魏勇,何玉蘭,鄭學(xué)禮
綜 述
RNAi在抗蚊媒病毒感染中的研究進展
魏勇,何玉蘭,鄭學(xué)禮
南方醫(yī)科大學(xué)公共衛(wèi)生學(xué)院病原生物學(xué)系,廣州 510515
蚊媒病因具有較高的發(fā)病率和傳播率使其成為全球關(guān)注的重要公共衛(wèi)生問題。蚊蟲作為蚊媒病的傳播媒介,研究其與蚊媒病毒兩者之間的相互作用機制將有助于蚊媒病的防控。蚊蟲抵御蚊媒病毒的先天免疫降低和病毒成功逃避蚊蟲免疫屏障為病毒在蚊蟲體內(nèi)的持續(xù)感染和蚊媒病的暴發(fā)流行造成了潛在風(fēng)險。RNA干擾(RNA interference, RNAi)途徑作為蚊蟲體內(nèi)強大的抗病毒防御屏障,通過產(chǎn)生多種小RNA降解病毒RNA,從而達到抑制病毒復(fù)制和傳播的目的。本文對小干擾RNA (small interfering RNA, siRNA)、微小RNA (microRNA, miRNA)、Piwi蛋白相作用RNA (Piwi-interacting RNA, piRNA)等3種小分子RNA在蚊蟲體內(nèi)發(fā)揮抗蚊媒病毒感染的先天免疫機制的相關(guān)研究進行了綜述,以期為蚊媒病的防控提供理論參考。
蚊蟲;蚊媒病毒;siRNA;miRNA;piRNA
蚊媒病是一類由病媒蚊蟲傳播的自然疫源性疾病,常見的有流行性乙型腦炎、登革熱、黃熱病等。隨著全球氣候變暖、交通運輸便捷和旅游業(yè)發(fā)展,蚊蟲在全球范圍內(nèi)快速擴張,這為蚊媒病的暴發(fā)流行和傳播擴散構(gòu)成了潛在風(fēng)險。絕大多數(shù)蚊媒病毒以及在全球發(fā)病率和死亡率占較大比重的均是RNA病毒,如黃病毒科黃病毒屬(正鏈RNA病毒)、披膜病毒科甲病毒屬(正鏈RNA病毒)、布尼亞病毒科白蛉病毒屬(負鏈RNA病毒)[1,2]。黃病毒科黃病毒屬包括黃熱病病毒(yellow fever virus, YFV)、登革病毒(Dengue virus, DENV)、乙型腦炎病毒(Japanese encephalitis virus, JEV)、西尼羅河病毒(West Nile virus, WNV)和寨卡病毒(Zika virus, ZIKV)等[3],披膜病毒科甲病毒屬包括基孔肯雅病毒(Chikungunya virus, CHIKV)、辛德畢斯病毒(Sindbis virus, SINV)、塞姆利基森林病毒(Semliki forest virus, SFV)、羅斯河病毒(Ross river virus, RRV)等[4],布尼亞病毒科白蛉病毒屬包括托斯卡納病毒(Toscana virus, TOSV)、裂谷熱病毒(Rift Valley fever virus, RVFV)等[5]。在過去的幾十年間,登革熱至少在128個國家或地區(qū)暴發(fā)流行,每年平均有3.9億人口感染登革熱,登革熱一直是重點關(guān)注的全球公共衛(wèi)生問題[6]。寨卡病毒病是近年來新興的蚊媒傳播性疾病,2016年2月世界衛(wèi)生組織(WHO)宣布將寨卡疫情列為全球緊急公共衛(wèi)生事件。自從2015年巴西發(fā)生大規(guī)模寨卡病毒感染疫情后,目前已有64個國家和地區(qū)報告了寨卡疫情[7]。寨卡病毒感染引起的成人格林-巴利綜合征(Guillain-Barre syndrome, GBS)和新生兒出生缺陷,如產(chǎn)前感染所致的小頭畸形,在近年來引發(fā)了全球廣泛關(guān)注[8]。因目前缺乏蚊媒病相應(yīng)的有效疫苗,抑制病毒在蚊蟲體內(nèi)復(fù)制和阻斷病毒傳播將是控制蚊媒病暴發(fā)流行的有效途徑[9]。因此,研究蚊蟲體內(nèi)抗蚊媒病毒感染的先天免疫機制將有助于制定相應(yīng)的蚊媒病控制策略。本文將對目前蚊蟲體內(nèi)3大主要抗病毒的RNAi途徑的相關(guān)研究進行綜述,以期為蚊媒病的防控提供理論參考。
蚊蟲的先天免疫屏障和蚊媒病毒的免疫逃避機制是影響病毒在蚊蟲體內(nèi)成功復(fù)制和傳播的關(guān)鍵因素。蚊蟲體內(nèi)抗病毒的效應(yīng)分子(抗菌肽(antimicro-bial peptide, AMP)、活性氧(reactive oxygen species, ROS)和酚氧化酶級聯(lián)反應(yīng)的組分等),以及效應(yīng)分子所依賴的信號通路(JAK-STAT、Toll和Imd等信號通路)是蚊蟲體內(nèi)免疫防御的重要方面[10~12]。此外,RNA干擾(RNAi)途徑是蚊蟲體內(nèi)最為強大的抗病毒防御體系[13]。RNAi是指由雙鏈RNA(dsRNA)誘發(fā)的具有高度保守的小RNA片段可高效特異性降解同源mRNA的現(xiàn)象,是轉(zhuǎn)錄后水平的基因沉默(post- transcriptional gene silencing, PTGS)。RNAi途徑主要包含3種類型的小RNA:小干擾RNA (siRNA)、微小RNA (miRNA)和Piwi蛋白相作用RNA (piRNA),其中siRNA為蚊蟲體內(nèi)抗病毒免疫的主要小RNA分子[13~15]。RNAi具有高度的序列特異性,嚴格按照堿基互補配對原則與同源基因的mRNA結(jié)合并進行降解,從而實現(xiàn)針對目的基因的精準沉默;RNAi具有高效抑制基因表達的特性,表型可達到缺失突變體表型的程度;RNAi還具有可遺傳性和可傳播性,RNA干擾效應(yīng)能穩(wěn)定遺傳給下一代,也可穿過細胞界限,傳播至擴散處細胞乃至整個機體[16,17]。利用RNAi特性發(fā)展的RNAi技術(shù)可廣泛地應(yīng)用于基因功能的探索、傳染性疾病和惡性腫瘤的治療領(lǐng)域[18~21]。
siRNA途徑可分為內(nèi)源性通路和外源性通路。內(nèi)源性siRNA一般由細胞內(nèi)基因雙向轉(zhuǎn)錄形成的部分互補配對或由RNA依賴性RNA聚合酶(RNA- dependent RNA polymerase, RDRP)進行的RNA鏈復(fù)制等形成的dsRNA經(jīng)剪切修飾而產(chǎn)生,在生物體不同生長發(fā)育時期發(fā)揮調(diào)控作用。外源性siRNA一般是由轉(zhuǎn)基因技術(shù)或病毒感染細胞后產(chǎn)生的復(fù)制中間體—dsRNA經(jīng)過核糖核酸酶III(RNase III)家族中的Dicer-2核酸內(nèi)切酶剪切成長度約為21~25 nt的雙鏈小RNA分子[22,23]。細胞內(nèi)siRNA通過與AGO、TRBP和PACT等蛋白分子結(jié)合形成RNA誘導(dǎo)的沉默復(fù)合物(RNA-induced silencing complex, RISC),siRNA的隨從鏈被降解,引導(dǎo)鏈通過堿基互補配對的方式找到靶基因的mRNA或同源的病毒RNA,然后RISC中的Ago-2蛋白降解其mRNA或病毒RNA,阻止翻譯表達或病毒復(fù)制(圖1)[24,25]。
Li等[26]首次在岡比亞按蚊()細胞系中驗證了siRNA的抗病毒作用,并表明其抑制效應(yīng)依賴于Ago-2蛋白。Sánchez-Vargas等[27]研究發(fā)現(xiàn)沉默埃及伊蚊() siRNA通路會增加蚊蟲體內(nèi)登革2型病毒的復(fù)制,這表明siRNA通路在蚊蟲體內(nèi)病毒復(fù)制過程中發(fā)揮抑制作用。Khoo等[28]通過轉(zhuǎn)基因技術(shù)破壞埃及伊蚊中腸的siRNA通路,發(fā)現(xiàn)這樣會增加中腸內(nèi)辛德畢斯病毒(SINV)的復(fù)制和播散率。Basu等[29]通過基因敲除抑制埃及伊蚊Dcr-2酶的表達,發(fā)現(xiàn)蚊蟲體內(nèi)抗辛德畢斯病毒的免疫反應(yīng)下降;另外,Dcr-2基因突變型的埃及伊蚊較野生型的蚊蟲體內(nèi)具有顯著增加的黃熱病病毒復(fù)制水平[30]。多項研究表明,在敲除siRNA通路的相關(guān)成分后,成蚊體內(nèi)或培養(yǎng)的蚊蟲細胞系中的病毒復(fù)制水平會顯著升高[27,31]。成蚊或不同細胞系感染蚊媒病毒后會導(dǎo)致該病毒來源的siRNA (virus-derived small interfering RNA, vsiRNA)產(chǎn)生[32,33]。Myles等[34]研究表明vsiRNA對蚊蟲體內(nèi)抗甲病毒感染具有重要調(diào)控作用。能夠表達dsRNA結(jié)合蛋白和病毒RNA沉默抑制因子(viral suppressors of RNA silencing, VSRs)的重組甲病毒感染埃及伊蚊和岡比亞按蚊后,蚊蟲體內(nèi)的vsiRNA顯著下降,從而導(dǎo)致病毒復(fù)制量和蚊蟲死亡率顯著增加。
圖1 siRNA的生物合成和作用機制
單鏈RNA逆轉(zhuǎn)錄形成雙鏈RNA,經(jīng)Dicer-2核酸內(nèi)切酶剪切成雙鏈小RNA分子,其引導(dǎo)鏈與Ago-2等相應(yīng)蛋白組成RNA誘導(dǎo)沉默復(fù)合物,通過堿基互補配對的方式結(jié)合靶標RNA,并將該靶標RNA降解。
蚊媒病毒在受到蚊蟲宿主先天免疫消除的同時,也在不斷進化適應(yīng)宿主的生理環(huán)境,并對抗媒介蚊蟲的抗病毒免疫途徑。通過鑒別蚊媒病毒基因組中編碼的病毒RNA沉默抑制因子(VSRs),了解病毒蛋白對蚊蟲免疫途徑的拮抗作用,將有助于理解蚊媒病毒在蚊蟲體內(nèi)長期感染和傳播的機制,并應(yīng)用于蚊媒病的防控[35]。布尼亞維拉病毒(Bunyamwera virus, BUNV)S片段上的非結(jié)構(gòu)蛋白(non-structure proteins, NSs)是VSRs,NSs缺陷性BUNV在Dcr-2缺陷性的蚊蟲細胞系中的復(fù)制水平要高于在正常蚊蟲細胞系中的復(fù)制水平,NSs缺陷性BUNV在埃及伊蚊體內(nèi)的感染能力要低于野生型BUNV[36]。Kaku-mani等[37]通過體外實驗證明登革熱病毒(DENV) NS4B蛋白能夠干擾Dicer對siRNA的加工處理過程。哺乳動物細胞中的基因沉默實驗顯示NS4B蛋白的跨膜結(jié)構(gòu)域3 (transmembrane domain 3, TMD3)和TME5參與VSRs抑制病毒增殖的活性,其具體機制目前尚不明確。Samuel等[38]研究發(fā)現(xiàn)在Dcr-2缺陷性的蚊蟲細胞系中表達黃病毒衣殼蛋白(yellow fever virus capsid, YFC)的SINV與不表達YFC的SINV的增殖能力和毒力相似,并且驗證了YFC作為VSRs拮抗siRNA途徑。YFC對siRNA途徑拮抗作用可能是非特異性結(jié)合雙鏈RNA(dsRNA),干擾Dicer產(chǎn)生vsiRNA。雖然VSRs有多種不同的蛋白,但它與dsRNA非特異性結(jié)合是探討其拮抗作用的主要內(nèi)容。
miRNA是一類內(nèi)源性的非編碼小RNA (18~ 25 nt),通過降解mRNA或抑制mRNA翻譯來調(diào)控靶基因轉(zhuǎn)錄后表達水平[39]。與siRNA途徑相似,miRNA途徑也始于dsRNA剪切成小的雙鏈RNA,其中一條引導(dǎo)鏈加載到RISC中,然后RISC中Ago-2蛋白降解靶基因的mRNA或同源的病毒RNA[40]。miRNA與siRNA途徑的主要區(qū)別在于所發(fā)生的亞細胞結(jié)構(gòu)位置和所參與的效應(yīng)蛋白分子[41]。siRNA的轉(zhuǎn)錄、剪切和加工過程主要發(fā)生在細胞質(zhì)中,而編碼miRNA的基因在宿主RNA聚合酶Ⅱ的作用下轉(zhuǎn)錄成miRNA初始轉(zhuǎn)錄物(primary miRNA, pri-miRNA),然后由Drosha剪切加工成miRNA前體物(precursor miRNA, pre-miRNA),這一過程均是在細胞核內(nèi)完成。pre-miRNA輸出到細胞質(zhì)后,由Dicer-1進一步加工至成熟的miRNA,并加載到RISC中發(fā)揮RNA干擾作用(圖2)[42]。
多種蚊媒病毒均利用宿主miRNA通路來逃避宿主的抗病毒免疫反應(yīng),從而增加病毒復(fù)制和致病力[43]。Hussain等[44]在西尼羅河病毒(WNV)RNA序列的3¢端非編碼區(qū)發(fā)現(xiàn)了類似miRNA的小RNA片段,并通過Northern印記雜交的方法檢測到感染W(wǎng)NV的埃及伊蚊和白紋伊蚊()細胞系中存在一種病毒來源的成熟miRNA,命名為KUN-miR-1。KUN-miR-1通過上調(diào)轉(zhuǎn)錄因子GATA4的表達來促進病毒在蚊蟲細胞內(nèi)的增殖。Hussain 等[45]通過二代測序技術(shù)發(fā)現(xiàn)感染登革2型病毒(DENV-2)的埃及伊蚊體內(nèi)含有6種病毒來源的miRNA樣的小RNA,稱為vsRNA 1~6;其中vsRNA5已證實與病毒增殖有關(guān)。蚊蟲體內(nèi)miRNA通路關(guān)鍵分子的功能喪失性突變將有助于鑒定其分子特性,并確定KUN-miR-1和DENV-2-vsRNA 1~6的生物發(fā)生機制和抗病毒免疫機制。
圖2 miRNA的生物合成和作用機制
含miRNA序列的DNA經(jīng)過轉(zhuǎn)錄后形成初始miRNA,然后經(jīng)Drosha和Dicer-1等蛋白剪切加工修飾后形成成熟的miRNA,成熟的miRNA與Ago-1等相應(yīng)蛋白組成RNA誘導(dǎo)沉默復(fù)合物,通過堿基互補配對的方式結(jié)合靶標RNA,并將該靶標RNA降解或抑制mRNA翻譯。
當(dāng)蚊蟲感染蚊媒病毒后體內(nèi)會出現(xiàn)多種miRNA差異性表達[46,47]。Su等[48]利用含DENV-2的血餐以及不含DENV-2的血餐分別喂食白紋伊蚊,鑒定蚊蟲中腸內(nèi)差異性表達的miRNA,相比于喂食不含DENV-2血餐的白紋伊蚊,一共有43個miRNA上調(diào),4個miRNA下調(diào);并且上調(diào)的miRNA中aal-miR- 4728-5p瞬時轉(zhuǎn)入C6/36蚊蟲細胞后能夠增強DENV-2在細胞內(nèi)的復(fù)制。Su等[49]再次利用含DENV-2的血餐喂食白紋伊蚊,將感染上DENV-2與未感染上DENV-2的白紋伊蚊中腸內(nèi)miRNA進行差異性分析,發(fā)現(xiàn)感染上DENV-2的白紋伊蚊中腸內(nèi)有15個miRNA上調(diào),2個miRNA下調(diào)。其中miR-1767和miR-276-3p能夠增強DENV-2在C6/36細胞內(nèi)的復(fù)制,而miR-4448抑制DENV-2在C6/36細胞內(nèi)的復(fù)制。
piRNA途徑可在siRNA途徑缺陷的條件下進行抗病毒免疫,是RNAi介導(dǎo)的抗病毒免疫應(yīng)答的相互補充[50]。與siRNA/miRNA相比,piRNA的生成不依賴Dicer,而依賴PIWI亞家族蛋白;piRNA的長度約為26~32 nt,piRNA基因簇主要分別在轉(zhuǎn)座子和重復(fù)序列等區(qū)域;piRNA的3'端會出現(xiàn)甲基化修飾,可能與其穩(wěn)定性或功能有關(guān)[51~53]。piRNA的生成涉及3種PIWI蛋白,包括Piwi、Aub和Ago-3,共同形成piRNA誘導(dǎo)的沉默復(fù)合物(piRNA-induced silencing complex, piRISC)[54]。對于piRNA的生成,目前提出了“乒乓”循環(huán)擴增模型,piRNA從轉(zhuǎn)錄前體物中循環(huán)擴增[55]。反義鏈piRNA與Aub和Piwi結(jié)合形成具有核酸酶活性的piRNA復(fù)合物(piRNA co-mplex, piRC),piRC能結(jié)合正義鏈前體piRNA并將其剪切加工成具有成熟5¢端的前體piRNA,然后該正義鏈前體piRNA經(jīng)Zuc等酶剪切3¢末端形成成熟的正義鏈piRNA;反之,正義鏈piRNA與Ago-3結(jié)合形成piRC,然后以同樣的方式形成反義鏈piRNA (圖3)[56]。piRNA途徑在生殖遺傳、配子形成、胚胎發(fā)育、基因轉(zhuǎn)座、基因沉默和病毒增殖等方面均有調(diào)控作用。
圖3 piRNA的生物合成和作用機制
單鏈RNA經(jīng)剪切形成前體piRNA,然后經(jīng)Zuc等酶剪切加工后形成成熟的piRNA,成熟的piRNA與Piwi、Aub和Ago-3等蛋白組成piRNA誘導(dǎo)沉默復(fù)合物,通過堿基互補配對的方式結(jié)合靶標RNA,并將該靶標RNA降解。虛線框內(nèi)為piRNA的“乒乓”循環(huán)擴增模型。
蚊蟲或蚊蟲細胞系感染蚊媒病毒后,能夠產(chǎn)生一類依賴“乒乓”模型的病毒來源的piRNA (virus- derived piRNA, vpiRNA),這些vpiRNA不同于以往研究中來源于重復(fù)序列元件或piRNA簇的piRNA[57,58]。Morazzani等[57]在感染有基孔肯亞熱病毒(CHIKV)的埃及伊蚊和白紋伊蚊體內(nèi)檢測到vpiRNA。Miesen等[59]用SINV感染埃及伊蚊細胞系后,通過免疫沉淀反應(yīng)和小RNA的Northern免疫印跡檢測到了Ago-3和Piwi-5蛋白特異性富集的vpiRNA。通過對這類vpiRNA測序分析,顯示反義鏈vpiRNA傾向于與Piwi-5結(jié)合,而正義鏈vpiRNA傾向于與Ago-3結(jié)合,這也表明了這兩種蛋白在“乒乓”模型中的作用機制。抑制vpiRNA在siRNA途徑缺陷的蚊蟲細胞系中表達,將會加重受病毒感染細胞的病變程度,這體現(xiàn)了piRNA途徑在siRNA途徑缺陷的蚊蟲細胞系中的抗病毒作用[57]。Schnettler等[60]通過深度測序檢測到塞姆利基森林病毒(SFV)來源的piRNA,敲除Piwi-4基因后會導(dǎo)致Aag2埃及伊蚊細胞內(nèi)SFV復(fù)制增加,表明了piRNA途徑在抗病毒免疫中的重要作用。
每年全球均有大量的蚊媒病暴發(fā)流行,并且目前大部分的蚊媒病缺乏有效的疫苗進行預(yù)防,所以阻止蚊媒病毒傳播一直是蚊媒病預(yù)防控制的重要任務(wù)。目前有關(guān)化學(xué)殺蟲劑和生物防治等方面的防控措施主要是通過控制蚊蟲數(shù)量來控制蚊媒病的暴發(fā)流行。病毒感染和蚊蟲防御機制以及兩者動態(tài)平衡的演變過程一直是科研工作者關(guān)注和探索的問題,深入了解蚊蟲先天免疫系統(tǒng)如何抵御病毒感染,病毒如何在蚊蟲體內(nèi)持續(xù)穩(wěn)定增殖,以及不同蚊蟲種類或病毒株如何影響疾病暴發(fā)流行等方面內(nèi)容,將有助于提高現(xiàn)有策略的有效性,并提出新的蚊媒控制策略。RNAi途徑作為蚊蟲體內(nèi)主要的抗病毒防御體系,目前我國科研工作者對蚊蟲RNAi途徑的研究主要集中在相關(guān)小RNA分子的作用機制,然而通過基因編輯加強蚊蟲RNAi抗病毒免疫的相關(guān)研究較少,將轉(zhuǎn)基因蚊廣泛有效地應(yīng)用于蚊媒病防控也是任重道遠。
[1] Gubler DJ. Human arbovirus infections worldwide., 2001, 951: 13–24.
[2] Beckham JD, Tyler KL. Arbovirus infections., 2015, 21: 1599–1611.
[3] Laureti M, Narayanan D, Rodriguez-Andres J, Fazakerley JK, Kedzierski L. Flavivirus receptors: diversity, identity, and cell entry., 2018, 9: 2180.
[4] Lim EXY, Lee WS, Madzokere ET, Herrero LJ. Mosquitoes as suitable vectors for alphaviruses., 2018, 10(2): E84.
[5] Wuerth JD, Weber F. Phleboviruses and the type I interferon response., 2016, 8(6): 174.
[6] Dash AP, Bhatia R, Sunyoto T, Mourya DT. Emerging and re-emerging arboviral diseases in Southeast Asia., 2013, 50(2): 77–84.
[7] Lowe R, Barcellos C, Brasil P, Cruz OG, Honório NA, Kuper H, Carvalho MS. The Zika virus epidemic in Brazil: From discovery to future implications., 2018, 15(1): 96.
[8] Weaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS, Saade G, Shi PY, Vasilakis N. Zika virus: History, emergence, biology, and prospects for control., 2016, 130: 69–80.
[9] Pang T, Mak TK, Gubler DJ. Prevention and control of dengue-the light at the end of the tunnel., 2017, 17(3): e79–e87.
[10] Xi ZY, Ramirez JL, Dimopoulos G. Thetoll pathway controls dengue virus infection., 2008, 4(7): e1000098.
[11] Souza-Neto JA, Sim S, Dimopoulos G. An evolutionary conserved function of the JAK-STAT pathway in anti- dengue defense., 2009, 106(42): 17841–17846.
[12] Liu XM, Yuan ML. Progress in innate immunity-related genes in insects., 2018, 40(6): 451–466.劉小民, 袁明龍. 昆蟲天然免疫相關(guān)基因研究進展. 遺傳, 2018, 40(6): 451–466.
[13] Ding SW, Voinnet O. Antiviral immunity directed by small RNAs., 2007, 130(3): 413–426.
[14] Nandety RS, Kuo YW, Nouri S, Falk BW. Emerging strategies for RNA interference (RNAi) applications in insects., 2015, 6(1): 8–19.
[15] Lee WS, Webster JA, Madzokere ET, Stephenson EB, Herrero LJ. Mosquito antiviral defense mechanisms: a delicate balance between innate immunity and persistent viral infection., 2019, 12(1): 165.
[16] Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in., 1998, 391(6669): 806–811.
[17] Saleh MC, Tassetto M, van Rij RP, Goic B, Gausson V, Berry B, Jacquier C, Antoniewski C, Andino R. Antiviral immunity inrequires systemic RNA interference spread., 2009, 458(7236): 346–350.
[18] Puglise JM, Estep AS, Becnel JJ. Expression profiles and RNAi silencing of inhibitor of apoptosis transcripts in,, andMosquitoes (Diptera: Culicidae)., 2016, 53(2): 304–314.
[19] Kang S, Hong YS. RNA interference in infectious tropical diseases., 2008, 46(1): 1–15.
[20] Gandhi NS, Tekade RK, Chougule MB. Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: current progress and advances., 2014, 194: 238–256.
[21] Zheng WH, Lin ZQ, Zhuo M, Du HL, Wang XN. Research progress on influenza antiviral small RNAs., 2012, 34(5): 526–532.鄭維豪, 林志強, 卓敏, 杜紅麗, 王小寧. 抗流感病毒小RNAs研究進展. 遺傳, 2012, 34(5): 526–532.
[22] Galiana-Arnoux D, Dostert C, Schneemann A, Hoffmann JA, Imler JL. Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila., 2006, 7(6): 590–597.
[23] Wang XH, Aliyari R, Li WX, Li HW, Kim K, Carthew R, Atkinson P, Ding SW. RNA interference directs innate immunity against viruses in adult., 2006, 312(5772): 452–454.
[24] Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes., 2005, 123(4): 607–620.
[25] Miyoshi K, Tsukumo H, Nagami T, Siomi H, Siomi MC. Slicer function ofargonautes and its involvement in RISC formation., 2005, 19(23): 2837–2848.
[26] Li WX, Li H, Lu R, Li F, Dus M, Atkinson P, Brydon EW, Johnson KL, García-Sastre A, Ball LA, Palese P, Ding SW. Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing., 2004, 101(5): 1350–1355.
[27] Sánchez-Vargas I, Scott JC, Poole-Smith BK, Franz AW, Barbosa-Solomieu V, Wilusz J, Olson KE, Blair CD. Dengue virus type 2 infections ofare modulated by the mosquito's RNA interference pathway., 2009, 5(2): e1000299.
[28] Khoo CC, Piper J, Sanchez-Vargas I, Olson KE, Franz AW. The RNA interference pathway affects midgut infection- and escape barriers for Sindbis virus in., 2010, 10: 130.
[29] Basu S, Aryan A, Overcash JM, Samuel GH, Anderson MA, Dahlem TJ, Myles KM, Adelman ZN. Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in., 2015, 112(13): 4038–4043.
[30] Samuel GH, Wiley MR, Badawi A, Adelman ZN, Myles KM. Yellow fever virus capsid protein is a potent sup-pressor of RNA silencing that binds double-stranded RNA., 2016, 113(48): 13863–13868.
[31] Keene KM, Foy BD, Sanchez-Vargas I, Beaty BJ, Blair CD, Olson KE. RNA interference acts as a natural antiviral response to O'nyong-nyong virus (Alphavirus; Togaviridae) infection of., 2004, 101(49): 17240–17245.
[32] Brackney DE, Beane JE, Ebel GD. RNAi targeting of West Nile virus in mosquito midguts promotes virus diversi-fication., 2009, 5(7): e1000502.
[33] Myles KM, Morazzani EM, Adelman ZN. Origins of alphavirus-derived small RNAs in mosquitoes., 2009, 6(4): 387–391.
[34] Myles KM, Wiley MR, Morazzani EM, Adelman ZN. Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes., 2008, 105(50): 19938–19943.
[35] Schuster S, Zirkel F, Kurth A, van Cleef KWR, Drosten C, van Rij RP, Junglen S. A unique nodavirus with novel features: mosinovirus expresses two subgenomic RNAs, a capsid gene of unknown origin, and a suppressor of the antiviral RNA interference pathway., 2014, 88(22): 13447–13459.
[36] Szemiel AM, Failloux AB, Elliott RM. Role of Bunya-mwera Orthobunyavirus NSs protein in infection of mosquito cells., 2012, 6(9): e1823.
[37] Kakumani PK, Ponia SS, S RK, Sood V, Chinnappan M, Banerjea AC, Medigeshi GR, Malhotra P, Mukherjee SK, Bhatnagar RK. Role of RNA interference (RNAi) in dengue virus replication and identification of NS4B as an RNAi suppressor., 2013, 87(16): 8870–8883.
[38] Samuel GH, Wiley MR, Badawi A, Adelman ZN, Myles KM. Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA., 2016, 113(48): 13863– 13868.
[39] Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing., 2015, 16(7): 421–433.
[40] Pedersen IM, Cheng GF, Wieland S, Volinia S, Croce CM, Chisari FV, David M. Interferon modulation of cellular microRNAs as an antiviral mechanism., 2007, 449(7164): 919–922.
[41] Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW. Distinct roles forDicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways., 2004, 117(1): 69–81.
[42] Xia MM, Shen XY, Niu CM, Xia J, Sun HY, Zheng Y. MicroRNA regulates Sertoli cell proliferation and adhesion., 2018, 40(9): 724–732.夏蒙蒙, 申雪沂, 牛長敏, 夏靜, 孫紅亞, 鄭英. MicroRNA參與調(diào)控睪丸支持細胞的增殖與粘附功能. 遺傳, 2018, 40(9): 724–732.
[43] Trobaugh DW, Klimstra WB. MicroRNA regulation of RNA virus replication and pathogenesis., 2017, 23(1): 80–93.
[44] Hussain M, Torres S, Schnettler E, Funk A, Grundhoff A, Pijlman GP, Khromykh AA, Asgari S. West Nile virus encodes a microRNA-like small RNA in the 3' untranslated region which up-regulates GATA4 mRNA and facilitates virus replication in mosquito cells., 2012, 40(5): 2210–2223.
[45] Hussain M, Asgari S. MicroRNA-like viral small RNA from Dengue virus 2 autoregulates its replication in mosquito cells., 2014, 111(7): 2746–2751.
[46] Campbell CL, Harrison T, Hess AM, Ebel GD. MicroRNA levels are modulated inafter exposure to Dengue-2., 2014, 23(1): 132–139.
[47] Slonchak A, Hussain M, Torres S, Asgari S, Khromykh AA. Expression of mosquito microRNA Aae-miR-2940-5p is downregulated in response to West Nile virus infection to restrict viral replication., 2014, 88(15): 8457– 8467.
[48] Su JX, Li CX, Zhang YM, Yan T, Zhu XJ, Zhao MH, Xing D, Dong YD, Guo XX, Zhao TY. Identification of microRNAs expressed in the midgut ofduring dengue infection., 2017, 10(1): 63.
[49] Su JX, Wang G, Li CX, Xing D, Yan T, Zhu XJ, Liu QM, Wu Q, Guo XX, Zhao TY. Screening for differentially expressed miRNAs in(Diptera: Culicidae) exposed to DENV-2 and their effect on replication of DENV-2 in C6/36 cells., 2019, 12(1): 44.
[50] Varjak M, Maringer K, Watson M, Sreenu VB, Fredericks AC, Pondeville E, Donald CL, Sterk J, Kean J, Vazeille M, Failloux AB, Kohl A, Schnettler E.Piwi4 is a noncanonical PIWI protein involved in antiviral responses., 2017, 2(3): e00144–17.
[51] Yin H, Lin HF. An epigenetic activation role of Piwi and a Piwi-associated piRNA in., 2007, 450(7167): 304–308.
[52] Kirino Y, Mourelatos Z. Mouse Piwi-interacting RNAs are 2'-O-methylated at their 3' termini., 2007, 14(4): 347–348.
[53] Liu QP, An N, Cen S, Li XY. Molecular mechanisms of genetic transposition inhibition by piRNA., 2018, 40(6): 445–450.劉啟鵬, 安妮, 岑山, 李曉宇. piRNA抑制基因轉(zhuǎn)座的分子機制. 遺傳, 2018, 40(6): 445–450.
[54] Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: the vanguard of genome defence., 2011, 12(4): 246–258.
[55] Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ. Discrete small RNA- generating loci as master regulators of transposon activity in., 2007, 128(6): 1089–1103.
[56] Hayashi R, Schnabl J, Handler D, Mohn F, Ameres SL, Brennecke J. Genetic and mechanistic diversity of piRNA 3'-end formation., 2016, 539(7630): 588–592.
[57] Morazzani EM, Wiley MR, Murreddu MG, Adelman ZN, Myles KM. Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma., 2012, 8(1): e1002470.
[58] Miesen P, Joosten J, van Rij RP. PIWIs go viral: arbovirus-derived piRNAs in vector mosquitoes., 2016, 12(12): e1006017.
[59] Miesen P, Girardi E, van Rij RP. Distinct sets of PIWI proteins produce arbovirus and transposon-derived piRNAs inmosquito cells., 2015, 43(13): 6545–6556.
[60] Schnettler E, Donald CL, Human S, Watson M, Siu RW, McFarlane M, Fazakerley JK, Kohl A, Fragkoudis R. Knockdown of piRNA pathway proteins results in enhanced Semliki Forest virus production in mosquito cells., 2013, 94(Pt 7): 1680–1689.
Research progress in RNA interference against the infection of mosquito-borne viruses
Yong Wei, Yulan He, Xueli Zheng
Mosquito-borne diseases have become an important public health issue of global concern because of their high incidence and transmission rate. As a vector for mosquito-borne diseases, studying the interaction mechanism between mosquitoes and mosquito-borne viruses will help control mosquito-borne diseases. The impaired innate immunity and immune barriers evasion caused by mosquito-borne viruses in mosquitoes pose a potential risk for the persistent infection of the virus in mosquitoes and the outbreak of mosquito-borne diseases. The RNA interference (RNAi) pathway, as a powerful antiviral defense barrier in mosquitoes, can inhibit viral replication and transmission by producing a variety of small RNAs to degrade viral RNA. In this review, we summarize the related studies on the innate immune mechanism against mosquito- borne virus infection in mosquitoes about small interfering RNA (siRNA), microRNA (miRNA), and Piwi-interacting RNA (piRNA), aiming to provide a theoretical reference for the prevention and control of mosquito-borne diseases.
Mosquito; Mosquito-borne viruses; siRNA; miRNA; piRNA
2019-10-15;
2019-12-14
國家自然科學(xué)基金項目(編號:31630011),廣東省自然科學(xué)基金項目(編號:2017A030313625)和廣州市科技計劃項目(編號:201804020084)資助[Supported by National Natural Science Foundation of China (No. 31630011), Natural Science Foundation of Guangdong Province of China (No. 2017A030313625), Science and Technology Planning Project of Guangzhou City (No. 201804020084)]
魏勇,在讀博士研究生,研究方向:傳染病預(yù)防與控制。E-mail: smuweiyong@163.com
鄭學(xué)禮,博士,教授,研究方向:傳染病預(yù)防與控制。E-mail: zhengxueli2001@126.com
10.16288/j.yczz.19-262
2020/1/2 18:34:26
URI: http://kns.cnki.net/kcms/detail/11.1913.R.20191231.1147.003.html
(責(zé)任編委: 岑山)