張 平 ,秦 然 ,張 靜 ,吳劍華
(1.沈陽化工大學(xué)機(jī)械工程學(xué)院,遼寧 沈陽 110142;2.沈陽化工大學(xué)遼寧省化工新技術(shù)轉(zhuǎn)移推廣中心,遼寧 沈陽 110142)
高達(dá)幾十米甚至上百米的塔裝置一般都設(shè)置在露天,露天放置的塔設(shè)備進(jìn)行設(shè)計(jì)計(jì)算時(shí),除考慮其所承受的操作壓力、自重、地震載荷等作用之外還必須考慮風(fēng)載荷的作用[1]。風(fēng)載荷屬于動(dòng)力載荷,其使塔體產(chǎn)生加速度從而引起塔體結(jié)構(gòu)的共振,共振過程中結(jié)構(gòu)的位移和內(nèi)力隨時(shí)間而變化[2]。塔設(shè)備的自振頻率是研究其振動(dòng)特性的前提條件,是塔器動(dòng)力計(jì)算的基礎(chǔ)。對(duì)于等直徑、等厚度的塔設(shè)備,其自振頻率可按質(zhì)量均勻分布的懸臂梁作橫向振動(dòng)進(jìn)行計(jì)算[3]。計(jì)算塔設(shè)備自振頻率的方法很多,如解析法、集中質(zhì)量法、傳遞矩陣法及有限元法等[4]。文獻(xiàn)[5]利用普洛爾法討論了幾種結(jié)構(gòu)不同塔設(shè)備的自振特性,計(jì)算時(shí)考慮支撐形式的不同,其結(jié)論可用于指導(dǎo)塔設(shè)備的防振設(shè)計(jì)。文獻(xiàn)[6]研究了直立錐形塔器在自重作用下的穩(wěn)定性和自振特性,得出塔的錐度和截面形狀對(duì)振動(dòng)頻率有很大影響。文獻(xiàn)[7]利用傳遞矩陣法求解了懸掛塔的自振頻率,計(jì)算結(jié)果與有限元法的計(jì)算結(jié)果相比,平均誤差為(0.54~1.04)%。文獻(xiàn)[8]研究塔設(shè)備固有頻率時(shí)考慮了塔體厚度的影響,并計(jì)算了塔設(shè)備的不平衡響應(yīng)振幅。文獻(xiàn)[9]計(jì)算了結(jié)構(gòu)載荷分布、約束條件復(fù)雜的等截面及變截面直立塔設(shè)備的自振頻率。變截面塔的一階自振頻率分別用有限元法[10]和圖解法[11]進(jìn)行了分析和討論。文獻(xiàn)[12]將板式塔工作過程中的液體動(dòng)力載荷作為預(yù)應(yīng)力,將氣體載荷等效為激勵(lì)載荷,分析了板式塔的動(dòng)態(tài)特性。以多萬向節(jié)陀螺為阻尼器,對(duì)風(fēng)荷載和地震作用下塔架結(jié)構(gòu)進(jìn)行動(dòng)力控制[13]。文獻(xiàn)[14]對(duì)吸收塔的結(jié)構(gòu)進(jìn)行了模態(tài)分析與振型研究。文獻(xiàn)[15-16]研究塔設(shè)備的動(dòng)力特性時(shí),利用了有限單元法。
實(shí)際生產(chǎn)操作狀態(tài)下的板式塔,塔板上存在著一定高度的液態(tài)操作介質(zhì),由于介質(zhì)的流動(dòng)性,操作介質(zhì)的重心是不斷變化的。因此,板式塔的質(zhì)量沿其軸線方向是非均勻分布的,計(jì)算操作狀態(tài)下板式塔的自振頻率時(shí),利用對(duì)分布質(zhì)量進(jìn)行聚集的傳遞矩陣法更為合適[17]。
考慮塔板上操作介質(zhì)流動(dòng)而產(chǎn)生的偏心慣性力矩,得到的偏心慣性力矩傳遞矩陣同卓存真[18]提出的普洛爾傳遞矩陣相比,增加了一項(xiàng)與板式塔結(jié)構(gòu)參數(shù)有關(guān)的偏心慣性力矩項(xiàng)。利用MATLAB程序,通過計(jì)算四種不同結(jié)構(gòu)參數(shù)的板式塔,比較了解析法和普洛爾傳遞矩陣法計(jì)算板式塔自振頻率的誤差大小,比較了偏心慣性力矩傳遞矩陣法和普洛爾傳遞矩陣法的計(jì)算誤差。探討了塔板直徑、塔板上介質(zhì)液層高度以及介質(zhì)密度對(duì)偏心慣性力矩傳遞矩陣法計(jì)算操作狀態(tài)下板式塔自振頻率的影響。
解析法計(jì)算板式塔的自振頻率,認(rèn)為板式塔質(zhì)量沿塔體均勻分布[3],第一階自振頻率為:
式中:fa1—解析法第一階自振頻率/s-1;H—板式塔的總高度/m;m—板式塔的總質(zhì)量/kg;E—塔體材料的彈性模量/MPa;I—塔體截面的慣性矩/m4。
解析法計(jì)算高階自振頻率與第一階自振頻率的關(guān)系為:
式中:i—自振的階數(shù);fai—解析法第i階自振頻率/s-1。
文獻(xiàn)[18]提出計(jì)算板式塔自振頻率的普洛爾傳遞矩陣,沒有考慮塔板上操作介質(zhì)的流動(dòng)性,認(rèn)為塔體振動(dòng)時(shí)操作介質(zhì)重心始終位于塔體的軸線上,只是單純地把板上操作介質(zhì)作為固體與塔體質(zhì)量一同計(jì)算。普洛爾傳遞矩陣法的一個(gè)計(jì)算單元Kbi為:
式中:Kbi—普洛爾傳遞矩陣計(jì)算單元;m1i—第i段板式塔質(zhì)量/kg;fb—普洛爾傳遞矩陣法自振頻率/s-1。
文獻(xiàn)[17]研究操作狀態(tài)下板式塔的自振頻率時(shí),考慮塔體振動(dòng)時(shí),塔板上操作介質(zhì)的流動(dòng)性,提出介質(zhì)對(duì)塔體產(chǎn)生額外的偏心慣性力矩。偏心慣性力矩傳遞矩陣法的一個(gè)計(jì)算單元Kci為:
式中:Kci—偏心慣性力矩傳遞矩陣計(jì)算單元;m1i—第i段板式塔質(zhì)量/kg;m2i—第i段塔板上操作介質(zhì)質(zhì)量/kg;D—塔板直徑/m;hL—塔板上液層高度/m。
偏心慣性力矩傳遞矩陣,比普洛爾傳遞矩陣多增加一項(xiàng)與板式塔直徑、板上操作介質(zhì)高度及操作介質(zhì)質(zhì)量相關(guān)的偏心慣性力矩項(xiàng)。
選取了四種結(jié)構(gòu)不同的板式塔[3、19]進(jìn)行實(shí)例計(jì)算,探討塔板直徑、板上操作介質(zhì)液層高度及介質(zhì)密度對(duì)板式塔各階自振頻率的影響。設(shè)定距地面10m處單位長度的風(fēng)載荷為300N/m,塔體材料的彈性模量為1.96×1011Pa。板式塔的結(jié)構(gòu)及板上操作介質(zhì)參數(shù),如表1所示。
表1 板式塔的結(jié)構(gòu)及介質(zhì)參數(shù)Tab.1 Structure and Medium Parameters of Tray Column
文獻(xiàn)[3、19]中四個(gè)板式塔在操作狀態(tài)下,塔板上的操作介質(zhì)質(zhì)量、塔體自身及內(nèi)構(gòu)件組成的結(jié)構(gòu)質(zhì)量,如表2所示。
表2 板式塔的操作介質(zhì)質(zhì)量及結(jié)構(gòu)質(zhì)量Tab.2 Operating Liquid and Structural Quality of Tray Column
利用解析法、普洛爾傳遞矩陣法及偏心慣性力矩傳遞矩陣法分別計(jì)算表1中四個(gè)板式塔的前10階自振頻率。
定義解析法和普洛爾傳遞矩陣法的結(jié)果誤差為:
解析法和普洛爾傳遞矩陣法的計(jì)算誤差曲線,如圖1所示。圖中可以發(fā)現(xiàn),四個(gè)塔設(shè)備前10階振型的自振頻率誤差變化不大,只有第二階振型的自振頻率誤差相對(duì)較大,比其它階振型高出10%。a塔和d塔的誤差較小,低于1%,c塔的最大誤差是1.99%,b塔的最大誤差為3.38%。通過表2觀察,a塔和d塔的長徑比分別為46和30.5,b塔和c塔的長徑比分別為13.5和16。說明長徑比較大的板式塔可以認(rèn)為塔體質(zhì)量沿塔體均勻分布,而長徑比較小的板式塔不適合利用解析法計(jì)算自振頻率。
圖1 解析法和普洛爾傳遞矩陣法的比較Fig.1 Comparisons between Analytical Method and PROHL Method
普洛爾傳遞矩陣法和偏心慣性力矩傳遞矩陣法的計(jì)算誤差為:
利用式(4)計(jì)算板式塔的自振頻率時(shí),增加了一項(xiàng)與塔板直徑和板上液體介質(zhì)質(zhì)量有關(guān)的偏心慣性力矩項(xiàng),即塔體振動(dòng)時(shí)液體介質(zhì)產(chǎn)生的額外偏心慣性力矩。普洛爾傳遞矩陣法和偏心慣性力矩傳遞矩陣法的計(jì)算結(jié)果誤差曲線,如圖2所示。
圖2 普洛爾傳遞矩陣法和偏心慣性力矩矩陣法的比較Fig.2 Comparison of PROHL Transfer Matrix Method and Eccentric Inertial Moment Matrix Method
由圖2可知,隨著自振階數(shù)的增加,計(jì)算誤差增加,尤其對(duì)八階振型以上的振型,計(jì)算誤差較大。a塔的誤差最小,小于1%,b塔的平均誤差為1.2%左右,最大誤差1.86%。c塔和d塔的平均誤差為2%左右,最大誤差分別為的3.71%和3.11%。通過分析表1可以看出,c塔和d塔的直徑大于a塔和b塔,說明塔板直徑大的板式塔應(yīng)該考慮額外偏心慣性力矩的影響。
板式塔一階自振頻率隨塔板直徑增量變化的曲線,如圖3所示??梢园l(fā)現(xiàn),隨著塔板直徑的增加,b塔的自振頻率基本不變,a塔、c塔和d塔的自振頻率都呈下降的趨勢(shì),d塔的變化最為明顯,直徑增加一倍,自振頻率也基本增加一倍。由表1、表2可知,b塔的塔高為18.9m,長徑比為13.5;d塔的塔高為73.3m,長徑比為30.5,說明塔板直徑變化對(duì)長徑比大的高塔的自振頻率影響較大。因?yàn)閐塔的塔體高,塔板多,塔板直徑的變化對(duì)操作介質(zhì)質(zhì)量影響較大,故對(duì)自振頻率影響較大。
圖3 直徑增量對(duì)塔體自振頻率的影響Fig.3 Effect of Diameter Increment on Natural Vibration Frequency of Column
圖4 液面高度對(duì)各階振動(dòng)頻率的影響Fig.4 Effect of Liquid Level Height on Vibration Frequencies of Different Orders
當(dāng)塔板溢流量發(fā)生變化時(shí),塔板上的液面高度也隨之變化。板式塔操作介質(zhì)液面高度對(duì)各階自振頻率的影響,如圖4所示??梢园l(fā)現(xiàn),一階、四階以及八階自振頻率隨操作介質(zhì)液面高度增加略有增加。介質(zhì)液面高度增加一倍,四個(gè)板式塔自振頻率增加的百分比,如表3所示。表中可以看出,c塔變化最大,一階、四階以及八階自振頻率分別增加13.2%,14.3%,16.2%。隨著液面高度增加,操作介質(zhì)質(zhì)量增加,自振頻率降低,但通過式(4)可知,液面高度與自振頻率成正比,兩者抵消,液面高度變化對(duì)自振頻率影響不大。
表3 各階自振頻率的增加比率Tab.3 Increase Ratio of Natural Frequency of Each Order
板式塔的一階自振頻率隨操作介質(zhì)密度的變化曲線,如圖5所示。分析圖形發(fā)現(xiàn),隨著介質(zhì)密度的增加,板式塔的自振頻率呈下降的趨勢(shì),對(duì)c塔的影響比較大,其他3個(gè)塔下降的比較平緩,c塔介質(zhì)密度增加一倍時(shí),自振頻率下降50%。
圖5 液體介質(zhì)密度對(duì)自振頻率的影響Fig.5 Effect of Liquid Medium Density on Natural Frequency
圖6 各階振動(dòng)頻率隨液體介質(zhì)密度的變化Fig.6 Variation of Vibration Frequencies of Each Order with Density of Liquid Medium
針對(duì)表1中b塔各階自振頻率隨操作介質(zhì)密度增加的變化??梢园l(fā)現(xiàn),隨著操作介質(zhì)密度的增加,各階自振頻率都呈下降的趨勢(shì),階數(shù)越高,下降的幅度越大,如圖6所示。介質(zhì)密度增加一倍,一階自振頻率下降50%,九階自振頻率下降一倍。操作介質(zhì)密度的增加,增加了板式塔的操作介質(zhì)質(zhì)量,降低了塔體的自振頻率,c塔的D2/(12HL)最大,故操作介質(zhì)密度的變化對(duì)c塔的影響最大。
(1)大長徑比的高塔,解析法和普洛爾傳遞矩陣法的計(jì)算誤差較小。長徑比大的板式塔可以認(rèn)為塔體質(zhì)量沿軸線均勻分布,而長徑比小的板式塔不適合利用解析法計(jì)算自振頻率。
(2)塔板直徑大的板式塔進(jìn)行動(dòng)力計(jì)算,核算塔體自振頻率時(shí),應(yīng)該考慮板上操作介質(zhì)的額外偏心慣性力距的影響。塔板直徑增加,塔體自振頻率減小,對(duì)自振頻率影響比較大,不能忽略。
(3)操作介質(zhì)液面高度增加,塔體各階自振頻率增加,但影響不大,可以不用考慮。操作介質(zhì)密度增加,塔體各階自振頻率減小,長徑比小的塔體應(yīng)該考慮介質(zhì)密度的影響,尤其對(duì)于高階自振頻率。