雷麗彩,高 尚,蔣 艷
網(wǎng)約車新政下網(wǎng)約車平臺與網(wǎng)約車司機的演化博弈分析
雷麗彩,高 尚,蔣 艷
(湘潭大學商學院,湖南 湘潭 411105)
近年來,網(wǎng)約車等新業(yè)態(tài)的興起給乘客帶來了新體驗,同時也導致新舊矛盾交織以及利益關(guān)系碰撞。本文運用演化博弈理論分析方法,建立了新政實施背景下網(wǎng)約車平臺和司機間的演化博弈模型,并對其博弈行為演化過程及演化穩(wěn)定策略進行探討。理論研究和仿真結(jié)果表明:政府部門對網(wǎng)約車市場的大力調(diào)控可以有效保護網(wǎng)約車平臺“嚴格管理”的積極性,(合法營運,嚴格管理)成為唯一的演化穩(wěn)定策略;但是當政府調(diào)控力度較小時,網(wǎng)約車平臺“嚴格管理”的凈收益小于其“消極管理”的凈收益,使得其“嚴格管理”的積極性降低,從而滋長、縱容網(wǎng)約車司機“非法營運”行為的發(fā)生,(非法營運,消極管理)也可能成為演化博弈的穩(wěn)定策略。要實現(xiàn)網(wǎng)約車平臺“嚴格管理”率和司機“合法營運”率達到理想狀態(tài)并可以長期保持,應(yīng)該加大對策略對(非法營運,消極管理)的識別并給予網(wǎng)約車司機“非法營運”以較高的懲罰,并對網(wǎng)約車平臺“嚴格管理”輔以適當?shù)难a償措施。
網(wǎng)約車運營;網(wǎng)約車新政;演化博弈;演化穩(wěn)定策略
隨著全球信息技術(shù)的快速發(fā)展和“互聯(lián)網(wǎng)+”時代的到來,網(wǎng)絡(luò)化潮流正在席卷全世界,以 Airbnb、Uber和滴滴出行為代表的共享經(jīng)濟(Sharing Economy)迅速崛起,使人類生活的各個方面都受到巨大的影響,城市居民的交通出行領(lǐng)域也不例外。在共享經(jīng)濟之風的勁吹下,網(wǎng)絡(luò)約租車(以下簡稱“網(wǎng)約車”)也應(yīng)運而生。網(wǎng)約車,也叫互聯(lián)網(wǎng)專車,在交通運輸部發(fā)布的《網(wǎng)絡(luò)預約出租汽車經(jīng)營服務(wù)管理暫行辦法(征求意見稿)》中被定義為“以互聯(lián)網(wǎng)技術(shù)為依托構(gòu)建服務(wù)平臺,接入符合條件的車輛和駕駛員,通過整合供需信息,提供非巡游的預約出租汽車服務(wù)”[1]。2016年7月28日,交通運輸部聯(lián)合公安部等七部門正式公布了《網(wǎng)絡(luò)預約出租汽車經(jīng)營服務(wù)管理暫行辦法》(以下皆簡稱為“新政”),網(wǎng)約車獲得合法身份;8月1日,滴滴和Uber(中國)宣布合并。新政的出臺以及壟斷巨頭的醞釀?wù)Q生,意味著網(wǎng)約車行業(yè)將面臨更多的行政許可和更少的補貼,同時也將觸發(fā)網(wǎng)約車行業(yè)的利益相關(guān)者(stakeholders)如乘客、司機與網(wǎng)約車平臺以及傳統(tǒng)出租車行業(yè)的新一輪自主博弈。因此,在新政實施背景下研究網(wǎng)約車平臺與網(wǎng)約車司機之間的演化博弈行為,為政府有關(guān)部門制定相應(yīng)的監(jiān)管措施提供更好的決策支持,具有比較重要的現(xiàn)實意義。
網(wǎng)約車從出現(xiàn)伊始,就在全世界各地引發(fā)了媒體和社會大眾的廣泛關(guān)注和爭議,也是學者們討論的熱點問題之一。近年來,國內(nèi)外已有不少學者對于政府監(jiān)管下的網(wǎng)約車安全監(jiān)管及其規(guī)制范式進行了研究[2]:如侯登華在闡述網(wǎng)約車經(jīng)營模式和發(fā)展階段的基礎(chǔ)上,比較分析了新加坡、美國、英國和法國等對網(wǎng)約車的監(jiān)管路徑[3]。周麗霞介紹了Uber的運營模式,提出從準入條件、司機要求、車輛要求、保險服務(wù)和隱私保護等方面借鑒美國對Uber的監(jiān)管經(jīng)驗[4]。羅清和等在總結(jié)西方發(fā)達國家“規(guī)制(Regulation)——放松規(guī)制(Deregulation)——再規(guī)制(Re-regulation)”的經(jīng)驗基礎(chǔ)上,提出了適合我國國情的網(wǎng)約車監(jiān)管路徑選擇[5]。尹貽林和楊旋從博弈論的角度探討了新興移動打車軟件對我國傳統(tǒng)出租車市場均衡的影響[6]。政府對出租車市場的監(jiān)管所帶來的經(jīng)濟效應(yīng)也被廣泛研究[7],如Cetin和Eryigit通過實證研究表明,政府監(jiān)管提高了出租車市場的牌照價格,導致出租車費上升[8]。Bengtsson通過試驗研究表明有效的政府管制能提高效率,從而實現(xiàn)帕累托改進[9]。
以上研究從理論探討和案例分析角度為網(wǎng)約車的運營監(jiān)管實踐提供了可資借鑒的方法和建議,但是這些研究大多停留在定性的描述和推理階段,關(guān)于網(wǎng)約車涉及的多元利益相關(guān)者之間博弈關(guān)系的研究尚未引起足夠的關(guān)注。雖然演化博弈理論被廣泛應(yīng)用到社會經(jīng)濟和管理領(lǐng)域的各類實際問題中[10],如地方政府與企業(yè)的高耗能產(chǎn)業(yè)退出機制[11],我國土地囤積與土地監(jiān)察的困境[12],碳減排標簽政策[13],雙寡頭再制造的進入決策[14],研發(fā)外包決策[15],重大突發(fā)事件的防控措施[16],合作溢出的機會主義行為[17],出行方式選擇行為[18],逆向拍賣的分組評標行為[19],食品供應(yīng)商與制造商的質(zhì)量投入博弈[20],技術(shù)創(chuàng)新模式選擇[21,22],創(chuàng)新中小企業(yè)與商業(yè)銀行的信貸博弈[23],供應(yīng)商和制造商的綠色采購博弈[24],煤礦安全監(jiān)管博弈[25,26],石油市場支配地位博弈[27],網(wǎng)絡(luò)化智能電網(wǎng)的需求側(cè)管控博弈[28]以及農(nóng)民創(chuàng)業(yè)者供給村莊公共品的行為[29]]等,將該理論應(yīng)用于電子商務(wù)交易行為的研究雖然也取得了一定的成果[30-32],但是鮮有關(guān)于網(wǎng)約車市場利益相關(guān)者之間演化博弈行為的研究。而網(wǎng)約車市場是一個典型的雙邊市場,市場中形成了一個以網(wǎng)約車平臺為中介,聯(lián)結(jié)司機和乘客的三位一體的商業(yè)生態(tài)系統(tǒng),三者相互依賴,相互影響。
因此,在新政實施和行業(yè)壟斷巨頭醞釀?wù)Q生的背景下,網(wǎng)約車平臺和網(wǎng)約車司機會發(fā)生怎樣的自主博弈行為呢?在這一過程中,影響雙方博弈的均衡結(jié)果和穩(wěn)定性的因素有哪些?為了回答上述問題,本文嘗試借助演化博弈理論,深入研究新政出臺背景下網(wǎng)約車平臺和網(wǎng)約車司機之間的行為演化關(guān)系,在政府的監(jiān)管調(diào)控下,分析影響演化博弈均衡結(jié)果的關(guān)鍵因素,為政府制定科學合理的網(wǎng)約車安全監(jiān)管機制提供借鑒和參考。
新政的出臺盡管使網(wǎng)約車獲得了“合法身份”,但同時也意味著網(wǎng)約車行業(yè)將面臨更多的行政許可和更少的補貼,對于網(wǎng)約車平臺和網(wǎng)約車司機也提出了更嚴格的要求。一方面,新政要求網(wǎng)約車平臺按照相關(guān)規(guī)定對網(wǎng)約車司機進行嚴格監(jiān)管,增加了網(wǎng)約車平臺的運營成本;另一方面對于網(wǎng)約車司機而言,由于網(wǎng)約車所具有的“共享經(jīng)濟”本質(zhì),網(wǎng)約車司機本不用像巡游出租車司機一樣面對嚴格的準入管制,也不需要向出租車公司繳納“份子錢”,由此吸引了大批嘗鮮者,然而,新政對網(wǎng)約車司機提出的更加嚴格的監(jiān)管和限制條件,使得網(wǎng)約車司機還沒來得及咀嚼分享經(jīng)濟的成果,就被推向去與留的十字路口。
由此建立網(wǎng)約車平臺和網(wǎng)約車司機之間博弈的支付矩陣如表1所示。
表1 新政背景下網(wǎng)約車平臺與網(wǎng)約車司機博弈的支付矩陣
根據(jù)支付矩陣,可以算出在新政實施的背景下以及政府有關(guān)部門的管制下,網(wǎng)約車司機的期望收益為:
則網(wǎng)約車司機的復制動態(tài)方程為:
同理,在新政實施的背景下以及政府有關(guān)部門的管制下,網(wǎng)約車平臺的期望收益為:
則網(wǎng)約車平臺的復制動態(tài)方程為:
表2 情形①時網(wǎng)約車平臺與網(wǎng)約車司機之間演化博弈的穩(wěn)定性分析
圖1 情形①時網(wǎng)約車平臺與網(wǎng)約車司機之間演化博弈的復制動態(tài)相位圖
Figure 1 Copying dynamic phase diagram of evolutionary game between Internet-chauffeured-car platform and internet-chauffeured-car driver in case ①
2.2.1情形②的策略穩(wěn)定性分析
表3 情形②時網(wǎng)約車平臺與網(wǎng)約車司機之間演化博弈的穩(wěn)定性分析
圖2 情形②時網(wǎng)約車平臺與網(wǎng)約車司機之間演化博弈的復制動態(tài)相位圖
Figure 2 Copying dynamic phase diagram of evolutionary game between net car platform and net car driver in case ②
2.2.2情形③的策略穩(wěn)定性分析
表4 情形③時網(wǎng)約車平臺與網(wǎng)約車司機之間演化博弈的穩(wěn)定性分析
圖3 情形②時網(wǎng)約車平臺與網(wǎng)約車司機之間演化博弈的復制動態(tài)相位圖
Figure 3 Copying dynamic phase diagram of evolutionary game between internet-chauffeured-car platform and internet-chauffeured-car driver in case ②
圖4 網(wǎng)約車平臺與網(wǎng)約車司機之間演化博弈的策略演化路徑圖
Figure 4 Strategy evolution path chart of evolutionary game between internet-chauffeured-car platform and internet-chauffeured-car driver
在政府監(jiān)管部門的管制下,網(wǎng)約車平臺與網(wǎng)約車司機的演化博弈,面臨不同情況的初始條件會有不同的演化穩(wěn)定策略,為了使網(wǎng)約車行業(yè)朝著一個良好的發(fā)展態(tài)勢,針對嚴格管理與消極管理的網(wǎng)約車平臺的凈收益差異,政府監(jiān)管部門需要改變對網(wǎng)約車平臺的補償力度和懲罰力度,提高對網(wǎng)約車平臺的監(jiān)管,使網(wǎng)約車平臺更能積極主動的對網(wǎng)約車司機進行嚴格管理,從而引導網(wǎng)約車司機正常營運。
[1] 交通運輸部.網(wǎng)絡(luò)預約出租汽車經(jīng)營服務(wù)管理暫行辦法(交通運輸部工業(yè)和信息化部公安部商務(wù)部工商總局質(zhì)檢總局國家網(wǎng)信辦令 2016 年第 60 號)[Z]. 2016.
Ministry of Transport. Interim measures for the administration of online taxi management services (Ministry of Commerce and Information Technology, Ministry of Transport, Ministry of Commerce, Ministry of Commerce, Ministry of Commerce and Industry, General Administration of Quality Supervision, Inspection and Quarantine, National Network Letters, No. 60, 2016) [Z]. 2016.
[2] 王靜. 中國網(wǎng)約車的監(jiān)管困境及解決[J]. 行政法學研究, 2016, (02): 49-59.
Wang J. Regulatory quandary and its solutions of Internet chauffeured car in China[J]. Administrative Law Review,2016,(02):49-59.
[3] 侯登華.網(wǎng)約車規(guī)制路徑比較研究—兼評交通運輸部《網(wǎng)絡(luò)預約出租汽車經(jīng)營服務(wù)管理暫行辦法(征求意見稿)》[J]. 北京科技大學學報(社會科學版), 2015,31(6): 96-103.
Hou D H. Legitimacy and supervision system of Internet private hire vehicles[J]. Journal of University of Science and Technology Beijing(Social Sciences Edition), 2015,31(6): 96-103.
[4] 周麗霞. 規(guī)范國內(nèi)打車軟件市場的思考——基于美國對Uber商業(yè)模式監(jiān)管實踐經(jīng)驗借鑒[J]. 價格理論與實踐, 2015,(7): 21-24.
Zhou L X. Thoughts on regulating the domestic taxi software market--based on the US experience in Uber business model supervision practice [J]. Price: Theory & Practice, 2015,(7): 21-24.
[5] 羅清和, 張暢, 潘道遠. 我國“約租車”規(guī)制研究——兼及國外經(jīng)驗[J]. 北京交通大學學報(社會科學版, 2016,15(3): 31-37.
Luo Q H, Zhang C, Pan D Y. Regulation on Chinese on-demand ride services--A discussion based on foreign experience[J]. Journal of Beijing Jiaotong University(Social Sciences Edition), 2016,15(3): 31-37.
[6] 尹貽林,楊旋. 新興移動打車軟件對我國出租車市場均衡的影響[J]. 大連理工大學學報(社會科學版), 2016,37(2):65-70.
Yin Y L, Yang X. The impact of emerging taxi taking apps on market equilibrium in China[J]. Journal of Dalian University of Technology(Social Sciences), 2016,(02):65-70.
[7] ?etin T, Eryigit KY. The economic effects of government regulation: Evidence from the New York taxicab market[J]. Transport Policy, 2013,1(25): 169-177.
[8] Noble A W. The effectiveness of local government regulation of the taxi trade[D]. University of Birmingham,2014.
[9] Bengtsson N. Efficient informal trade: Theory and experimental evidence from the CapeTown taxi market [J]. Journal of Development Economics, 2015, 115: 85-98.
[10] Weibull, Jorgen W. Evolutionary Game Theory [M]. Shanghai: Shanghai People's Publishing House; Shanghai: Truth and Wisdom press, 2015.05.
[11] 郭本海,方志耕,劉卿. 基于演化博弈的區(qū)域高耗能產(chǎn)業(yè)退出機制研究[J]. 中國管理科學, 2012,20(4): 79-85
Guo B H, Fang Z G, Liu Q. Study of regional energy-intensive industry’s exit mechanism based on evolutionary game[J]. Chinese Journal of Management Science, 2012,20(4): 79-85
[12] Zhang X L, Bao H J, Skitmore M. The land hoarding and land inspector dilemma in China: An evolutionary game theoretic perspective [J]. Habitat International, 2015,46: 187-195
[13] Zhao R, Zhou X, Han J J, et al. For the sustainable performance of the carbon reduction labeling policies under an evolutionary game simulation [J]. Technological Forecasting & Social Change, 2016,112: 262-274
[14] 郭軍華,李幫義,倪明. 雙寡頭再制造進入決策的演化博弈分析[J]. 系統(tǒng)工程理論與實踐, 2013,33(2): 370-377.
Guo J H, Li B Y, Ni M. Evolutionary game analysis of duopoly's remanufacturing entry decision[J]. Systems Engineering —Theory & Practice, 2013,33(2): 370-377.
[15] 汪勇杰,陳通,鄧斌超. 政府補貼機制下研發(fā)外包的演化博弈分析[J]. 管理工程學報, 2017,31(2): 137-142.
Wang Y J, Chen T, Deng B C. Evolutionary game analysis of research and development outsourcing based on government subsidy mechanism[J]. Journal of Industrial Engineering and Engineering, 2017,31(2): 137-142.
[16] 劉德海,王維國,孫康. 基于演化博弈的重大突發(fā)公共衛(wèi)生事件情景預測模型與防控措施[J]. 系統(tǒng)工程理論與實踐, 2012,32(5): 937-946.
Liu D H, Wang W G, Sun K. Scenario forecasting model and prevention-control measurements of important public health event based evolutionary game[J]. Systems Engineering —Theory & Practice, 2012,32(5): 938-946.
[17] 邢樂斌,王旭. 基于合作溢出的機會主義行為演化博弈分析[J]. 管理工程學報, 2011, 25(3): 68-72.
Xing L B, Wang X. Evolutionary game analysis on opportunistic behavior based on cooperative spillover[J]. Journal of Industrial Engineering and Engineering Management, 2011, 25(3): 68-72.
[18] 肖海燕,王先甲. 政府參與模式下出行者出行方式選擇行為的演化博弈分析[J]. 管理工程學報, 2010, 24(2): 115-118.
Xiao H Y, Wang X J. A study of trip model choice behavior of traveler based on the evolutionary game under the participation of government[J]. Journal of Industrial Engineering and Engineering Management, 2010, 24(2): 115-118.
[19] 劉旭旺,汪定偉. 分組評標專家行為的演化博弈分析[J]. 管理科學學報, 2015,18(1): 50-61.
Liu X W, Wang D W. Analysis of referee experts ’behaviors for grouped bid evaluation based on evolutionary game[J]. Journal of Management Sciences in China, 2015,18(1): 50-61.
[20] 許民利,王俏,歐陽林寒. 食品供應(yīng)鏈中質(zhì)量投入的演化博弈分析[J]. 中國管理科學, 2012,20(5): 131-141.
Xu M L, Wang Q, Ouyang L H. Investment decision of food supply chain quality based on the evolutionary game[J]. Chinese Journal of Management Science, 2012,20(5): 131-141.
[21] 戴園園,梅強. 我國高新技術(shù)企業(yè)技術(shù)創(chuàng)新模式選擇研究——基于演化博弈的視角[J]. 科研管理, 2013,34(1): 2-10
Dai Y Y, Mei Q. The technological innovation mode selection of Chinese new and high-tech enterprises based on evolutionary game[J]. Science Research Management, 2013,34(1): 2-10
[22] Canbolat E O, Beraha A., Bas A. Application of evolutionary game theory to strategic innovation [J]. Procedia-Social and Behavioral Sciences, 2016,235: 685-693
[23] 梁益琳,張玉明. 創(chuàng)新型中小企業(yè)與商業(yè)銀行的演化博弈及信貸穩(wěn)定策略研究[J]. 經(jīng)濟評論,2012,(1): 16-24
Liang Y L, Zhang Y M. Research on evolutionary game and credit stable strategies between innovative SMEs and commercial banks[J]. Economic Review, 2012,(1): 16-24
[24] Ji P., Ma X., Li G. Developing green purchasing relationships for the manufacturing industry: An evolutionary game theory perspective [J]. Int. J. Production Economics, 2015,166: 155-162
[25] Liu D H, Xiao X Z, Li H Y, et al. Historical evolution and benefit–cost explanation of periodical fluctuation in coal mine safety supervision: An evolutionary game analysis framework [J]. European Journal of Operational Research, 2015,243: 974-984
[26] Liu Q L, Li X C, Hassall M. Evolutionary game analysis and stability control scenarios of coal mine safety inspection system in China based on system dynamics [J]. Safety Science, 2015,80: 13-22
[27] Wood A D, Mason C F, Finnoff D. OPEC, the Seven Sisters, and oil market dominance: An evolutionary game theory and agent-based modeling approach [J]. Journal of Economic Behavior & Organization, 2016,132: 66-78
[28] Zhu B, Xia XH, Wu Z. Evolutionary game theoretic demand-side management and control for a class of networked smart grid [J]. Automatica, 2016,70: 94-100
[29] 黃啟發(fā),莊晉財,尹金承. 基于演化博弈論的農(nóng)民創(chuàng)業(yè)者供給村莊公共品行為研究[A]. 見: 管理科學與工程學會主編. 管理科學與工程學會2016年年會論文集[C]. 鎮(zhèn)江: 江蘇大學出版社, 2016, 272-283
Huang Q F, Zhuang J C, Yin J C. Research on the behavior of farmers-entrepreneurs supplying village public goods based on Evolutionary Game Theory[A]. See: Editor-in-Chief, Management Science and Engineering Society. Proceedings of the 2016 Annual Meeting of the Institute of Management Science and Engineering [C]. Zhenjiang: Jiangsu University Press, 2016, 272-283
[30] 周春林,鄒麗芳. 電子商務(wù)交易雙方的博弈模型分析[J]. 經(jīng)濟問題探索, 2010,(2):187-190
Zhou C L, Zou L F. Analysis of game model of both e-commerce transaction parties [J]. Inquiry into Economic Issues, 2010,(2): 187-190
[31] 蹇潔,袁恒,陳華. 第三方網(wǎng)絡(luò)交易平臺與網(wǎng)店經(jīng)營主體進行博弈與交易監(jiān)管[J]. 商業(yè)研究, 2014,(8): 142-149
Jian J, Yuan H, Chen H. Evolutionary game model and transaction regulation of the third-party network trading platform and online shop management entities[J]. Commercial Research, 2014,(8): 142-149
[32] 董瑞,陳琳,王先甲. 基于補償-懲罰措施的雙邊平臺的促合作控制研究[C]//管理科學與工程學會主編. 管理科學與工程學會2016年年會論文集[C]. 鎮(zhèn)江: 江蘇大學出版社, 2016: 409-424
Dong R, Chen L, Wang X J. Research on promoting cooperation control of bilateral platform based on compensation-punishment measures [A]. See: Editor-in-Chief, Management Science and Engineering Society. Proceedings of the 2016 Annual Meeting of the Institute of Management Science and Engineering [C]. Zhenjiang: Jiangsu University Press, 2016:409-424
[33] 謝志剛. “共享經(jīng)濟”的知識經(jīng)濟學分析——基于哈耶克知識與秩序理論的一個創(chuàng)新合作框架[J]. 經(jīng)濟學動態(tài),2015,(12):78-87.
Xie Z G. The analysis of knowledge economy of "Sharing Economy"——An innovative cooperation framework based on Hayek's theory of knowledge and order [J]. Economics Information,2015, (12):78-87.
Evolutionary game analysis of car-hailing industry between platforms and drivers based on new policies of car-hailing
LEI Licai, GAO Shang, JIANG Yan
(Business School, Xiangtan University, Xiangtan 411105, China)
With the mushroomed growth of the sharing economy, platform economics represented by Airbnb, Uber, and Didi, has greatly affected all aspects of human life, especially in the area of urban residents' travel. Under the circumstance, car-hailing service also came into being. In the context of the rapid development of global information technology and the advent of the "Internet +" era, the demand for China's car-hailing market is growing. Moreover, a large number of stakeholders, such as car-hailing platforms, passengers, drivers, and traditional taxi industries are involved in the car-hailing industry. According to the behavioral decision theory, each person wants to be able to maximize its revenue, which will inevitably lead to conflicts among stakeholders. Consequently, it is of great significance to introduce and apply the control of the government to the car-hailing market. To a certain extent, the reinforcement of control will promote the healthy development of the car-hailing market.
As the promulgation of car-hailing regulation and the birth of industrial monopoly giants, the car-hailing market will face more administrative licensing and fewer subsidies. In the meanwhile, a new round of the independent game is triggered among the stakeholders. Multiple stakeholders of the car-hailing market are faced with new opportunities and challenges. The requirements for car-hailing platforms and drivers are becoming more stringent. Therefore, it is necessary to study the selection behavior of evolutionary game between car-hailing platforms and drivers, which will provide a useful reference for the government to play a regulatory role in maintaining the sustainable development of car-hailing service.
In the first part, according to the analytical method of evolutionary game theory, the evolutionary game model between car-hailing platforms and drivers is proposed, and a payoff matrix is established. On this foundation, the replicator dynamic equations are used to depict the evolutionary path of car-hailing platforms’ and drivers’ selection behavior under the control of the government. In the second part, based on the replicator dynamic equations, we consider different controls of the government over the car-hailing service to calculate the equilibrium point. We take advantage of the Jacobin matrix to analyze the stability of the equilibrium point and obtain the dynamical diagram of the evolutionary game and the evolutionarily stable strategy. In the third part, we conduct the simulation experiments of the evolutionary game mode between the car-hailing platforms and drivers,and the dynamical route of the evolutionary game is presented. Finally, the advice on government control of the car-hailing market is put forward in terms of the evolutionary game model results.
Theoretical research and simulation results indicate that the ratio of “strict management” for car-hailing platforms and the ratio of “l(fā)egal operation” for drivers achieve and maintain perfect condition, which depends on the tremendous control of the government. When the tremendous control is exerted over the car-hailing market, the net income of the “strict management” is more than that of the “l(fā)oose management” for the car-hailing platforms, which turns out that the only evolutionarily stable strategy is “Legal Operation, Strict Management,” which is what we have expected. Contrarily, when the government exerts the less control, the evolutionarily stable strategy may be “Illegal Operation, Loose Management” for lack of effective government regulation. The game falls into the prisoner’s dilemma, which goes against the sustainable development for the car-hailing industry. Based on the simulation experiments, the strategy of “Illegal Operation, Loose Management” should be identified. Simultaneously, it is necessary to impose a greater penalty on drivers with “illegal operation” and take appropriate compensation measures for car-hailing platforms with “strict management”,which will make the car-hailing platforms more active to rigidly manage drivers, and guide the “l(fā)egal operation.”
Car-hailing service; New policies of car-hailing; Evolutionary game; Evolutionary stable strategy
2017-06-03
2017-09-15
Supported by the Ministry of Education Layout Foundation of Humanities and Social Science (19YJA630030), the Excellent Youth Project of Educational Commission of Hunan Province (17B267) and the Social Science Foundation of Hunan Province (17YBA369)
F570
A
1004-6062(2020)01-0055-008
10.13587/j.cnki.jieem.2020.01.007
2017-06-03
2017-09-15
教育部人文社會科學規(guī)劃基金資助項目(19YJA630030);湖南省教育廳優(yōu)秀青年項目(17B267);湖南省社科基金資助項目(17YBA369)
雷麗彩(1984—),女,湖南桂陽人;湘潭大學商學院副教授,南京大學圖書情報與檔案管理博士后;主要從事電子商務(wù)運營模式、行為決策理論及其應(yīng)用方面的研究。
中文編輯:杜 健;英文編輯:Charlie C. Chen