穆保崗 龔湘源 陶津 張勇
(1.東南大學土木工程學院 南京210096; 2.中鐵二院華東勘察設計有限責任公司 杭州310004;3.中交二公局技術中心 西安710065)
地鐵車站深基坑大多位于環(huán)境復雜的鬧市區(qū), 基坑呈狹長型分布, 各段支護結構剛度及受力不均、 變形又相互影響, 其空間分布不均勻性的特性客觀存在。 以往對基坑空間效應的研究主要集中在以下幾個方面:
黃強[1], 楊雪強[2]等計算分析了基坑護坡樁的空間受力, 認為基坑邊界的約束限制是可以利用的空間效應, 定量地描述其空間效應可用空間效應影響系數(shù), 并給出了空間效應的影響范圍。Lee[3]研究確定基坑的長深比、 軟土層深度、 支撐剛度等是影響空間效應的主要因素。 Finno[4]模擬給出了坑角效應的影響范圍。 張忠苗等[5]通過監(jiān)測數(shù)據(jù)整理發(fā)現(xiàn)基坑拐角處支撐軸力的實測值較大。 王洪新[6], 劉念武[7]等對尺寸效應、 空間效應的主要影響因素進行了深入的討論。
本文結合工程實例, 用實測數(shù)據(jù)分析基坑的地表沉降、 地下連續(xù)墻水平位移、 支撐軸力等指標, 對狹長形的地鐵車站深基坑采取兩種不同的開挖方式進行數(shù)值模擬分析。 在基坑三維空間效應特征等方面進行了總結和對比分析。
以佛山地鐵2 號線某站為例, 該站基坑長邊216m, 標準段全長基坑開挖深度16.89m, 寬度19.2m, 擴大段FF 斷面基坑寬度24.0m, 基坑尺寸如圖1 所示。
圖1 基坑尺寸Fig.1 Dimension of foundation pit
圍護結構采用地下連續(xù)墻加內支撐的形式,標準段全長設置4 道支撐。 地下連續(xù)墻設計參數(shù)為厚度800mm, 標準幅長度6m; 第一道為混凝土支撐, 截面大小為800mm ×1000mm, 水平布置間距8m, 布置深度為地表下1.2m; 第二道為鋼支撐, 直徑800mm, 壁厚16mm, 水平布置間距4m, 布置深度為地下4.4m; 第三道為雙拼φ609mm 鋼支撐, 壁厚16mm, 水平布置間距為4m, 布置深度為地下8.2m; 第四道為局部雙拼φ609mm 鋼支撐, 壁厚16mm, 水平間距4m, 布置深度為地下12.2m。
針對依托工程, 利用對稱性選取地表沉降、地下連續(xù)墻水平位移、 軸力監(jiān)測點有序編號后進行分析, 如圖2 所示。
圖2 現(xiàn)場監(jiān)測點布置Fig.2 Distribution of site monitoring point
選取基坑6 個位置的典型斷面, 斷面AA、CC、 DD、 EE、 FF 為標準斷面, 布置了 3 排監(jiān)測點。 斷面BB 為加密斷面, 布置了5 排監(jiān)測點,前3 排間距和標準斷面相同, 監(jiān)測點到基坑邊緣的距離如圖2a 所示。 部分現(xiàn)場實測數(shù)據(jù)繪制曲線如圖3 所示。
圖3 實測地表沉降曲線Fig.3 Surface subsidence curve measured
最大地表沉降點表顯示是在DBC -03、 DBC-06、 DBC-17、 DBC -20 位置, 是第 3 排的點位, 均不在基坑邊緣。
標準段面的 AA、 BB、 CC、 DD 處地表變形量最大值較為接近, 量值范圍在55mm ~65mm之間; 而處于擴大段的EE、 FF 斷面其沉降量最大值要小很多, 斷面EE 最大值為28mm, 斷面FF 最大值為11mm。
EE、 FF 斷面位于車站擴大段, 部分原因是支撐剛度較大, 另外一個原因是基坑端部長度B與基坑深度H的比值B/H<5, 存在端部的空間效應。
分5 個工況對地下連續(xù)墻的水平位移進行監(jiān)測。 工況一: 基坑開挖至第1 道水平支撐設計標高并完成第1 道支撐的設置, 其余工況同理, 工況五表示開挖到基坑坑底。 測點具體位置分布如圖2b 所示, 測點 DLQ-01、 DLQ-03、 DLQ-07、DLQ-08 實測地下連續(xù)墻的位移如圖4 所示。
圖4 實測地連墻的水平位移Fig.4 Horizontal displacement of measured diaphragm wall
由圖4 可知: (1)測點 DLQ -01、 DLQ -03、DLQ-07、 DLQ -08 曲線形狀特征比較類似。 圍護結構的側向變形整體上呈現(xiàn)向坑內的撓曲特征, 隨著第一道撐到第四道撐施工, 曲線向右移動顯示位移增大; 就單個監(jiān)測點而言, 地下連續(xù)墻水平位移隨著深度的增加先增大后減小, 挖至坑底時最大值約為14mm ~31mm。 隨著基坑深度的增加, 地下連續(xù)墻水平位移值最大點所處的位置也隨之下移, 開挖至坑底時, 最大位移點維持在10m ~11m, 深度位置約為基坑開挖深度的2/3。(2)地連墻變形的空間效應有所體現(xiàn)。 測點DLQ-01 地下連續(xù)墻水平位移最大值約為31mm,比測點DLQ-07 大10mm 左右。 可見狹長型地鐵車站基坑中, 地下連續(xù)墻水平位移在縱向存在空間分布不均勻現(xiàn)象。
選擇6 個典型斷面, 每個斷面均為4 層支撐, 軸力測試點平面位置編號分布如圖2c 所示。編號規(guī)則以測點ZL -02 為例, 第1 層~第4 層內支撐軸力分別為2 -1、 2 -2、 2 -3 和2 -4,其他依此類推。 工況一到工況五開挖情況與2.2節(jié)相同。 測點ZL-06 為沿FF 方向兩側斜撐軸力之和, 即圖2c 上兩個斜撐軸力沿FF 虛線之和。
1.不同斷面軸力
整理 BB、 FF 斷面支撐軸力, 繪制曲線如圖5 所示。
總體來說, 支撐軸力隨著基坑開挖深度的增加而增大。 開挖至設計標高時, 第一層支撐軸力為700kN 到1200kN, 第二層支撐軸力為600kN到2200kN, 第三層支撐軸力為 1400kN 到2700kN, 第四層支撐軸力為500kN 到700kN, 以第三層內支撐軸力最大。
圖5 反映了地鐵車站支撐軸力的分布特征,同一位置各層支撐軸力各不相等。 當開挖至設計標高時, 第三層內支撐軸力最大, 而第四層的支撐軸力最小。 這與地連墻水平位移沿深度上的分布特征有內在聯(lián)系, 地下連續(xù)墻水平位移最大值標高位置與第三層支撐的標高位置是對應的, 而FF 斷面的軸力總是大于BB 斷面。
2.不同層軸力
不同斷面前三層軸力曲線如圖6 所示, 第一層內支撐軸力隨著基坑開挖深度的增加先增大后減小或者趨于穩(wěn)定。
標準段AA - EE 斷面基坑寬度19.2m, 擴大段FF 斷面基坑寬度24.0m。 對一到三層支撐而言, 每一層軸力分布中測點ZL-05 的支撐軸力總是最大, 測點 ZL - 06 的支撐軸力位居第二。
第一層支撐軸力的先增后減的變化趨勢與地下連續(xù)墻頂水平位移變化的特點存在一定程度的關聯(lián)。 隨著開挖深度的增加, 地下連續(xù)墻頂水平位移基本維持不變, 但地連墻中下部位移逐漸增大, 水平方向的剪力合力重心逐漸下移, 第一層混凝土內支撐軸力因此減小。
同一高度各斷面的支撐在開挖深度相同時,間距相等而軸力大小不等, 體現(xiàn)了基坑支撐軸力在縱向分布上的空間效應。 特別是測點ZL-05 位于基坑的陽角處, 存在較為明顯的應力集中現(xiàn)象。
當支撐軸向壓縮變形相同時,支撐剛度越大則軸力越大。 監(jiān)測結果中EE 斷面地下連續(xù)墻水平位移與標準斷面相比沒有明顯差異, 而支撐軸力卻顯示大了很多。 基坑圍護設計也正是考慮到這種空間效應規(guī)律, EE 斷面的四層支撐都采用了鋼筋混凝土支撐。
圖5 各斷面測點內支撐軸力曲線Fig.5 Axial force curve of the support in each section
圖6 各層測點內支撐軸力曲線Fig.6 Support axis force curve in each layer
采用PLAXIS3D 提供的能反映土體硬化特征的HS 模型。 該模型能夠同時考慮剪切和體積硬化, 實現(xiàn)所謂的雙硬化[8], 能更準確地對復雜應力路徑下發(fā)生的剪切和體積應變進行計算。
王海波[9], 王衛(wèi)東[10]指出為E1-2的 1 ~2倍,的 2 ~ 4 倍。 這里采用程序默認的相應土層參數(shù)見表1。
表1 土層參數(shù)及取值Tab.1 Soil layer parameters and values
基于佛山地鐵2 號線工程實際開挖深度, 整體分層開挖是將整個基坑面土體挖除, 依次將土體分層開挖至基坑坑底, 共設置9 個分析步。 與分層開挖深度相同, 分層、 分塊開挖共設置了13個分析步, 分塊大小如圖7 所示。 兩種開挖方式的具體分析步步驟見表2。
圖7 車站基坑板塊劃分Fig.7 Division map of the station foundation pit
表2 兩種開挖方式的分析步步驟Tab.2 Step-by-step analysis of two excavation methods
一般認為基坑開挖的影響寬度為其開挖深度的3 ~5 倍。 本文的數(shù)值模擬中將開挖影響寬度和深度均取3 倍的設計開挖深度。
為了驗證數(shù)值模型的準確性, 先將第二種開挖方式的地連墻水平位移實測值與模擬值進行對比, EE、 FF 斷面情況如圖8 所示。
圖8 分層、 分塊開挖模擬與實測地連墻水平位移對比曲線Fig.8 Comparison of the horizontal displacement of the diaphragm wall between the measured and simulation of layered and block case
地下連續(xù)墻水平位移變形量數(shù)值模擬值與實測值存在著差異, 但趨勢基本一致。 實測地下連續(xù)墻水平位移最大值約為18mm, 地下連續(xù)墻水平位移模擬最大值約為20mm。 但最大點位置存在區(qū)別, 前者的最大位置偏上2m ~3m, 差異存在的原因是數(shù)據(jù)整理時均假定地下連續(xù)墻底是理想嵌固點, 水平位移及轉角為零。
為了在同一參照體系下增強對比度, 以下均采用數(shù)值模擬結果。
1.地表沉降量
選取6 處典型斷面 AA、 BB、 CC、 DD、 EE和FF, 如圖1 所示。 取兩種開挖方式中代表性的數(shù)據(jù)進行對比分析, 地表沉降見圖9。
由圖9 可以看出: (1)在兩種開挖方式下,地表沉降在基坑邊緣距離0m ~17m 范圍內均呈現(xiàn)凹槽形分布特征, 隨著距離的增加先增后減,在距離基坑5m ~8m 時達到其最大值, 開挖至設計標高時達到最大值25mm ~36mm; (2)整體分層開挖工況下, 標準段所屬各斷面地表沉降值差異不大, 但在同一開挖深度時其最大值均比擴大段大 6mm ~ 10mm, 如圖9a、 c、 e; (3) 分層、分塊開挖各斷面在同一開挖進度下地表沉降量差異比較明顯, 最終工況下, 擴大段的地表沉降量比標準段小5mm ~16mm, 如圖9b、 d、 f; (4)整體分層開挖的地表沉降量在空間分布上的差異主要表現(xiàn)在標準段和擴大段之間。 相比之下, 空間效應在分層、 分塊開挖的工況下更為明顯。 在所有板塊均開挖到基底之前, 由于第一板塊~第五板塊開挖深度存在差異, 第一板塊~第五板塊相對應的斷面 AA、 BB、 CC、 DD、 FF 之間地表沉降差異較為明顯。
圖9 地表沉降曲線Fig.9 Surface subsidence curve
2.墻體水平位移
圖10 和圖11 對比了兩種開挖方式下基坑長邊中部的AA 斷面和基坑短邊中部的GG 斷面地下連續(xù)墻水平位移曲線。 其水平位移曲線特征與實測值非常相似, 水平位移峰值均在開挖深度約2/3 處, 與其他地區(qū)測試曲線也極具相似性。
圖10 分層整體開挖地連墻水平位移曲線Fig.10 Horizontal displacement curve of wall in layered and whole excavated case
在相同條件下, 基坑長邊中點(AA 斷面)地下連續(xù)墻水平位移要比短邊(GG)大, 當挖至坑底時, 兩斷面最大值差值約為16mm ~20mm, 約是短邊水平位移的1.6 倍, 這進一步表明基坑地下連續(xù)墻水平位移分布也具有明顯的空間效應。
最終狀態(tài)下, 分層分塊開挖的水平位移峰值也明顯小于分層整體開挖5mm ~10mm, 分層分塊開挖更有利于空間效應的發(fā)揮, 對控制變形更為有利。
圖11 分層、 分塊開挖地連墻水平位移曲線Fig.11 Horizontal displacement curve of wall in layered and block case
1.典型的狹長形地鐵車站深基坑的開挖過程具有空間分布差異較大的特征。 實測的地表沉降量、 地連墻水平位移均存在空間分布不均勻現(xiàn)象, 基坑中部的數(shù)值均比端頭區(qū)域要大。 內支撐軸力最大值總是出現(xiàn)在上述二者的交界處。
2.數(shù)值模擬整體分層開挖和分層、 分塊開挖兩種開挖方式, 采用分層、 分塊開挖方案利用了空間效應, 有利于基坑的變形控制。