• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    OPTIMIZATION PROBLEM OF EXCESS-OF-LOSS REINSURANCE AND INVESTMENT WITH DELAY AND MISPRICING UNDER THE JUMP-DIFFUSION MODEL

    2020-03-14 09:07:40HUANGQingMAShixiaGONGXiaoqin
    數(shù)學(xué)雜志 2020年2期

    HUANG Qing, MA Shi-xia, GONG Xiao-qin

    (School of Science, Hebei University of Technology, Tianjin 300401, China)

    Abstract: In this paper, we study an optimization problem of excess-of-loss reinsurance and investment with delay and mispricing under the Jump-diffusion model.Using the stochastic control theory, the equilibrium reinsurance-investment strategy and the corresponding equilibrium value function are derived by solving an extended HJB system.Finally, some special cases of our model and results are presented, and some numerical examples for our results are provided.

    Keywords: excess-of-loss reinsurance; Lvy insurance model; mispricing; stochastic differential delay equation; jump-diffusion model

    1 Introduction

    An insurer can control risks through a number of measures, such as investment and reinsurance.In recent years, the problem of the optimal investment and reinsurance has been widely investigated, which was considered in the literature [1–3]and so on.

    With the deepening of research in the insurance field, some scholars point out that the risky asset’s price process is represented by a jump-diffusion model,which is more consistent with the stock market.Ignoring jump risks on risky asset’s price process have an important impact on the optimal problem (see [4,5]).A et al.[6]showed that the development of realworld systems depends not only on their current state but also on their previous history.If we believe that financial market exists bounded memory or the performance-related capital inflow(outflow),then the wealth process with delay must be considered(see[7]).In addition,due to the existence of frictions in markets which are not absolutely mature, insurers can make a profit by mispricing, that is, by exploiting the price difference between a pair of stocks, we can refer to [8,9].

    On the basis of previous literature,we establish a class of generalized optimal investment and reinsurance risk model, we consider the optimization problem of excess-of-loss reinsurance and investment with delay and mispricing under the Jump-diffusion model, and the purpose is to obtain the equilibrium reinsurance-investment strategy and the corresponding equilibrium value function.In which we introduce the performance-related capital inflow(outflow)and the price processes of stocks are described by jump-diffusion models with mispricing.Moreover, referring to Li et al.[10], the claim process is described by a spectrally negative Lvy process.

    The remainder of this paper is organized as follows.Section 2 gives the model framework.Section 3 derives the explicit expressions of the equilibrium reinsurance-investment strategy and the corresponding equilibrium value function, and provides two special cases of our model.Section 4 provides some numerical examples for sensitivity analysis.

    2 The Model

    Let(?,F,{Ft}t∈[0,T],P)be a complete probability space that fulfills the usual condition,where [0,T]is a fixed and finite time horizon; Ftis the information of the market available up to time t and P is a reference measure.

    Following the idea suggested by Li et al.[10], without reinsurance and investment, the insurer’s surplus process modeled by a spectrally negative Lévy process defined on this probability space with dynamics

    where

    (i) N1(dz,dt)is a Poisson random measure representing the number of insurance claims of size (z,z+dz) within the time period (t,t+dt).

    (ii) c is the premium rate,according to the expected value principle,where θ >0 is the safety loading of the insurer,σ >0 is the volatility rate,B(t)is a standard Brownian motion.

    In theory,we should first suppose that the reinsurance strategy relies on surplus.But in the following Theorem 3.2, we find that the equilibrium reinsurance strategy is independent of the surplus.Thus, for simplicity, we omits possible dependency on the surplus.So the surplus process can be described as

    We assume that the insurer is allowed to invest in a financial market composing of one risk-free asset, a market index and a pair of stocks with mispricing (see Gu et al.[8]).The risk-free asset’s price process S0(t) is described by

    where r > 0 represents the risk-free interest rate.The price process of the market index Pm(t) follows as

    where the market risk premium μmand the market volatility σmare positive constants,and {Zm(t)} is a standard Brownian motion.The price processes of the pair of stocks are described by

    (i) μ, σ1, k1and k2are positive constants, σ1dZi(t) describes the risk of stock i in the financial market, i=1,2.

    (ii) {N2(t)}t∈[0,T]is homogeneous Poisson process with intensity β1, which represents the number of the price jumps that occurred the first or second stock during time interval[0,T].

    (iii) Y1iis the ith jump amplitude of the stock price, and Y1i, i = 1,2,3,··· are i.i.d.random variables.We assume their distribution is G(y1), and they have finite firstorder moment μY1and second-order moment

    (iv) Suppose that {Z1(t)}, {Z2(t)}, {Zm(t)}, {B(t)}, N1(dz,dt), andare independent and P(Y1i≥ ?1) = 1, i = 1,2,3,··· to guarantee that these two stocks’s prices have always been positive.

    (v) The term kjX(t)dt shows the effect of mispricing on the jth stock’s price, j =1,2.

    X(t) is the pricing error or mispricing between two stocks, and is defined as

    Based on eqs.(2.5) and (2.6), using standard I’s calculus, we find that the dynamics of the mispricing X(t) satisfy the following equation

    In addition, we also consider that there exists capital inflow into or outflow from the insurer’s current wealth.We can refer to A et al.[6].Denote the average and pointwise performance of the wealth in the past horizon [t ?h,t]by(t) and M(t), respectively, i.e.,

    where δ ≥ 0 is an average parameter and h > 0 is the delay parameter.Let Y(t) =thenLet the function g(t,W(t)?represent the capital inflow (outflow) amount which is related to the past performance of the wealth. W(t)?(t) accounts for the average performance of the wealth between t ?h and t, and W(t)?M(t) implies the absolute performance of the wealth in the time horizon[t ?h,t].

    This capital inflow (outflow) may occur in a variety of situations, as described in A et al.[6].We assume that the amount of the capital inflow (outflow) is proportional to the past performance of the insurer’s wealth, i.e.,

    where b and c are nonnegative constants.

    Thus, the insurer’s wealth process {Wu(t),t ∈ [0,T]} is described by

    Definition 2.1(Admissible Strategy)A strategy u={ (Zt,t),πm(t),π1(t),π2(t)}t∈[0.T]is admissible if

    But fortunately it was almost evening, when the seven dwarfs came home. When they saw Snow-white lying as if dead upon the ground they at once suspected the step-mother, and they looked and found the poisoned comb. Scarcely had they taken it out when Snow-white came to herself, and told them what had happened. Then they warned her once more to be upon her guard and to open the door to no one.

    (i) for all t ∈ [0,T], Zt≥ 0, 0 ≤ (Zt,t) ≤ Zt;

    (ii)u is predictable w.r.t.{Ft}t∈[0,T],and

    (iii) ?(t,w,x,y) ∈ [0,T]× R × R × [?1,∞), Eq.(2.10) has a pathwise unique solution{Wu(t)}t∈[0.T]with W(t)=w, X(t)=x, Y(t)=y.

    Let Π denote the set of all admissible strategies.In this paper, our main purpose is to research the reinsurance and investment problem for an insurer under mean-variance criterion, i.e., wishes to maximize Ju(t,w,x,y), in which Juis given by

    where γ > 0 represents a constant absolute risk aversion coefficient.We know that meanvariance criterion has the issue of time-inconsistency.But in many situations,time-consistency of strategies is a basic requirement for rational investors.So, we tackle the problem from a non-cooperative game point of view by defining an equilibrium strategy and its corresponding equilibrium value function (see [11]).

    Definition 2.2For an admissible strategyfor ε>0 with any fixed chosen initial state (t,w,x,y)∈ [0,T]×R×R×[?1,∞), define the strategy uε,tby

    Then u?is an equilibrium strategy and Ju?(t,w,x,y)is the corresponding equilibrium value function.For ?(t,w,x,y) ∈ [0,T]× R × R × [?1,∞), ?φ(t,w,x,y) ∈ C1,2,2,1([0,T]× R ×R × [?1,∞)), we define a variational operator Auas follows

    3 Optimization Problem and the Equilibrium Optimal Strategy

    In this section, we consider the optimization problem and seek the optimal strategy,and then analyze two special cases.We first provide a verification theorem whose proof is similar to Theorem 1 of Kryger and Steffensen [12].We omit it here.

    then Ju?(t,w,x,y) = V(t,w,x,y), E[Wu?(T)]= g(t,w,x,y) and u?is the equilibrium reinsurance-investment strategy.

    To solve eqs.(3.3) and (3.5), we try to conjecture the solutions in the following forms

    Plugging the above derivatives into (3.5) and simplifying yields

    Consider the terms involving in (3.11), that is,

    According to Li et al.[10], if we maximize the integrand in the integral in (3.12) zby-z for a given t ∈ [0,T], then we will maximize the integral itself.With respect tothe graph ofis a concave parabola that increases through the origin(0,f(0))=(0,0); by the first-order condition w.r.t.we have

    By the first-order condition w.r.t. πm(t), π1(t) and π2(t), we have

    we find that the amounts invested in the two stocks,are functions of x.Plugging eqs.(3.14)–(3.17) into eq.(3.11) and eq.(3.3), we have

    To make the problem solvable, we assume the following conditions on parameters

    So, we have A(c ?αe?δh)m=0.In order to obtain the expressions oflet At, A,satisfy the following differential equations

    with boundary condition A(T) == 1.Based on condition (3.21), we have?αδ =(l+ α)α.So we have

    By separating the variables with and without x, x2, we can derive the following equations

    where

    Theorem 3.2According to the wealth process (2.10) and the reinsurance-investment problem, the equilibrium value function is

    where h1(s), h2(s), h3(s) and h4(s) are given by (3.30)–(3.33).The corresponding equilibrium strategy is given by

    In the following sections, we analyze two special cases of our model, i.e., without jump and without mispricing, and give the corresponding equilibrium strategies and equilibrium value functions.

    Corollary 3.1 (Without Jump)We consider the optimal reinsurance-investment problem in which the price processes of these two stocks are represented by diffusion models.If we don’t consider jump risk in our model, under the measure P, the wealth process becomes

    The corresponding optimization problem becomes

    Then, by some similar calculations, the equilibrium reinsurance-investment strategyt ∈[0.T], is given by

    and the corresponding equilibrium value functionis

    When Gu et al.[8]ignores mean reversion, we find that the equilibrium investment strategies given in Eqs.(3.40) and (3.41) are similar to that in Gu et al.[8], which considers the robust portfolio selection with the utility maximization.

    Corollary 3.2 (Without Mispricing)In this case, we assume that the insurer ignores the mispricing between stock 1 and stock 2 in the market.If we don’t consider mispricing in our model, under the measure P, the wealth process becomes

    The corresponding optimization problem becomes

    Then, by some similar calculations, the equilibrium reinsurance-investment strategyis given by

    and the corresponding equilibrium value function V2(t,w,y) is

    We find that the equilibrium investment strategies given in eqs.(3.48) and (3.49) are similar to that in Zeng et al.[2], if Zeng et al.[2]considers the impact of delay on the optimal strategies.

    4 Numerical Simulations

    In this section, we supply some numerical examples to explain the effects of model parameters on the equilibrium investment strategy and utility losses from ignoring jump risk and mispricing.We suppose that the jump size Y1ifollow exponential distribution with parameter λY1, i.e., the density functions of Y1iis given by g(y1) = λY1exp{?λY1(y1+1)},y1≥ ?1.Throughout the numerical analyses, unless otherwise stated, the basic parameters are given by β1= λY1= 1, r = 0.03, μ = 0.05, σ1= 0.3, θ = 0.2, η = 0.1, γ = 1, h = 0.5,δ =1.5 k1=0.2, k2=0.6, w =1, T =4, t=0.

    4.1 Sensitivity Analysis of the Equilibrium Investment Strategy

    Figure 1 provides a sensitivity analysis of the mispricing x, the delayed parameter h,jump intensity β1and parameter λY1of the jump’s distribution function of these two stocks’s price processes for the equilibrium investment strategyi=1,2 .

    In parts (a) of Figure 1, we find thatdecreases w.r.t. β1and increases w.r.t. λY1.This is because when β1becomes larger, the intensity of the jump in the first stock’s price process becomes stronger and the first stock becomes higher,so the money is invested in the first stock becomes less.At the same time, when λY1becomes larger, the mean and variance of Y1ibecome smaller.Therefore,under the same risk tolerance,the insurer will invest more in the first stock.In parts (b) of Figure 1, forthe analysis about it is similar to

    In part (d) of Figure 1, we find that when the retention level π2(t) becomes smaller,the delayed horizon h becomes smaller.In part (c) of Figure 1, we find thatdecreases w.r.t. x andincreases w.r.t. x.In other words, as mispricing increases, the insurer will reduce their investment in stock 1 and increase their investment in stock 2.

    4.2 Sensitivity Analysis of the Utility Loss Functions

    In this subsection, we discuss the utility loss that can be caused when jump risks and mispricing are ignored for the insurer.

    For equity but without loss of generality,we assume that the appreciation and volatility rates of stocks without jumps are the same as those with jumps, i.e., μY1i|nojump= μ +β1E[Y1i]and

    So, the utility loss that ignores jump risks is defined as

    As shown in (a) of Figure 2, we find that the utility loss increases w.r.t.the remaining time T ? t and the effect of the remaining time T ? t on the utility loss H1(t) is significant.

    Figure 1 The effects of parameters on the equilibrium investment strategy

    Figure 2 The effects of parameters on the utility loss functions

    Then, we discuss the utility loss that can be caused when the mispricing is ignored for the insurer.The utility loss that ignores mispricing is defined as

    From (b) of Figure 2, we can see that when the remaining time T ?t increases, the utility loss H2(t) will also increase.And when T ?t=0.3, we can find that the loss utility is less than 10%, however, when T ?t = 4, we can find that the loss utility is more than 80%.This means that taking advantage of mispricing is more important for long-horizon investors than that for short-horizon investors.

    一区福利在线观看| 久久久久久九九精品二区国产| 国产精品美女特级片免费视频播放器| 久久久久国内视频| 啪啪无遮挡十八禁网站| 俄罗斯特黄特色一大片| 69人妻影院| 欧美黑人巨大hd| 男插女下体视频免费在线播放| 日本欧美国产在线视频| 成年免费大片在线观看| 一卡2卡三卡四卡精品乱码亚洲| 又爽又黄无遮挡网站| 韩国av在线不卡| 亚洲中文字幕日韩| 国产伦在线观看视频一区| 少妇熟女aⅴ在线视频| 看十八女毛片水多多多| 亚洲专区国产一区二区| 亚洲av二区三区四区| 成年女人看的毛片在线观看| 国产午夜福利久久久久久| 国产高潮美女av| 日韩欧美精品v在线| 三级国产精品欧美在线观看| 2021天堂中文幕一二区在线观| 97人妻精品一区二区三区麻豆| 97人妻精品一区二区三区麻豆| 村上凉子中文字幕在线| 五月伊人婷婷丁香| 日本色播在线视频| 丰满人妻一区二区三区视频av| 狂野欧美激情性xxxx在线观看| 久久午夜福利片| 国产伦人伦偷精品视频| 久久午夜亚洲精品久久| 免费在线观看成人毛片| 人妻少妇偷人精品九色| 麻豆精品久久久久久蜜桃| 中文字幕免费在线视频6| 亚洲人成网站在线播| 校园春色视频在线观看| 精品久久久久久久久久免费视频| 一级av片app| 成年免费大片在线观看| 尤物成人国产欧美一区二区三区| 国产色爽女视频免费观看| 看黄色毛片网站| 成人欧美大片| 亚洲欧美日韩高清在线视频| 欧美最黄视频在线播放免费| 观看免费一级毛片| 久久久久精品国产欧美久久久| 极品教师在线视频| 久久久久久久久久久丰满 | 久久精品国产鲁丝片午夜精品 | 日韩人妻高清精品专区| 国产一级毛片七仙女欲春2| 国产精品98久久久久久宅男小说| 熟妇人妻久久中文字幕3abv| 国产毛片a区久久久久| 国产精品国产高清国产av| 日韩欧美 国产精品| av国产免费在线观看| 99热只有精品国产| 久久中文看片网| 国产一区二区在线观看日韩| 国产一区二区三区av在线 | 色尼玛亚洲综合影院| 亚洲四区av| 熟女人妻精品中文字幕| 日韩 亚洲 欧美在线| 91精品国产九色| 午夜免费男女啪啪视频观看 | 色综合婷婷激情| a级一级毛片免费在线观看| 亚洲成av人片在线播放无| 午夜久久久久精精品| 国产av麻豆久久久久久久| 网址你懂的国产日韩在线| 又黄又爽又免费观看的视频| 草草在线视频免费看| 精品久久久久久久末码| 成人美女网站在线观看视频| 在线播放无遮挡| 亚洲中文字幕日韩| 国产一级毛片七仙女欲春2| 一个人看视频在线观看www免费| 又爽又黄a免费视频| 亚洲午夜理论影院| 欧美潮喷喷水| 欧美精品啪啪一区二区三区| 国内精品美女久久久久久| 大型黄色视频在线免费观看| 亚洲av.av天堂| 久久久久久久精品吃奶| 午夜精品一区二区三区免费看| 一区二区三区高清视频在线| 亚洲性夜色夜夜综合| 成人鲁丝片一二三区免费| 成人高潮视频无遮挡免费网站| 国产一区二区在线观看日韩| 男人和女人高潮做爰伦理| 美女被艹到高潮喷水动态| 国内少妇人妻偷人精品xxx网站| 欧美一区二区国产精品久久精品| 亚洲avbb在线观看| av在线蜜桃| 亚洲av日韩精品久久久久久密| x7x7x7水蜜桃| 白带黄色成豆腐渣| 他把我摸到了高潮在线观看| 久99久视频精品免费| 小蜜桃在线观看免费完整版高清| 人人妻人人澡欧美一区二区| 少妇猛男粗大的猛烈进出视频 | 欧美3d第一页| 麻豆成人av在线观看| 18禁在线播放成人免费| 日韩欧美免费精品| 欧美成人a在线观看| 国产美女午夜福利| 日本黄色片子视频| 在线国产一区二区在线| 日本-黄色视频高清免费观看| 国产一区二区在线观看日韩| 久久久精品欧美日韩精品| 久久国内精品自在自线图片| 久久久久免费精品人妻一区二区| 男人舔女人下体高潮全视频| 国产人妻一区二区三区在| 韩国av一区二区三区四区| 亚洲一区二区三区色噜噜| 国产乱人视频| 91麻豆精品激情在线观看国产| 久久久精品欧美日韩精品| 久久久久国内视频| 日韩欧美在线二视频| 欧美精品啪啪一区二区三区| 哪里可以看免费的av片| 两人在一起打扑克的视频| 不卡视频在线观看欧美| 丰满人妻一区二区三区视频av| 成人性生交大片免费视频hd| 免费无遮挡裸体视频| 99热只有精品国产| 老司机午夜福利在线观看视频| h日本视频在线播放| 国产精品人妻久久久影院| 国产精品美女特级片免费视频播放器| 亚洲,欧美,日韩| 国产主播在线观看一区二区| 国产美女午夜福利| 三级男女做爰猛烈吃奶摸视频| 亚洲18禁久久av| 亚洲欧美激情综合另类| 一区二区三区激情视频| 少妇裸体淫交视频免费看高清| 亚洲第一电影网av| 国产精品久久久久久亚洲av鲁大| av视频在线观看入口| 国产高清三级在线| 日韩中字成人| 午夜爱爱视频在线播放| 白带黄色成豆腐渣| 亚洲av日韩精品久久久久久密| 蜜桃亚洲精品一区二区三区| 国产免费一级a男人的天堂| 露出奶头的视频| 婷婷丁香在线五月| ponron亚洲| 免费看美女性在线毛片视频| 成人美女网站在线观看视频| 一a级毛片在线观看| 99久久精品国产国产毛片| 赤兔流量卡办理| av国产免费在线观看| 高清毛片免费观看视频网站| 国产探花极品一区二区| 国产成人福利小说| 亚洲不卡免费看| 1000部很黄的大片| 欧美在线一区亚洲| 人人妻人人看人人澡| 在线观看一区二区三区| 热99re8久久精品国产| 天天一区二区日本电影三级| 国产成人福利小说| 别揉我奶头 嗯啊视频| 欧美激情久久久久久爽电影| 国内精品久久久久久久电影| 三级毛片av免费| 内地一区二区视频在线| 亚洲在线自拍视频| 欧美日韩综合久久久久久 | 国产亚洲91精品色在线| 国模一区二区三区四区视频| 国产单亲对白刺激| 小蜜桃在线观看免费完整版高清| 伦理电影大哥的女人| 日本与韩国留学比较| 久久精品综合一区二区三区| 午夜福利视频1000在线观看| 中文字幕免费在线视频6| 亚洲av五月六月丁香网| 91久久精品国产一区二区三区| 欧美成人免费av一区二区三区| 国内精品美女久久久久久| 天美传媒精品一区二区| 看片在线看免费视频| 色噜噜av男人的天堂激情| 亚洲国产色片| 波野结衣二区三区在线| 精品免费久久久久久久清纯| 亚洲中文日韩欧美视频| 亚洲精品色激情综合| 最新在线观看一区二区三区| 伊人久久精品亚洲午夜| 亚洲乱码一区二区免费版| 国产高清激情床上av| 日韩欧美在线乱码| av在线老鸭窝| 一本一本综合久久| 九九爱精品视频在线观看| 人人妻人人看人人澡| 国产精品98久久久久久宅男小说| 国产精品福利在线免费观看| 麻豆国产97在线/欧美| 午夜老司机福利剧场| 色av中文字幕| 国产成人一区二区在线| 美女高潮喷水抽搐中文字幕| 亚洲美女搞黄在线观看 | 午夜福利18| 毛片女人毛片| 国语自产精品视频在线第100页| 精品久久久久久久久av| 久久精品国产鲁丝片午夜精品 | 日韩欧美在线二视频| 午夜福利在线在线| 乱系列少妇在线播放| 亚洲精品一卡2卡三卡4卡5卡| 丰满乱子伦码专区| 国内精品久久久久精免费| 精品久久久久久久久亚洲 | 3wmmmm亚洲av在线观看| xxxwww97欧美| 日韩人妻高清精品专区| 一本一本综合久久| 九九在线视频观看精品| 亚洲精品影视一区二区三区av| netflix在线观看网站| 精品乱码久久久久久99久播| 亚洲精品456在线播放app | 国产精品伦人一区二区| 国内揄拍国产精品人妻在线| 免费大片18禁| 日本撒尿小便嘘嘘汇集6| 波多野结衣巨乳人妻| 国产精品亚洲一级av第二区| 午夜a级毛片| 亚洲国产精品成人综合色| 国产精品永久免费网站| 欧美日韩综合久久久久久 | 成人性生交大片免费视频hd| 国产综合懂色| 国产高清视频在线播放一区| a级毛片a级免费在线| 三级毛片av免费| 久久久久免费精品人妻一区二区| 深夜a级毛片| 性插视频无遮挡在线免费观看| 午夜视频国产福利| 国产男人的电影天堂91| 国产久久久一区二区三区| av在线观看视频网站免费| 欧美色视频一区免费| av福利片在线观看| 亚洲aⅴ乱码一区二区在线播放| 日韩欧美在线乱码| 久久久久久久午夜电影| av专区在线播放| 亚洲综合色惰| 欧美极品一区二区三区四区| 色在线成人网| x7x7x7水蜜桃| 久久欧美精品欧美久久欧美| 能在线免费观看的黄片| 日韩欧美 国产精品| 亚洲va在线va天堂va国产| 伊人久久精品亚洲午夜| 欧美一区二区亚洲| 韩国av一区二区三区四区| 天堂√8在线中文| 国产在视频线在精品| 3wmmmm亚洲av在线观看| 如何舔出高潮| 欧美日本亚洲视频在线播放| 99热这里只有是精品在线观看| 国产女主播在线喷水免费视频网站 | 国产精品人妻久久久影院| 亚洲国产精品久久男人天堂| 在线观看一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 97人妻精品一区二区三区麻豆| 国产中年淑女户外野战色| 日本黄大片高清| 天天躁日日操中文字幕| 亚洲色图av天堂| 亚洲av一区综合| 久久久久久久久中文| 天堂√8在线中文| 最近最新中文字幕大全电影3| 色噜噜av男人的天堂激情| 色视频www国产| 又粗又爽又猛毛片免费看| 毛片女人毛片| 日本黄大片高清| 俺也久久电影网| 黄色日韩在线| videossex国产| 欧美激情久久久久久爽电影| 亚洲欧美日韩卡通动漫| 欧美人与善性xxx| 最近视频中文字幕2019在线8| 日日摸夜夜添夜夜添小说| 精品午夜福利在线看| 久久久久精品国产欧美久久久| 在线观看一区二区三区| 内地一区二区视频在线| 男女做爰动态图高潮gif福利片| 老司机午夜福利在线观看视频| 国产av在哪里看| 少妇人妻精品综合一区二区 | 俄罗斯特黄特色一大片| www日本黄色视频网| 少妇猛男粗大的猛烈进出视频 | 国产精品综合久久久久久久免费| 最近在线观看免费完整版| 久久精品91蜜桃| 国模一区二区三区四区视频| 在线天堂最新版资源| 日韩av在线大香蕉| 国产精品一区二区免费欧美| 国产熟女欧美一区二区| 欧美潮喷喷水| 久久久午夜欧美精品| 日本免费a在线| 特大巨黑吊av在线直播| .国产精品久久| 国产男人的电影天堂91| 久久99热6这里只有精品| 成年版毛片免费区| 亚洲精品粉嫩美女一区| 亚洲欧美精品综合久久99| 日本-黄色视频高清免费观看| 嫩草影院精品99| 在线播放国产精品三级| 午夜福利高清视频| 两个人视频免费观看高清| 亚洲天堂国产精品一区在线| 婷婷精品国产亚洲av在线| 久久天躁狠狠躁夜夜2o2o| 国产精品电影一区二区三区| 欧美日韩精品成人综合77777| 国产亚洲精品久久久com| 淫妇啪啪啪对白视频| 色哟哟哟哟哟哟| 99久久九九国产精品国产免费| 99久久中文字幕三级久久日本| 亚洲最大成人手机在线| 日韩欧美在线乱码| 少妇丰满av| 欧美xxxx性猛交bbbb| 亚洲国产精品合色在线| 88av欧美| 在线看三级毛片| 亚洲国产高清在线一区二区三| 校园人妻丝袜中文字幕| 成人国产综合亚洲| 亚洲五月天丁香| 欧美最新免费一区二区三区| 性色avwww在线观看| 亚洲成人免费电影在线观看| 亚洲欧美日韩高清专用| 久久热精品热| 成年免费大片在线观看| eeuss影院久久| 91麻豆av在线| 久久99热这里只有精品18| 九九爱精品视频在线观看| 久久精品国产亚洲av香蕉五月| 国内久久婷婷六月综合欲色啪| 草草在线视频免费看| av黄色大香蕉| 国产欧美日韩精品亚洲av| 亚洲三级黄色毛片| 国产精品日韩av在线免费观看| 国产激情偷乱视频一区二区| 亚洲性夜色夜夜综合| 欧美激情国产日韩精品一区| 亚洲aⅴ乱码一区二区在线播放| 亚洲色图av天堂| 午夜福利在线观看吧| 久久香蕉精品热| 久久九九热精品免费| 成人av一区二区三区在线看| aaaaa片日本免费| 村上凉子中文字幕在线| 亚洲久久久久久中文字幕| 国产精品久久久久久精品电影| 国产aⅴ精品一区二区三区波| 在线免费观看的www视频| av在线老鸭窝| 国国产精品蜜臀av免费| 波野结衣二区三区在线| 一夜夜www| 成人一区二区视频在线观看| avwww免费| 国内精品久久久久久久电影| 中文亚洲av片在线观看爽| 国产黄色小视频在线观看| 免费人成在线观看视频色| 国产伦精品一区二区三区视频9| aaaaa片日本免费| 99视频精品全部免费 在线| av视频在线观看入口| 91狼人影院| 91久久精品国产一区二区三区| 午夜精品一区二区三区免费看| 成人国产麻豆网| 久久草成人影院| 午夜影院日韩av| 精品欧美国产一区二区三| 伦精品一区二区三区| 亚洲精品日韩av片在线观看| 一个人观看的视频www高清免费观看| 久久久精品大字幕| 99久久久亚洲精品蜜臀av| 亚洲最大成人手机在线| 波多野结衣高清无吗| 麻豆av噜噜一区二区三区| 婷婷色综合大香蕉| 日韩欧美国产在线观看| 哪里可以看免费的av片| 91狼人影院| 女人十人毛片免费观看3o分钟| 黄色日韩在线| 亚洲国产色片| 午夜福利18| 午夜a级毛片| 日本三级黄在线观看| 亚州av有码| av专区在线播放| 极品教师在线免费播放| 国产精品一区二区三区四区免费观看 | 长腿黑丝高跟| 国产午夜精品论理片| 91在线精品国自产拍蜜月| 又紧又爽又黄一区二区| 国产精品一区www在线观看 | 黄色丝袜av网址大全| 99热只有精品国产| 亚洲成av人片在线播放无| 69av精品久久久久久| 全区人妻精品视频| 午夜激情福利司机影院| 午夜a级毛片| 99热这里只有是精品50| 黄色视频,在线免费观看| 色综合色国产| 亚洲av免费高清在线观看| 久久久午夜欧美精品| 欧美日韩亚洲国产一区二区在线观看| 88av欧美| 色5月婷婷丁香| 欧美成人a在线观看| 精品一区二区三区人妻视频| 欧美丝袜亚洲另类 | 最近最新中文字幕大全电影3| 精品久久久久久久久av| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久国内视频| 嫩草影视91久久| 亚洲av不卡在线观看| 在线免费观看的www视频| 看黄色毛片网站| 欧美激情在线99| 日本-黄色视频高清免费观看| 99热6这里只有精品| avwww免费| 午夜精品一区二区三区免费看| 听说在线观看完整版免费高清| 精品福利观看| 人妻少妇偷人精品九色| 亚洲精品成人久久久久久| 最近最新中文字幕大全电影3| 丰满乱子伦码专区| 熟妇人妻久久中文字幕3abv| 亚洲av一区综合| 亚洲性久久影院| 深夜精品福利| 久久久久久大精品| 真实男女啪啪啪动态图| 精品一区二区免费观看| av黄色大香蕉| 美女黄网站色视频| 国内久久婷婷六月综合欲色啪| 男女下面进入的视频免费午夜| 精品日产1卡2卡| 少妇丰满av| 国产精品久久电影中文字幕| 成人国产麻豆网| 国产精品永久免费网站| 搡女人真爽免费视频火全软件 | 男女之事视频高清在线观看| 欧美人与善性xxx| 天美传媒精品一区二区| 欧美激情国产日韩精品一区| 免费看美女性在线毛片视频| 熟妇人妻久久中文字幕3abv| 日本a在线网址| 日韩,欧美,国产一区二区三区 | 极品教师在线视频| 3wmmmm亚洲av在线观看| 亚洲久久久久久中文字幕| 久久这里只有精品中国| 直男gayav资源| 精品一区二区免费观看| 观看免费一级毛片| 久久人人爽人人爽人人片va| 99热精品在线国产| 琪琪午夜伦伦电影理论片6080| 国产亚洲精品综合一区在线观看| 18禁在线播放成人免费| 久久久久国产精品人妻aⅴ院| 性插视频无遮挡在线免费观看| av天堂中文字幕网| 国模一区二区三区四区视频| 亚洲中文字幕日韩| 国内精品宾馆在线| 国产免费一级a男人的天堂| 久久久午夜欧美精品| 三级毛片av免费| 精品久久久久久,| 老司机午夜福利在线观看视频| 免费看a级黄色片| 久久精品国产99精品国产亚洲性色| 村上凉子中文字幕在线| 一卡2卡三卡四卡精品乱码亚洲| 免费av毛片视频| 天堂影院成人在线观看| 99热只有精品国产| 免费观看精品视频网站| 亚洲av成人av| 免费一级毛片在线播放高清视频| 欧美一区二区国产精品久久精品| 91在线观看av| 日本免费a在线| 99久久九九国产精品国产免费| 嫩草影院入口| 女同久久另类99精品国产91| 久久九九热精品免费| 两个人的视频大全免费| 狂野欧美白嫩少妇大欣赏| 婷婷精品国产亚洲av在线| 国产精品伦人一区二区| 日本 av在线| 国产大屁股一区二区在线视频| 欧美精品国产亚洲| 天堂av国产一区二区熟女人妻| 99九九线精品视频在线观看视频| 成人永久免费在线观看视频| 岛国在线免费视频观看| av福利片在线观看| 日韩亚洲欧美综合| 国产三级中文精品| 免费看日本二区| 色综合亚洲欧美另类图片| 国内精品久久久久精免费| 丰满乱子伦码专区| 国产探花极品一区二区| 在线观看午夜福利视频| 亚洲中文字幕一区二区三区有码在线看| 国产精品美女特级片免费视频播放器| 国产免费av片在线观看野外av| 在线观看舔阴道视频| 久久午夜亚洲精品久久| avwww免费| 亚洲午夜理论影院| 亚洲四区av| 国内揄拍国产精品人妻在线| netflix在线观看网站| 99久久精品国产国产毛片| 欧美日韩精品成人综合77777| 午夜视频国产福利| 亚洲欧美清纯卡通| 国产一区二区在线观看日韩| 色综合婷婷激情| 给我免费播放毛片高清在线观看| 少妇丰满av| 国产精品不卡视频一区二区| 在现免费观看毛片| 久久这里只有精品中国| 精品一区二区三区av网在线观看| 国产精品日韩av在线免费观看| 欧美激情国产日韩精品一区| 最近最新免费中文字幕在线| 精品一区二区三区人妻视频| 国产视频内射| 久久精品夜夜夜夜夜久久蜜豆| 国产又黄又爽又无遮挡在线| 麻豆国产97在线/欧美| 国产精品99久久久久久久久| 中亚洲国语对白在线视频|