentration of negative ions is very low and we assume a Maxwellian distribution of particles without cut-off in the electronegative plasma,the marginal Bohm criterionuni,SE≥csmust hold while the criterion for a cut-off distribution isuni,SE≥0.995 8cs.The Bohm velocity at the magnetic pre-sheath entrance decreases with increase in concentration of negative ions and exhibits a qualitatively similar nature for both cases.However,the adoption of cut-off distributions causes the modified Bohm velocity to deviate compared with the original case defined by equation (26); it differs by 1% in magnitude.

    The variation of the self-consistent electrostatic electric potential profile in the plasma sheath region for three different concentrations of negative ions (δ = 0.00,δ = 0.25 and δ = 0.67)is shown in figure 5.It is found that the magnitude of electric potential increases towards the wall in all cases and their slopes also increase towards the wall.The effect of negative ion concentration increases away from the sheath entrance,which is seen clearly in the inset in figure 5(a).The bulk plasma always tends to preserve the quasineutrality property; however,there is always change in the potential profile near to the wall.The magnitude of the potential decreases with the increase in concentration of negative ions as it reduces the concentration of mobile electrons.The obtained potential profile for the case of δ = 0.00 is qualitatively similar to a previous work[28].In order to have clear visualization of the increment in magnitude of the potential towards the wall,the potential at different grid points is shown in figure 5(b).In this figure,the heights of potential at 41 and 1 grid points represent the particle injection side and wall,respectively.It is clearly observed from figure 5(b) that the height of potential is maximum at the wall and minimum at the pre-sheath–sheath boundary.Therefore,the electric field has a weak influence at the pre-sheath–sheath boundary while its effect goes on increasing towards the wall.Due to the strong influence of electric field near the wall,the particles strike the wall normally.In this case the motion of particles in the sheath region is dominated by the electric force rather than the magnetic force as depicted in figure 6.The electric force starts to dominate over the magnetic force from about 4 Debye lengths from sheath entrance.

    Figure 2.Positive ion distribution at constant concentration ratio δ = 0.25(a)and(c)parallel to the magnetic field at injection and at the wall,respectively (b) and (d) perpendicular to the magnetic field at injection and at the wall,respectively.

    Figure 3.1d1v phase-space trajectories of positive ions.

    Figure 4.The kinetic Bohm velocity with cut-off (red dashed line)and without cut-off (blue solid line) as a function of the concentration of negative ions.

    The particle density profiles at constant concentration ratio δ = 0.25 are shown in figure 7.The density of all charged particles decreases towards the wall; however,the density of negatively charged particles decreases much faster than that of positive ions.The density of positive ions at the wall is 0.476npswhereas the densities of electrons and negative ions aren0.021psandn0.0012ps,respectively.Moreover,the density of positive ions reaching the wall is higher than that of negatively charged particles,which explicitly indicates that the space charge density has its maximum value at the wall and shields the effect of wall potential.

    The negative wall potential retards the flow of negatively charged particles towards the wall,and hence both the average fluid velocity and thermal mobility decrease.The electrons have a lower mass than that of the considered negative ions so that the rate of decrease of average velocity is higher for negative ions.Thus,the electrons reaching the wall are more highly energetic than the negative ions,which is clearly observed from figure 8 which depicts the temperature profile of electrons and negative ions in the sheath region.The temperature has a non-uniform distribution and it decreases towards the wall.The temperature of electrons at the presheath–sheath boundary is 30 eV,which goes on decreasing(from figure 8(a)) towards the wall and is about 24 eV at the wall.Furthermore,from figure 8(b) it is seen that the temperature distribution of the negative ions decreases from 20 eV to about 16 eV.

    Figure 5.(a) Electrostatic potential distribution in an electronegative plasma sheath for different concentrations of negative ions.(b) The height of the potential at different grid points for a constant concentration ratio δ = 0.25.

    Figure 6.Profile of electric (red dashed line) and magnetic (blue solid line) forces in the sheath region at a constant concentration ratio δ = 0.25.

    To understand the plasma–wall interaction,the energy profiles of charged particles when the charged particles hit the solid first material wall have a crucial role.The energy profile of charged particles in the electronegative plasma sheath region is shown in figure 9.The striking energy of positive ions at the wall increases as they move towards the wall,but in the case of negatively charged particles the energy flow towards the wall decreases and the energy transferred by electrons is higher than that transferred by negative ions,as shown in figures 9(a) and (b),respectively.

    4.Conclusions

    Figure 7.Profiles of positive ion,electron and negative ion densities.

    A kinetic simulation method was used to study the plasma–wall interaction when plasma consists of singly charged positive and negative ions and electrons.It was assumed that electrons and negative ions have cut-off Maxwellian distributions and the plasma sheath was collisionless as the mean free path is much larger than the sheath scale.The fundamental Bohm criterion for the formation of a stable positive sheath was derived in the case of electronegative plasmas.The magnitude of the kinetic Bohm velocity with and without cutoff distributions qualitatively agreed,although the results differ by about 1%.The presence of an oblique magnetic field in the plasma has significant effect on the distribution of ions at the sheath entrance and at the wall.It was found that the electrostatic potential shows monotonic variation in the sheath region,exhibiting a sharp gradient near the wall that affects the motion of charged particles.The motion of charged particles near to wall was highly influenced by the electric force rather than the magnetic force.The particle densities decreased towards the wall,the rate of decreasing of negative ions being much faster than that of positive ions and electrons.Furthermore,the energy transferred by the positive ions through the plasma sheath is greater than that of negatively charged particles.The present study has useful applications in modeling of divertor walls and sputtering that determine the lifespan of plasma-facing components.

    Figure 8.Temperature profiles for (a) electrons (b) negative ions at a constant concentration ratio δ = 0.25.

    Figure 9.Energy profile of particles in the sheath region at a constant concentration ratio δ = 0.25.

    Acknowledgments

    Suresh Basnet would like to acknowledge the University Grants Commission,Nepal for the PhD fellowship.

    高清午夜精品一区二区三区| 午夜激情久久久久久久| 国产精品免费大片| 2021少妇久久久久久久久久久| 人妻系列 视频| 国产在线一区二区三区精| 中文字幕久久专区| 免费大片黄手机在线观看| 亚洲精品亚洲一区二区| 十分钟在线观看高清视频www| av国产精品久久久久影院| 久久久久网色| 日韩视频在线欧美| 我的老师免费观看完整版| 哪个播放器可以免费观看大片| 亚洲欧洲日产国产| 国产在视频线精品| 亚洲精品国产av蜜桃| 另类亚洲欧美激情| 免费观看av网站的网址| 少妇丰满av| 天堂8中文在线网| 免费黄色在线免费观看| 久久久欧美国产精品| 日本黄大片高清| 久久久久久久久大av| 青青草视频在线视频观看| 水蜜桃什么品种好| 免费黄频网站在线观看国产| 日本-黄色视频高清免费观看| 国产伦精品一区二区三区视频9| 久久久久人妻精品一区果冻| 五月天丁香电影| 极品少妇高潮喷水抽搐| 岛国毛片在线播放| 成人手机av| 欧美国产精品一级二级三级| 国产乱来视频区| 国产av一区二区精品久久| 色网站视频免费| 亚洲欧美成人综合另类久久久| 男女高潮啪啪啪动态图| 久久人人爽人人片av| 日本欧美视频一区| 成人午夜精彩视频在线观看| 久久99蜜桃精品久久| 国模一区二区三区四区视频| 国产精品久久久久成人av| 久久久久国产精品人妻一区二区| 91成人精品电影| 美女中出高潮动态图| 亚洲精品美女久久av网站| 久久久久久久久久人人人人人人| 天天躁夜夜躁狠狠久久av| av免费在线看不卡| 丰满迷人的少妇在线观看| 久久青草综合色| 亚洲国产精品成人久久小说| 国产精品嫩草影院av在线观看| 一本大道久久a久久精品| 国语对白做爰xxxⅹ性视频网站| 日韩亚洲欧美综合| 99热6这里只有精品| 99热全是精品| 丰满饥渴人妻一区二区三| 国产乱来视频区| 成年av动漫网址| 久久精品熟女亚洲av麻豆精品| 97超碰精品成人国产| 看十八女毛片水多多多| 边亲边吃奶的免费视频| av免费观看日本| 久久人人爽人人爽人人片va| 国语对白做爰xxxⅹ性视频网站| 亚洲av综合色区一区| av在线老鸭窝| 久久免费观看电影| 中文字幕最新亚洲高清| 久久精品国产亚洲网站| 国产一区二区三区综合在线观看 | a级片在线免费高清观看视频| 寂寞人妻少妇视频99o| 精品久久蜜臀av无| 亚洲国产精品一区三区| av天堂久久9| 在线观看一区二区三区激情| 精品久久久噜噜| 人妻制服诱惑在线中文字幕| 一级毛片 在线播放| 毛片一级片免费看久久久久| 丝袜喷水一区| 天天躁夜夜躁狠狠久久av| √禁漫天堂资源中文www| 简卡轻食公司| 91精品三级在线观看| 日本色播在线视频| 最近中文字幕高清免费大全6| 18禁动态无遮挡网站| 国产成人精品福利久久| 日韩大片免费观看网站| 狂野欧美白嫩少妇大欣赏| 国产av一区二区精品久久| 这个男人来自地球电影免费观看 | 亚洲av在线观看美女高潮| 老司机影院毛片| 亚洲精品乱久久久久久| 精品国产国语对白av| av黄色大香蕉| 天天操日日干夜夜撸| 免费久久久久久久精品成人欧美视频 | 精品国产一区二区三区久久久樱花| 亚洲精品乱久久久久久| 人妻系列 视频| 日韩,欧美,国产一区二区三区| 哪个播放器可以免费观看大片| 黄色毛片三级朝国网站| 国产色婷婷99| 国产白丝娇喘喷水9色精品| 亚洲欧洲国产日韩| 国语对白做爰xxxⅹ性视频网站| 97在线人人人人妻| 在线看a的网站| 午夜激情久久久久久久| 国产一级毛片在线| 九草在线视频观看| 国产精品一区二区在线观看99| 国产在线免费精品| 久久韩国三级中文字幕| 亚洲情色 制服丝袜| 五月天丁香电影| 精品99又大又爽又粗少妇毛片| 韩国高清视频一区二区三区| 亚洲国产精品999| 制服诱惑二区| 一本久久精品| 日韩成人伦理影院| 日本wwww免费看| 春色校园在线视频观看| 久久久欧美国产精品| 日本av免费视频播放| 亚洲,一卡二卡三卡| 黑人巨大精品欧美一区二区蜜桃 | 超色免费av| 国产av国产精品国产| 亚洲美女搞黄在线观看| av网站免费在线观看视频| 国产亚洲午夜精品一区二区久久| 青春草国产在线视频| 十八禁网站网址无遮挡| 女人精品久久久久毛片| 最近的中文字幕免费完整| 欧美激情 高清一区二区三区| 婷婷色综合大香蕉| 大香蕉97超碰在线| 国产成人一区二区在线| 精品久久蜜臀av无| 丰满饥渴人妻一区二区三| 久久久国产精品麻豆| 国产成人免费观看mmmm| 亚洲五月色婷婷综合| 黄色一级大片看看| 亚洲美女视频黄频| 一本一本综合久久| 亚洲久久久国产精品| 精品国产一区二区久久| 免费看不卡的av| 日本-黄色视频高清免费观看| 久久ye,这里只有精品| 国产无遮挡羞羞视频在线观看| 黄色配什么色好看| 国产一区亚洲一区在线观看| 婷婷成人精品国产| 狠狠婷婷综合久久久久久88av| 亚洲av福利一区| 亚洲精品日本国产第一区| 熟女av电影| 亚洲欧美成人综合另类久久久| 亚洲色图综合在线观看| 国产亚洲精品第一综合不卡 | 男女国产视频网站| 黑人巨大精品欧美一区二区蜜桃 | 精品久久久久久电影网| 日韩 亚洲 欧美在线| 午夜福利,免费看| 亚洲怡红院男人天堂| 美女国产高潮福利片在线看| 国产精品.久久久| 免费不卡的大黄色大毛片视频在线观看| 丝袜脚勾引网站| 麻豆成人av视频| 九九久久精品国产亚洲av麻豆| 欧美精品亚洲一区二区| 色94色欧美一区二区| 一边亲一边摸免费视频| 亚洲av综合色区一区| 99视频精品全部免费 在线| 国产男女内射视频| av线在线观看网站| 男女边摸边吃奶| av在线播放精品| 男人添女人高潮全过程视频| 亚洲欧美成人综合另类久久久| a 毛片基地| 精品少妇黑人巨大在线播放| 亚洲综合色网址| 亚洲成人一二三区av| 亚洲成人av在线免费| 午夜久久久在线观看| 亚洲国产欧美日韩在线播放| 男的添女的下面高潮视频| 久久99热这里只频精品6学生| 亚洲第一av免费看| 日韩中字成人| 丝袜脚勾引网站| 伦理电影大哥的女人| 中文精品一卡2卡3卡4更新| 能在线免费看毛片的网站| 晚上一个人看的免费电影| 美女xxoo啪啪120秒动态图| 欧美性感艳星| 国内精品宾馆在线| 久久精品国产亚洲av天美| 麻豆成人av视频| 男女啪啪激烈高潮av片| 日韩三级伦理在线观看| 精品国产国语对白av| 成年av动漫网址| 女人久久www免费人成看片| 91aial.com中文字幕在线观看| 国产亚洲午夜精品一区二区久久| 我要看黄色一级片免费的| 亚洲美女搞黄在线观看| 大陆偷拍与自拍| 亚州av有码| 国产视频内射| 高清黄色对白视频在线免费看| av在线播放精品| 久久婷婷青草| 国产成人91sexporn| 亚洲欧美日韩另类电影网站| 男女免费视频国产| 国产成人a∨麻豆精品| av视频免费观看在线观看| 日韩精品有码人妻一区| 国产日韩欧美视频二区| 成人毛片60女人毛片免费| 日本爱情动作片www.在线观看| 夜夜爽夜夜爽视频| 少妇丰满av| 久久精品夜色国产| 日本黄大片高清| 国产高清有码在线观看视频| 国产精品人妻久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 最近2019中文字幕mv第一页| 三级国产精品欧美在线观看| 99久久综合免费| 在线播放无遮挡| av免费在线看不卡| 久热久热在线精品观看| 欧美亚洲 丝袜 人妻 在线| 成人无遮挡网站| 久久精品国产亚洲av涩爱| 久久久国产一区二区| 香蕉精品网在线| 亚洲av欧美aⅴ国产| 卡戴珊不雅视频在线播放| 精品一区二区三卡| 最近最新中文字幕免费大全7| 国产精品一二三区在线看| 高清午夜精品一区二区三区| 美女内射精品一级片tv| 精品少妇黑人巨大在线播放| 久久久久人妻精品一区果冻| 少妇被粗大的猛进出69影院 | 国产精品无大码| 国产精品熟女久久久久浪| 少妇高潮的动态图| 黄色怎么调成土黄色| 久久这里有精品视频免费| 美女国产视频在线观看| 乱人伦中国视频| 超色免费av| 亚洲国产精品成人久久小说| 久久人妻熟女aⅴ| 黄色毛片三级朝国网站| www.av在线官网国产| 97在线视频观看| 久久久国产欧美日韩av| 搡女人真爽免费视频火全软件| 国产精品国产三级国产专区5o| 国产成人精品久久久久久| 91精品伊人久久大香线蕉| 久久亚洲国产成人精品v| 亚洲精品色激情综合| 久久久久久久国产电影| 欧美亚洲 丝袜 人妻 在线| 女性被躁到高潮视频| 人人妻人人澡人人爽人人夜夜| 人人澡人人妻人| av视频免费观看在线观看| 亚洲精品乱久久久久久| videos熟女内射| 国产一区二区在线观看日韩| 欧美3d第一页| av在线观看视频网站免费| 国内精品宾馆在线| 中文字幕人妻丝袜制服| 99久久精品国产国产毛片| 成人免费观看视频高清| 欧美日韩视频高清一区二区三区二| 日本欧美视频一区| 在线观看三级黄色| 日本91视频免费播放| 精品国产乱码久久久久久小说| a级毛色黄片| 交换朋友夫妻互换小说| 在线 av 中文字幕| 亚洲国产精品一区二区三区在线| 五月天丁香电影| 人体艺术视频欧美日本| 午夜福利视频精品| 午夜免费男女啪啪视频观看| 亚洲伊人久久精品综合| 18禁观看日本| 国产精品无大码| 国产视频内射| 人成视频在线观看免费观看| 亚洲欧美清纯卡通| 全区人妻精品视频| 婷婷色综合www| 国产成人精品在线电影| 综合色丁香网| 成人午夜精彩视频在线观看| 夫妻午夜视频| 欧美精品高潮呻吟av久久| 免费播放大片免费观看视频在线观看| 亚洲美女搞黄在线观看| 最黄视频免费看| 性色av一级| 天天躁夜夜躁狠狠久久av| av女优亚洲男人天堂| 中文字幕人妻丝袜制服| 国产亚洲精品久久久com| 高清午夜精品一区二区三区| 春色校园在线视频观看| 大话2 男鬼变身卡| 大香蕉97超碰在线| 两个人的视频大全免费| 国产老妇伦熟女老妇高清| 午夜福利在线观看免费完整高清在| 亚洲国产最新在线播放| 99视频精品全部免费 在线| 国产精品久久久久久av不卡| 人人妻人人澡人人爽人人夜夜| 亚洲,一卡二卡三卡| 人妻制服诱惑在线中文字幕| 久久 成人 亚洲| av有码第一页| 亚洲婷婷狠狠爱综合网| 一级毛片黄色毛片免费观看视频| 美女cb高潮喷水在线观看| 日韩熟女老妇一区二区性免费视频| 免费观看性生交大片5| 伦精品一区二区三区| 亚洲国产精品一区三区| 久久av网站| 久久久久人妻精品一区果冻| 亚洲人成网站在线观看播放| 黑人欧美特级aaaaaa片| 两个人免费观看高清视频| 人人妻人人澡人人看| 久久综合国产亚洲精品| 丰满迷人的少妇在线观看| 嘟嘟电影网在线观看| 老司机影院毛片| 一级片'在线观看视频| 建设人人有责人人尽责人人享有的| 热99久久久久精品小说推荐| 蜜臀久久99精品久久宅男| 丝袜脚勾引网站| 22中文网久久字幕| 久久久久精品性色| 亚洲一区二区三区欧美精品| 亚洲欧美清纯卡通| 欧美激情 高清一区二区三区| 伦理电影大哥的女人| 国产毛片在线视频| 国产乱人偷精品视频| 欧美人与善性xxx| 亚洲精品aⅴ在线观看| 男女国产视频网站| 国产精品不卡视频一区二区| 日本爱情动作片www.在线观看| 亚洲久久久国产精品| 国产黄片视频在线免费观看| 黄色配什么色好看| 美女内射精品一级片tv| 天堂中文最新版在线下载| 最近手机中文字幕大全| 满18在线观看网站| 久久久久精品性色| 久久99精品国语久久久| 国产精品久久久久久久久免| 亚洲欧洲国产日韩| 丁香六月天网| 国产精品免费大片| 亚洲精品一二三| 国产成人av激情在线播放 | 成人毛片a级毛片在线播放| 国产精品嫩草影院av在线观看| 在线看a的网站| 国产 精品1| 美女大奶头黄色视频| 人妻少妇偷人精品九色| av播播在线观看一区| 性色av一级| 国产一区二区在线观看日韩| 十八禁高潮呻吟视频| 亚洲精品色激情综合| 男人添女人高潮全过程视频| 中国国产av一级| av专区在线播放| 中国国产av一级| 亚洲久久久国产精品| 亚洲色图综合在线观看| 国产av码专区亚洲av| a级毛片黄视频| 婷婷色麻豆天堂久久| 婷婷成人精品国产| 色婷婷av一区二区三区视频| 国产色爽女视频免费观看| 久久久国产一区二区| 国产不卡av网站在线观看| 9色porny在线观看| 国产一区二区三区综合在线观看 | av黄色大香蕉| 亚洲国产欧美在线一区| 亚洲人成网站在线观看播放| av在线播放精品| 色网站视频免费| 成年人午夜在线观看视频| 精品人妻偷拍中文字幕| 在线观看www视频免费| 免费人妻精品一区二区三区视频| 性色av一级| 少妇人妻 视频| 乱码一卡2卡4卡精品| 自拍欧美九色日韩亚洲蝌蚪91| 日韩欧美一区视频在线观看| 天堂8中文在线网| 在线精品无人区一区二区三| 国产精品久久久久久av不卡| 午夜福利网站1000一区二区三区| 国产精品国产三级国产专区5o| 看非洲黑人一级黄片| av黄色大香蕉| 黑人猛操日本美女一级片| 国产av一区二区精品久久| 天美传媒精品一区二区| 久久久国产精品麻豆| 99久国产av精品国产电影| 免费高清在线观看日韩| 亚洲,一卡二卡三卡| 伦精品一区二区三区| 久久久久精品久久久久真实原创| 国产 一区精品| 日本av免费视频播放| 在线观看国产h片| 老熟女久久久| 国产精品无大码| 在线免费观看不下载黄p国产| 夫妻性生交免费视频一级片| 精品一区二区免费观看| 超碰97精品在线观看| 免费观看在线日韩| 国精品久久久久久国模美| 欧美一级a爱片免费观看看| 国产伦精品一区二区三区视频9| 午夜av观看不卡| a级毛片黄视频| 日韩一本色道免费dvd| 亚洲精品456在线播放app| 日韩制服骚丝袜av| 久热这里只有精品99| 综合色丁香网| 日韩熟女老妇一区二区性免费视频| 春色校园在线视频观看| 国产极品天堂在线| 自线自在国产av| 大片电影免费在线观看免费| 成年女人在线观看亚洲视频| 91在线精品国自产拍蜜月| 99精国产麻豆久久婷婷| 国产精品99久久99久久久不卡 | 能在线免费看毛片的网站| 亚洲精品aⅴ在线观看| 性色av一级| 亚洲av男天堂| 国产午夜精品一二区理论片| 高清不卡的av网站| 大话2 男鬼变身卡| 蜜桃国产av成人99| 日韩大片免费观看网站| 中国美白少妇内射xxxbb| 日日爽夜夜爽网站| 国产成人精品久久久久久| 国产日韩欧美视频二区| 亚洲综合色惰| 亚洲精华国产精华液的使用体验| 高清不卡的av网站| 91久久精品电影网| 欧美 日韩 精品 国产| av又黄又爽大尺度在线免费看| 国产又色又爽无遮挡免| 精品国产国语对白av| 亚洲av欧美aⅴ国产| 18禁动态无遮挡网站| 日韩中文字幕视频在线看片| 亚洲欧美成人精品一区二区| 美女福利国产在线| 成人毛片a级毛片在线播放| 婷婷成人精品国产| 777米奇影视久久| 高清视频免费观看一区二区| 日韩免费高清中文字幕av| 天天躁夜夜躁狠狠久久av| 亚洲人成网站在线播| 国产精品人妻久久久影院| 熟女av电影| 一区二区三区免费毛片| 国产极品天堂在线| 国产亚洲精品第一综合不卡 | 三级国产精品片| 久久久久精品久久久久真实原创| 男女无遮挡免费网站观看| 天美传媒精品一区二区| 天堂中文最新版在线下载| 国产精品久久久久久精品古装| 色吧在线观看| 国产成人一区二区在线| 最近手机中文字幕大全| 国产午夜精品久久久久久一区二区三区| av在线app专区| 一级二级三级毛片免费看| 美女脱内裤让男人舔精品视频| 建设人人有责人人尽责人人享有的| 一级毛片 在线播放| 亚洲欧美成人精品一区二区| 日韩免费高清中文字幕av| 亚洲精品,欧美精品| 又黄又爽又刺激的免费视频.| 18禁在线播放成人免费| 亚洲欧美一区二区三区黑人 | 大香蕉久久成人网| 十分钟在线观看高清视频www| 老熟女久久久| 哪个播放器可以免费观看大片| 另类精品久久| 欧美精品一区二区免费开放| 999精品在线视频| 亚洲综合色网址| 日韩,欧美,国产一区二区三区| 国产精品久久久久久精品电影小说| 免费观看a级毛片全部| 精品久久久噜噜| 最近中文字幕高清免费大全6| 91久久精品电影网| 晚上一个人看的免费电影| 精品久久久久久久久av| 久久久久国产网址| 狂野欧美激情性bbbbbb| 日本vs欧美在线观看视频| 亚洲性久久影院| 亚洲精品日本国产第一区| 最黄视频免费看| av视频免费观看在线观看| 99九九在线精品视频| 久久99精品国语久久久| 又黄又爽又刺激的免费视频.| 啦啦啦中文免费视频观看日本| 亚洲国产精品一区二区三区在线| 99热这里只有精品一区| 久久久久人妻精品一区果冻| 日本免费在线观看一区| 久久久久久久大尺度免费视频| 亚洲综合色网址| videosex国产| 久久精品夜色国产| 一本色道久久久久久精品综合| 国产探花极品一区二区| 亚洲欧美一区二区三区国产| 色吧在线观看| 国产成人freesex在线| 最近2019中文字幕mv第一页| 亚洲综合色惰| 伊人久久精品亚洲午夜| 人妻少妇偷人精品九色| 日日撸夜夜添| 人妻制服诱惑在线中文字幕| 日韩 亚洲 欧美在线| 亚洲一级一片aⅴ在线观看| 国产成人freesex在线| 狂野欧美白嫩少妇大欣赏| 免费不卡的大黄色大毛片视频在线观看| 国产成人freesex在线| 欧美xxxx性猛交bbbb| 亚洲国产av新网站| 国产伦理片在线播放av一区| 国产精品嫩草影院av在线观看| 一区二区av电影网| 欧美人与善性xxx| a 毛片基地| 18禁裸乳无遮挡动漫免费视频| 看免费成人av毛片|