• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    HOPF DENSE GALOIS EXTENSIONS OVER A RING

    2020-03-14 09:07:38HEJiweiHUHaigang
    數(shù)學(xué)雜志 2020年2期

    HE Ji-wei, HU Hai-gang

    (Department of Mathematics, Hangzhou Normal University, Hangzhou 311121, China)

    Abstract: Let R be a commutative domain, let H be a Hopf R-algebra which is a finitely generated free R-module, and let A be an R-algebra which is also a H-comodule algebra.We will say that A/AcoH is a Hopf dense Galois extension if the cokernel of the associated canonical map β :A?AcoH A →A?RH is quotient finite.It is a generalization of Hopf dense Galois extension over a field.This paper shows that a weaker version of Auslander theorem holds for Hopf dense Galois extensions over R.It is also proved that if the algebra A is almost commutative such that gr(A) is a domain, and the canonical map β is strict, then a Hopf dense Galois extension A/AcoH will imply that H is dual to a finite dimensional group algebra over an algebraic closed field containing R.

    Keywords: Hopf dense Galois extension; localization; quotient category; filtered algebra

    1 Introduction

    Motivated by the study of noncommutative isolated singularities,the He-Van Oystaeyen-Zhang introduced in[1]the concept of Hopf dense Galois extensions over a field.Hopf dense Galois extensions provide candidates of noncommutative resolutions of quotient isolated singularities.However,it is usually difficult to see when a Hopf action or coaction on an algebra results a Hopf dense Galois extension.When the algebra A under consideration has a big center, namely, A is finitely generated over its center, then the problem becomes relatively easy[2].Indeed,we may use the mod-p method to reduce the problem to algebras over fields with positive characteristic.For example, if A is a universal enveloping algebra of a finite dimensional Lie algebra, or A is a Weyl algebra over a field of characteristic p > 0, then A is finitely generated over its center.One of the essential parts to use the mod-p method is to find orders of Hopf actions.Hence it is necessary to consider the Hopf (co) actions and Hopf dense Galois extensions over a commutative domain.

    In this paper, we introduce the concept of Hopf dense Galois extensions over a commutative domain.The theory involves several torsion theories.We show that Hopf dense Galois extensions work well.In particular, we prove that a weaker version of Auslander theorem holds for Hopf dense Galois extensions over a commutative domain (cf.Theorem 3.7).

    Hopf dense Galois extensions depend on the Hopf algebra (co) actions on the algebra under consideration.It was shown in [3, 4]that not too many semisimple Hopf algebras act inner faithfully on a graded commutative domain or Weyl algebras.Let R be a commutative domain of characteristic zero and let k be an algebraically closed field containing R as its subring.Assume that H is a Hopf R-algebra which is a finitely generated free R-module.Suppose that H coacts on an almost commutative algebra A and the coaction preserves the filtration.If A is Hopf dense Galois over the invariant subalgebra AcoH, then H??Rk is isomorphic to a group algebra over k (cf.Theorem 4.10).Theorem 4.10 applies to Hopf algebra coactions on Sridharan enveloping algebras which including universal enveloping algebras of finite dimensional Lie algebras and Weyl algebras.In particular, if H is a finite dimensional Hopf algebra over an algebraically closed field of characteristic zero which acts on a Sridharan enveloping algebra Uf(g) such that the action preserves the filtration of Uf(g) and the associated graded algebra of Uf(g) is a Hopf dense Galois extension on its invariant subalgebra, then H is isomorphic to a group algebra (cf.Corollary 5.12).This result partially generalizes [3, Theorem 4.2].

    2 Torsion Theories over a Ring

    Let R be a commutative domain.Let Q be the quotient field of R.Given a noetherian R-algebra A, the localizing A ?RQ is a Q-algebra.For simplicity, we write AQfor the Q-algebra A ?RQ.Similarly, if M is a right A-module, then MQ:= M ?RQ is a right AQ-module.We will say that M is R-torsion free if for any x ∈ M,r ∈ R, xr = 0 implies r =0.The localizing functor ? ?RQ induces an exact functor (?)Q:Mod A ?→ Mod AQ.We will frequently use the following properties of localizations.

    Lemma 2.1(i) Let M and N be R-modules.Then (M ?RN)QMQ?QNQ.

    (ii) Let M be a right A-module and N be a left A-module.Then (M ?AN)QMQ ?AQNQ.

    Let us recall some settings in [1].For a right AQ-module M, an element x ∈M is called an AQ-torsion element if xAQis a finite dimensional Q-vector space.Let ΓAQ(M)be the subset of M consisting of all the AQ-torsion elements.Then ΓAQ(M) is a right AQ-submodule of M.If M =ΓAQ(M), then M is called an AQ-torsion module.Let Tor AQbe the full subcategory of Mod AQconsisting of AQ-torsion modules.Then Tor AQis a Serre subcategory of Mod AQ.Denote the quotient category

    We refer to the book [5]for the properties of the torsion theory and quotient categories.

    Consider the composition of exact functors

    Let Tor A be the full subcategory of Mod A consisting of right A-modules M such that F(M)=0.We will say that M is torsion if M ∈ Tor A.Let ? :M → MQbe the localizing map.We have the following easy observation.

    Lemma 2.2A right A-module M is in Tor A if and only if for each x ∈ M, ?(x)AQis finite dimensional over Q.

    For a right A-module M, let ΓA(M) = {x ∈ M|?(x)AQis finite dimensional}. Then ΓA(M) is a torsion submodule of M.

    Lemma 2.3With the above notions, we have

    (i) ΓA(M) is the largest torsion submodule of M and M/ΓA(M) is torsion free, which is to say, ΓA(M/ΓA(M))=0.

    (ii) ΓA(M)Q= ΓAQ(MQ).

    ProofStatement (i) is easy to check.We next prove statement (ii).For x ∈M and an nonzero element s ∈ R, we have (x/s)AQ= ?(x)AQ.It follows that (x/s)AQis finite dimensional if and only if ?(x)AQis finite dimensional.Hence ΓA(M)Q= ΓAQ(MQ).

    The subcategory Tor A is a Serre subcategory of Mod A.Denote the quotient category

    Then we obtain an exact functor (use the same notation)

    As usual conventions, for an object M ∈Mod A, the corresponding object in Q Mod A is denoted by M, and the object in Q Mod AQcorresponding to MQis denoted by MQ.

    Let M and N be right A-modules.Assume that M is finitely generated.It is well known

    We next show that the above isomorphism may be extended to the quotient categories.

    Lemma 2.4Let M be a right A-module.Let L be an AQ-submodule of MQsuch that MQ/L is finite dimensional.Then there is an A-submodule K of M such that MQ/LMQ/KQand M/K is R-torsion free.

    ProofLet ? : M → MQbe the localizing map, and K = {m ∈ M|?(m) ∈ L}.Then L=KQ.By the construction, we see that M/K is R-torsion free.

    Proposition 2.1Let M be a finitely generated right A-module.For every N ∈Mod A, we have

    ProofWe have the following computations

    where the first limit runs over all the AQ-submodules L of MQsuch that MQ/L is finite dimensional, and the second limit runs over all the A-submodules K such that MQ/KQ(M/K)Qis finite dimensional.Let T = ΓA(N).Then TQ= ΓAQ(NQ)by Lemma 2.3.Hence we have

    3 Hopf Dense Galois Extensions

    In this section, R is a noetherian commutative domain.Let Q be its quotient field.An R-module M is said to be quotient-finite if MQis finite dimensional.

    Suppose that A is a noetherian R-algebra which is projective as an R-module.Let H be a Hopf R-algebra which is a finitely generated free R-module.Assume that H coacts on A so that A is a right H-comodule algebra through the coaction ρ : A → A ?RH.As the usual convention, we denote AcoH={a ∈ A|ρ(a)=a ? 1} the coinvariant subalgebra of A.

    We next extend the concept of Hopf dense Galois extension (cf.[1]) to algebras over a ring.Consider the following map

    We call A/AcoHis a Hopf dense Galois extension if the cokernel of β is quotient-finite.Note that if β is an epimorphism, then A/AcoHis a classical Hopf Galois extension (cf.[6, 7]).

    Applying the localizing functor (?)Qto the algebra A and the Hopf algebra H, we obtain a finite dimensional Hopf algebra HQand a right HQ-comodule algebra AQ.Note that the coaction of HQon AQis the map ρQ:AQ→ AQ?QHQ.

    Lemma 3.5With the notions as above, (AcoH)Q(AQ)coHQ.

    ProofLet ? : A → AQand φ : H → HQbe the localizing maps.Applying (?)Qto the inclusion map AcoH→A, we obtain that (AcoH)Qis contained in (AQ)coHQ.On the other hand, assume a ∈ A and ρQ(?(a)) = ?(a)?Q1.Since H is a finitely generated free R-module and R is a noetherian commutative domain, we extend the unit 1 of R to an R-basis h0= 1,h1,...,hnof H.Then we may writeThen ρ(?(a)) =QSince H is free, φ(h),...,φ(h)is a Q-basis of H.Comparing with the0nQassumption ρQ(?(a)) = ?(a)?Q1, we obtain ?(a0) = ?(a) and ?(ai) = 0 for i = 1,...,n.Since A is projective as an R-module, it is R-torsion free, hence ? is injective.It follows that a0=a and ai=0 for i=1,...,n.Hence ρ(a)=a ?R1.

    Proposition 3.2Let A be an R-algebra which is projective as an R-module,and let H be an R-Hopf algebra which is R-free.Assume A is a right H-comodule algebra.Then A/AcoHis Hopf dense Galois if and only if AQ/(AQ)coHQis Hopf dense Galois.

    ProofApplying (?)Qto the map β :A ?AcoHA → A ?RH, we obtain

    by Lemma 3.5.Then the condition that the cokernel of βQis finite dimensional implies both A/AcoHand AQ/(AQ)coHQare Hopf dense Galois.

    Since the torsion functor ΓAis left exact,it has right derived functors.Let RiΓA(i ≥ 0)denotes the i-th right derived functor of ΓA.Similarly, we have RiΓAQ.

    Lemma 3.6If RiΓA(M)=0 for all i ≤ k, then RiΓAQ(MQ)=0 for all i ≤ k.

    ProofLet 0 → M → I0→ I1→ ··· → Ik→ ··· be an injective resolution of M.Since the localizing functor (?)Qpreserves injective modules, it follows that 0 → MQ→is an injective resolution of MQ.Let I?be the complex 0 →I0→ ··· →Ik→ ···.By Lemma 2.3, RiΓAQ(MQ) =Hi(ΓA(I?))Q=RiΓA(M)Q.So RiΓAQ(MQ)=0 for all i ≤ k in case RiΓA(M)=0 for i ≤ k.

    Since by assumption H is a finitely generated R-algebra, then similar to equation (2.2),we have an isomorphism of Hopf algebras HomR(H,R) ?RQ ~=HomQ(H ?RQ,Q).Thus we can write

    where H?=HomR(H,R) is the dual Hopf algebra of H.

    An important feature of Hopf dense Galois extensions over a field is the truth of Auslander theorem (cf.[1, Theorem 3.10]).Note that Theorem 3.10 of [1]is still true if the characteristic is positive.Next result shows that a weaker version of Auslander theorem holds for Hopf dense Galois extensions over a commutative domain.

    Theorem 3.7Let A and H be the algebras as in the beginning of this section.Assume further that HQis cosemisimple.If A/AcoHis a Hopf dense Galois extension, and RiΓA(A)=0 for i ≤ 2, then the natural map

    is injective.Moreover, for each f ∈ EndAcoH(A), there exist

    ProofBy Proposition 3.2, AQ/(AQ)coHQis a Hopf dense Galois extension over the field Q.By Lemma 3.6, RiΓAQ(AQ)=0 for i ≤ 2.Then [1, Theorem 3.10]insures that the natural map

    is an isomorphism.By Lemma 3.5,we have(AQ)coHQ=(AcoH)Q.It follows End(AQ)coHQ(AQ)=EndAcoH(A)Q.Moreover,sinceit follows that ξ =ψQ:(A#H?)Q?→EndAcoH(A)Q.We next show that ψ is a monomorphism.Let K =ker ψ and M =coker ψ.Then KQ=ker ξ =0 and MQ=coker ξ =0.Since A is projective over R and H is R-free,it follows that A#H?is projective over R.Since R is a domain, A#H?is R-torsion free.Hence K is R-torsion free, which implies K = 0.Therefore ψ is injective.Moreover, since MQ= 0, it follows that for each f ∈ EndAcoH(A), there is an element 0r ∈ R such that rf lies in the image of ψ, that isHencefor all b ∈ A.

    4 Hopf Dense Galois Extensions of Almost Commutative Algebras

    In this section,R is a noetherian commutative domain of characteristic zero,and k is an algebraic closed field containing R as a subring. H is an R-Hopf algebra which is a finitely generated free R-module.The filtration of a filtered R-algebra A is an ascending filtration

    We call an R-algebra A is almost commutative if A is a filtered R-algebra and the associated graded algebra gr(A)is a graded commutative algebra.Similar to equation(3.1),we will write

    for simplicity.

    Lemma 4.8Let B =B0⊕ B1⊕ ··· be a graded R-algebra which is a commutative domain and is projective over R.Let ρ : B → B ?RH be a right H-coaction on B which preserves the gradings.If B/BcoHis a Hopf dense Galois extension, thenis isomorphic to a group algebra.

    ProofWe write Bk= B ?Rk and Hk= H ?Rk.Applying ? ?Rk to the right coaction ρ : B → B ?RH, we obtain a coaction ρk: Bk→ Bk?kHk.Consider the canonical map βk: Bk?BcoHkBk?→ Bk?kHk.Since B is commutative, βkis indeed an algebra homomorphism, where we view Bk?kHkas the algebra by the usual multiplication of tensor products of algebras.The same proof of Proposition 3.2 shows that Bk/(Bk)coHkis a Hopf dense Galois extension, then the cokernel of βkis finite dimensional over k.Then there is an integer n ≥ 0 such that (⊕i≥nBi)k?kHk? im βk.Since by assumption B is commutative, which implies Bk?BcoHkBkis commutative, and thus im βkis commutative.For g,h ∈ H, taking nonzero elements a,b ∈ (⊕i≥nBi)k, then (a ?kg),(b ?kh) ∈ im βk,which impies (a ?kg)(b ?kh) = (b ?kh)(a ?kg).Then ab ?kgh = ba ?khg = ab ?khg.Since B is a domain and B is projective over R, ab0.Hence we have gh = hg, that is,Hkis commutative.Since H is finitely generated as an R-module, Hkis finite dimensional.Therefore the dual Hopf algebrais cocommutative.Since k is algebraic closed with characteristic zero,is isomorphic to a group algebra.

    Let B be a filtered R-algebra.Let M be a filtered right B-module and let N be a left filtered B-module.The tensor product M ?BN has an induced filtration defined by Fn(M ?BN) to be the abelian subgroup of M ?BN generated by elements x ? y for all x ∈ FiM and y ∈ FjN such that i+j = n.There is a graded epimorphism (cf.[8, §6,Chapter I])

    where x ∈ FiM Fi?1M, y ∈ FjN Fj?1N andare corresponding elements in the associated graded modules,similarlyis the corresponding element in the graded abelian group associated to M ?BN.

    Suppose that there is a right H-coaction ρ :B → B ?RH which preserves the filtration,where the filtration of B ?RH is induced by the filtration of B.Then the induced map

    is a right H-coaction on the associated graded algebra gr(B).Then the filtration of B induces a filtration on BcoH.Associated to this filtration,there is a graded algebra gr(BcoH).Then gr(BcoH) is a graded subalgebra of (gr(B))coH.In general, gr(BcoH) is not equal to(gr(B))coH.

    Let X and Y be filtered R-modules.An R-module homomorphism f :X →Y is called a strict filtered map [8]if f preserves the filtration and FnY ∩im f =f(FnX) for all n.

    Lemma 4.9Keep the notations as above.If B/BcoHis a Hopf dense Galois extension and the canonical map β : B ?BcoHB → B ?RH is strict, then gr(B)/(gr(B))coHis a Hopf dense Galois extension.

    ProofLet gr(ρ):gr(B)→ gr(B)?RH be the induced H-coaction on gr(B).Let

    be the canonical map associated to gr(ρ).Denote K = coker β.Then K has a natural filtration inherits from B ?RH.Since β is strict, by [8, Theorem 4.2.4, Chapter I], we have an exact sequence

    By equation (4.1), the map ?B,B: gr(B)?gr(BcoH)gr(B) ?→ gr(B ?BcoHB) is an epimorphism.Note that gr(B ?RH)=gr(B)?RH, we have the following commutative diagram

    where p is an epimorphism induced by the fact that gr(BcoH) is a graded subalgebra of(gr(B))coH.Since ?B,Band p are both epic, we have coker βgr= coker gr(β)gr(K).By assumption, B/BcoHis a Hopf dense Galois extension, thus KQis finite dimensional over Q.Then (gr(K))Q=gr(KQ) is also finite dimensional over Q.Therefore gr(B)/(gr(B))coHis a Hopf dense Galois extension.

    Theorem 4.10Let A be an almost commutative R-algebra such that gr(A) is a domain.Assume that A is a right H-comodule algebra such that the right H-coaction preserves the filtration.If A/AcoHis a Hopf dense Galois extension and the canonical map β :A ?AcoHA →A ?RH is strict, thenis isomorphic to a group algebra over k.

    ProofAs before, we write Ak= A ?Rk and Hk= H ?Rk.Since A is a filtered R-algebra,Akis also a filtered k-algebra with the obvious induced filtration.Since the right H-coaction preserves the filtration, it induces a right H-coaction on the associated graded algebra gr(A).Applying the functor ? ?Rk to the right H-coaction ρ : A → A ?RH,we obtain that Akis a right Hk-comodule algebra and Ak/(Ak)coHkis a Hopf dense Galois extension.Moreover, since β is strict, the induced canonical map βkis also a strict filtered map.By Lemma 4.9, gr(Ak)/(gr(Ak))coHkis a Hopf dense Galois extension.Since A is almost commutative, gr(A) is a commutative domain.Then gr(Ak) = gr(A) ?Rk is a commutative domain over k.By Lemma 4.8,is a group algebra.

    For a filtered algebra A and a filtration preserving right H-coaction, the canonical map

    may be not a strict map.Hence the associated graded algebra gr(A) may not be a Hopf dense Galois extension over (gr(A))coH.Some further discussions will be given in the next section.

    5 Some Corollaries

    In this section, k is an algebraically closed field of characteristic zero.All the algebras and modules in this section are over k.Let H be a finite dimensional Hopf algebra.

    The next result is a direct consequence of [2, Proposition 3.6]if A is noetherian and H is semisimple.We give a direct proof and drop the assumptions in [2, Proposition 3.6].

    Proposition 5.3Let A be a filtered algebra with an ascending filtration

    such that FiA is finite dimensional for all i ≥0.Assume that A is a right H-comodule algebra and the coaction preserving the filtration.If the associated graded algebra gr(A) is a Hopf dense Galois extension over (gr(A))coH, then A/AcoHis a Hopf dense Galois extension.

    ProofLet β : A ?AcoHA → A ?kH be the canonical map.Similar to the diagram(4.2), we have the following commutative diagram

    Since gr(A)/(gr(A))coHis a Hopf dense Galois extension, which is to say that coker βgris finite dimensional.It follows that there is a positive number n such that for all k ≥n, we have

    We claim that β(Fk(A?AcoHA))+Fn?1A?kH =FkA?kH for all k ≥ n.By the commutative diagram (5.1), for every x ∈ FnA ?kH, there is an element y ∈ Fn(A ?AcoHA) such that β(y)+z =x for some z ∈ Fn?1A ?kH.Hence β(Fn(A ?AcoHA))+Fn?1?kH =FnA ?kH.Now assume that β(Fi(A?AcoHA))+Fn?1A?kH =FiA?kH for i ≥ n.By the commutative diagram (5.1), we have β(Fi+1(A ?AcoHA))+FiA ?kH =Fi+1A ?kH.Then

    Hence we have dim((A?kH)/im β)≤ dim(Fn?1A?kH)< ∞.Therefore,A/AcoHis a Hopf dense Galois extension.

    Combined with Lemma 4.9, we have the following corollary.

    Corollary 5.11With the same conditions in Proposition 5.3, if in addition the canonical map β : A ?AcoHA → A ?kH is strict, then A/AcoHis a Hopf dense Galois extension if and only if gr(A)/(gr(A))coHis a Hopf dense Galois extension.

    Let g be a finite dimensional Lie algebra, and let f :g × g → k be a 2-cocycle, that is,for every x,y,z ∈g, f(x,x)=0, f(x,[y,z])+f(z,[x,y])+f(y,[z,x])=0.Then a Sridharan enveloping algebra [9]of g is defined to be the associative algebra

    where T(g)is the tensor algebra of g over k and I is the ideal of T(g)generated by elements

    Assume that {x1,...,xn} is an R-basis of g.Then Uf(g) is a free R-module and it has a basis(cf.[9, Theorem 2.6]).And Uf(g) is a filtered algebra with an ascending filtration defined by

    for all k ≥0.The associated graded algebra of Uf(g) is the commutative polynomial ring k[x1,...,xn].

    Suppose that there is a right H-coaction ρg:Uf(g)→ Uf(g)?kH which preserves the filtration defined as above.Then the associated graded map gr(ρg):grUf(g)→ grUf(g)?kH is a right H-coaction on grUf(g).

    Corollary 5.12With the notions as above, if grUf(g)is a Hopf dense Galois extension over (grUf(g))coH, then Uf(g) is a Hopf dense Galois extension over Uf(g)coHand H?is isomorphic to a group algebra.

    ProofThe first part follows from Proposition 5.3.The second part follows from Lemma 4.8 since grUf(g)k[x1,...,xn].

    As we know, a right H-coaction on an algebra A is equivalent to a left H-action on A.Moreover, we have AcoH= AH, where AH= {a ∈ A|ha = ε(h)a, for all h ∈ H}.Hence we may rewrite Corollary 5.12 in the Hopf action version.

    Corollary 5.13Suppose that H acts on a Sridharan enveloping algebra Uf(g).If the H-action preserves the filtration of Uf(g) and grUf(g) is a right H?-Hopf dense Galois extension over (grUf(g))H, then Uf(g) is a right H?-Hopf dense Galois extension over Uf(g)H, and H is isomorphic to a group algebra.

    俄罗斯特黄特色一大片| 99热只有精品国产| 91九色精品人成在线观看| 国产亚洲欧美精品永久| 天天添夜夜摸| 丰满的人妻完整版| 老熟女久久久| 午夜日韩欧美国产| 最新美女视频免费是黄的| 在线观看日韩欧美| 一进一出抽搐动态| 高清视频免费观看一区二区| 国产一区二区三区视频了| 欧美日韩国产mv在线观看视频| 色综合欧美亚洲国产小说| 99riav亚洲国产免费| 国产成人精品在线电影| 一a级毛片在线观看| 国产99白浆流出| 99久久99久久久精品蜜桃| 夜夜躁狠狠躁天天躁| 人妻 亚洲 视频| 少妇 在线观看| 久久人人爽av亚洲精品天堂| 最新在线观看一区二区三区| 欧美激情极品国产一区二区三区| 亚洲欧美色中文字幕在线| 老熟妇仑乱视频hdxx| 亚洲成人免费电影在线观看| 老司机在亚洲福利影院| 制服人妻中文乱码| 亚洲免费av在线视频| a级毛片在线看网站| 91av网站免费观看| 精品久久久久久久毛片微露脸| 国产精品一区二区在线观看99| 精品国产一区二区久久| 久久精品91无色码中文字幕| 一边摸一边抽搐一进一小说 | 免费在线观看黄色视频的| 啦啦啦 在线观看视频| 91在线观看av| 女人被狂操c到高潮| 久久精品亚洲av国产电影网| 欧美日韩福利视频一区二区| bbb黄色大片| 18禁黄网站禁片午夜丰满| 在线观看日韩欧美| 在线天堂中文资源库| 悠悠久久av| 一二三四在线观看免费中文在| 国产在视频线精品| 精品人妻熟女毛片av久久网站| 色在线成人网| 久久亚洲精品不卡| 亚洲视频免费观看视频| 在线观看一区二区三区激情| 精品高清国产在线一区| 脱女人内裤的视频| 欧美日韩一级在线毛片| av超薄肉色丝袜交足视频| 国产成人影院久久av| 日韩人妻精品一区2区三区| 中文字幕另类日韩欧美亚洲嫩草| 国产在线观看jvid| 在线观看舔阴道视频| 成人18禁在线播放| 亚洲精品国产一区二区精华液| tocl精华| 大型av网站在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 天天添夜夜摸| 在线免费观看的www视频| 欧美日韩瑟瑟在线播放| 三级毛片av免费| 在线看a的网站| 日韩成人在线观看一区二区三区| 在线观看66精品国产| 日日夜夜操网爽| 成熟少妇高潮喷水视频| 操出白浆在线播放| 精品福利永久在线观看| 90打野战视频偷拍视频| 国产不卡av网站在线观看| 乱人伦中国视频| 亚洲中文字幕日韩| 亚洲va日本ⅴa欧美va伊人久久| xxxhd国产人妻xxx| 欧美中文综合在线视频| 国产国语露脸激情在线看| 老鸭窝网址在线观看| 天天添夜夜摸| 捣出白浆h1v1| 日韩欧美一区视频在线观看| 交换朋友夫妻互换小说| 日本精品一区二区三区蜜桃| 丁香欧美五月| 精品亚洲成国产av| 老司机在亚洲福利影院| 亚洲自偷自拍图片 自拍| 欧美精品啪啪一区二区三区| 女性被躁到高潮视频| 一级毛片精品| 国内久久婷婷六月综合欲色啪| 精品久久久久久电影网| 国产单亲对白刺激| 欧美日韩一级在线毛片| 国产精品偷伦视频观看了| 别揉我奶头~嗯~啊~动态视频| 视频区图区小说| 成年人黄色毛片网站| 中亚洲国语对白在线视频| 亚洲av欧美aⅴ国产| 在线观看免费日韩欧美大片| 香蕉国产在线看| 免费人成视频x8x8入口观看| 国产一卡二卡三卡精品| 国产欧美日韩一区二区三区在线| 热re99久久国产66热| 亚洲专区字幕在线| 亚洲色图综合在线观看| 欧美乱码精品一区二区三区| 国产精品欧美亚洲77777| 亚洲免费av在线视频| 亚洲一区高清亚洲精品| 欧美中文综合在线视频| 无人区码免费观看不卡| 一区在线观看完整版| 精品国产一区二区久久| 制服人妻中文乱码| 国产成人av激情在线播放| 熟女少妇亚洲综合色aaa.| 丰满人妻熟妇乱又伦精品不卡| av福利片在线| 久久久久久久午夜电影 | 精品乱码久久久久久99久播| 视频区欧美日本亚洲| 精品国产一区二区三区久久久樱花| 日韩三级视频一区二区三区| 纯流量卡能插随身wifi吗| 欧美日韩国产mv在线观看视频| 女人爽到高潮嗷嗷叫在线视频| 久久精品国产综合久久久| 亚洲av成人一区二区三| 精品高清国产在线一区| 看黄色毛片网站| 真人做人爱边吃奶动态| 91精品国产国语对白视频| av国产精品久久久久影院| 欧美最黄视频在线播放免费 | 在线看a的网站| 69av精品久久久久久| 大香蕉久久成人网| 中国美女看黄片| 亚洲aⅴ乱码一区二区在线播放 | 黄片播放在线免费| 久久午夜综合久久蜜桃| 久久午夜综合久久蜜桃| 国产aⅴ精品一区二区三区波| 国产人伦9x9x在线观看| 最新美女视频免费是黄的| 黑人猛操日本美女一级片| 亚洲综合色网址| 午夜福利在线观看吧| a级毛片在线看网站| 1024视频免费在线观看| 最近最新免费中文字幕在线| 欧美精品人与动牲交sv欧美| 亚洲五月天丁香| 夜夜爽天天搞| 亚洲av欧美aⅴ国产| 最近最新免费中文字幕在线| 欧美日韩福利视频一区二区| 亚洲国产中文字幕在线视频| 精品国内亚洲2022精品成人 | 久久精品亚洲精品国产色婷小说| 亚洲中文日韩欧美视频| 免费在线观看日本一区| 老司机深夜福利视频在线观看| 国产亚洲一区二区精品| 久久久国产欧美日韩av| 一进一出好大好爽视频| 亚洲,欧美精品.| 国产精品自产拍在线观看55亚洲 | av不卡在线播放| 三上悠亚av全集在线观看| 熟女少妇亚洲综合色aaa.| 欧美黄色淫秽网站| 国产精品亚洲av一区麻豆| 人人妻人人澡人人看| 国产国语露脸激情在线看| 女人精品久久久久毛片| 国产亚洲欧美精品永久| 咕卡用的链子| 999精品在线视频| av线在线观看网站| 亚洲精品在线美女| 女人高潮潮喷娇喘18禁视频| 久久狼人影院| 久久香蕉国产精品| 99国产精品一区二区蜜桃av | 日日夜夜操网爽| 真人做人爱边吃奶动态| 不卡一级毛片| 一区二区日韩欧美中文字幕| 99国产综合亚洲精品| 成人手机av| 日本一区二区免费在线视频| 久久ye,这里只有精品| a级毛片黄视频| 无遮挡黄片免费观看| 黄片小视频在线播放| 亚洲性夜色夜夜综合| 久久午夜亚洲精品久久| 高清在线国产一区| 女性被躁到高潮视频| 国产深夜福利视频在线观看| 精品久久久久久,| 亚洲成人国产一区在线观看| 日韩欧美一区二区三区在线观看 | 久久亚洲真实| 18禁裸乳无遮挡动漫免费视频| 免费一级毛片在线播放高清视频 | 亚洲片人在线观看| 国产精品二区激情视频| 国产男女超爽视频在线观看| 久久久久久久久久久久大奶| 免费在线观看黄色视频的| 久久久久国产一级毛片高清牌| 成人影院久久| 中文字幕av电影在线播放| 不卡av一区二区三区| 国产欧美日韩一区二区三区在线| 日韩欧美一区视频在线观看| 久久中文看片网| 国产免费现黄频在线看| 一夜夜www| 成人手机av| 操美女的视频在线观看| 男女高潮啪啪啪动态图| 亚洲 欧美一区二区三区| 香蕉久久夜色| 亚洲欧美激情在线| 韩国精品一区二区三区| 亚洲精品久久成人aⅴ小说| 日韩三级视频一区二区三区| 国产伦人伦偷精品视频| 高清毛片免费观看视频网站 | 精品乱码久久久久久99久播| 亚洲人成77777在线视频| cao死你这个sao货| 亚洲一卡2卡3卡4卡5卡精品中文| 国产区一区二久久| 正在播放国产对白刺激| 9191精品国产免费久久| 九色亚洲精品在线播放| 久久久久久免费高清国产稀缺| 丰满的人妻完整版| 人成视频在线观看免费观看| 99久久精品国产亚洲精品| 久久国产亚洲av麻豆专区| 国产精品久久久久成人av| 黄网站色视频无遮挡免费观看| 色在线成人网| 午夜亚洲福利在线播放| 午夜老司机福利片| 中文字幕av电影在线播放| 悠悠久久av| 国产区一区二久久| 十八禁网站免费在线| 一边摸一边抽搐一进一小说 | 午夜精品国产一区二区电影| videosex国产| 国产色视频综合| 可以免费在线观看a视频的电影网站| 黄色a级毛片大全视频| 咕卡用的链子| 一进一出抽搐gif免费好疼 | 另类亚洲欧美激情| a级毛片在线看网站| www.精华液| 亚洲一区二区三区不卡视频| 国产精品免费视频内射| 欧美av亚洲av综合av国产av| 久久久国产精品麻豆| 久久精品亚洲av国产电影网| 午夜久久久在线观看| 啦啦啦在线免费观看视频4| 国产一区二区三区视频了| 亚洲熟妇中文字幕五十中出 | 色在线成人网| 精品乱码久久久久久99久播| 欧美日韩乱码在线| 午夜精品在线福利| 搡老岳熟女国产| 在线看a的网站| 日韩制服丝袜自拍偷拍| 18禁裸乳无遮挡动漫免费视频| 超色免费av| 亚洲五月色婷婷综合| 人妻丰满熟妇av一区二区三区 | 久久狼人影院| 国产xxxxx性猛交| 久久久精品免费免费高清| 国产精品国产av在线观看| 久久精品国产清高在天天线| 国产av一区二区精品久久| 91麻豆精品激情在线观看国产 | 999久久久国产精品视频| 中文字幕制服av| 十八禁高潮呻吟视频| 精品人妻1区二区| 一区二区日韩欧美中文字幕| 人人妻人人爽人人添夜夜欢视频| www.999成人在线观看| 久久99一区二区三区| 成人亚洲精品一区在线观看| 精品福利永久在线观看| 久久久精品国产亚洲av高清涩受| 黄片大片在线免费观看| 69精品国产乱码久久久| 国产麻豆69| 高清在线国产一区| av天堂久久9| 精品久久久久久久久久免费视频 | 午夜两性在线视频| 亚洲专区中文字幕在线| 新久久久久国产一级毛片| 国产淫语在线视频| 18禁国产床啪视频网站| 久久中文看片网| 亚洲av片天天在线观看| 亚洲情色 制服丝袜| 精品国内亚洲2022精品成人 | 国产激情欧美一区二区| 日日摸夜夜添夜夜添小说| 美女福利国产在线| 精品福利观看| 丝袜在线中文字幕| 免费看a级黄色片| 美女午夜性视频免费| 欧美日韩亚洲综合一区二区三区_| 午夜福利免费观看在线| 免费观看人在逋| 视频在线观看一区二区三区| 十八禁人妻一区二区| 欧美乱妇无乱码| 三级毛片av免费| www.精华液| 国产99久久九九免费精品| 国产高清videossex| 色播在线永久视频| 国产乱人伦免费视频| 不卡一级毛片| 极品少妇高潮喷水抽搐| 在线永久观看黄色视频| 久久久水蜜桃国产精品网| 日韩视频一区二区在线观看| 大型av网站在线播放| 中国美女看黄片| 在线观看免费日韩欧美大片| 精品国产一区二区久久| 久久久国产一区二区| 91老司机精品| 国产亚洲av高清不卡| 日韩欧美三级三区| 国产国语露脸激情在线看| 99久久99久久久精品蜜桃| 成年动漫av网址| 中亚洲国语对白在线视频| 成人18禁高潮啪啪吃奶动态图| 侵犯人妻中文字幕一二三四区| 在线免费观看的www视频| 午夜精品久久久久久毛片777| 王馨瑶露胸无遮挡在线观看| 国产亚洲精品第一综合不卡| 狠狠婷婷综合久久久久久88av| 婷婷丁香在线五月| 在线观看免费视频日本深夜| 成年人免费黄色播放视频| 免费在线观看亚洲国产| 老司机亚洲免费影院| 天天影视国产精品| 母亲3免费完整高清在线观看| 欧美精品av麻豆av| 12—13女人毛片做爰片一| 91精品三级在线观看| 18禁黄网站禁片午夜丰满| 中文字幕av电影在线播放| 国产深夜福利视频在线观看| 露出奶头的视频| 亚洲精品乱久久久久久| 黑人操中国人逼视频| 久久亚洲精品不卡| 最近最新中文字幕大全免费视频| www.熟女人妻精品国产| 久久久久久久精品吃奶| 热re99久久精品国产66热6| 亚洲精品在线观看二区| 日韩三级视频一区二区三区| av福利片在线| 黄色怎么调成土黄色| 亚洲欧美日韩另类电影网站| 99re6热这里在线精品视频| 黄色片一级片一级黄色片| 欧美国产精品va在线观看不卡| 国产精品国产av在线观看| 国产av又大| 欧美乱色亚洲激情| 两个人免费观看高清视频| 亚洲熟女精品中文字幕| 丝袜美足系列| 一级a爱片免费观看的视频| 这个男人来自地球电影免费观看| 脱女人内裤的视频| 激情视频va一区二区三区| 高清在线国产一区| 男女免费视频国产| 亚洲av成人av| 男女高潮啪啪啪动态图| 国产成人精品无人区| 日本一区二区免费在线视频| 亚洲av片天天在线观看| 另类亚洲欧美激情| 精品无人区乱码1区二区| 欧美日韩精品网址| 亚洲精品粉嫩美女一区| 美女扒开内裤让男人捅视频| 悠悠久久av| 精品免费久久久久久久清纯 | 一二三四在线观看免费中文在| 大香蕉久久网| 欧美一级毛片孕妇| 热re99久久精品国产66热6| 亚洲精品国产精品久久久不卡| 国产精品久久电影中文字幕 | 丰满的人妻完整版| 麻豆国产av国片精品| 欧美精品啪啪一区二区三区| 国产精品九九99| 91麻豆av在线| 国产精品综合久久久久久久免费 | 成人18禁在线播放| 丝袜在线中文字幕| 欧美在线一区亚洲| 国精品久久久久久国模美| 欧美精品高潮呻吟av久久| 国产色视频综合| 又黄又爽又免费观看的视频| 人人妻人人爽人人添夜夜欢视频| 18禁裸乳无遮挡动漫免费视频| 建设人人有责人人尽责人人享有的| 亚洲性夜色夜夜综合| 最近最新中文字幕大全电影3 | 国产在线观看jvid| 1024视频免费在线观看| 精品久久久久久久久久免费视频 | 涩涩av久久男人的天堂| 免费少妇av软件| 亚洲五月婷婷丁香| 久久精品亚洲熟妇少妇任你| 80岁老熟妇乱子伦牲交| 欧美日韩一级在线毛片| 国产精品乱码一区二三区的特点 | 国产精品一区二区在线不卡| 十八禁高潮呻吟视频| 成人黄色视频免费在线看| 免费在线观看视频国产中文字幕亚洲| 亚洲熟妇中文字幕五十中出 | 国内久久婷婷六月综合欲色啪| 亚洲av成人不卡在线观看播放网| 18禁裸乳无遮挡免费网站照片 | 午夜免费鲁丝| 一区二区日韩欧美中文字幕| x7x7x7水蜜桃| 精品少妇一区二区三区视频日本电影| 丝袜美腿诱惑在线| 9色porny在线观看| 国产淫语在线视频| 国产区一区二久久| 国产成人欧美| 成人手机av| av免费在线观看网站| 香蕉丝袜av| 中文字幕av电影在线播放| 国产免费av片在线观看野外av| 精品午夜福利视频在线观看一区| av线在线观看网站| 亚洲一卡2卡3卡4卡5卡精品中文| 麻豆乱淫一区二区| 亚洲av第一区精品v没综合| 看片在线看免费视频| 天堂动漫精品| 黑人猛操日本美女一级片| 亚洲少妇的诱惑av| 99热国产这里只有精品6| 亚洲五月色婷婷综合| 亚洲av第一区精品v没综合| 精品卡一卡二卡四卡免费| 亚洲av美国av| 国产高清videossex| 一级a爱片免费观看的视频| 夜夜夜夜夜久久久久| 一进一出抽搐gif免费好疼 | 亚洲一区二区三区欧美精品| netflix在线观看网站| 亚洲熟妇中文字幕五十中出 | 50天的宝宝边吃奶边哭怎么回事| 精品一区二区三卡| 18禁裸乳无遮挡动漫免费视频| 丝瓜视频免费看黄片| tocl精华| 亚洲欧美激情在线| 国产精品久久视频播放| 下体分泌物呈黄色| 免费女性裸体啪啪无遮挡网站| 久久精品国产综合久久久| 日本黄色日本黄色录像| 久久影院123| 国产精品久久久人人做人人爽| 久久精品国产99精品国产亚洲性色 | 久久国产精品人妻蜜桃| 一区二区日韩欧美中文字幕| 一级片'在线观看视频| 亚洲国产精品sss在线观看 | 性色av乱码一区二区三区2| 国产1区2区3区精品| 国产欧美亚洲国产| 欧美大码av| 日韩欧美一区视频在线观看| 亚洲成国产人片在线观看| 久久精品国产a三级三级三级| 在线观看日韩欧美| 在线观看www视频免费| 母亲3免费完整高清在线观看| 欧美国产精品va在线观看不卡| 中文字幕另类日韩欧美亚洲嫩草| 亚洲午夜理论影院| 国产一区二区激情短视频| 脱女人内裤的视频| 精品乱码久久久久久99久播| 久久ye,这里只有精品| 久久亚洲精品不卡| 国产精品免费大片| 一级a爱片免费观看的视频| 操美女的视频在线观看| 亚洲伊人色综图| 国产精品秋霞免费鲁丝片| 亚洲全国av大片| 制服诱惑二区| 精品国产超薄肉色丝袜足j| 最新的欧美精品一区二区| 国产精品98久久久久久宅男小说| 国产精品久久久久久人妻精品电影| 不卡av一区二区三区| 免费高清在线观看日韩| 国产1区2区3区精品| 国产三级黄色录像| 啦啦啦视频在线资源免费观看| 欧美激情极品国产一区二区三区| 成人18禁高潮啪啪吃奶动态图| 亚洲精品一二三| 午夜久久久在线观看| 国产高清激情床上av| 国产成人啪精品午夜网站| 亚洲第一av免费看| 成人三级做爰电影| 日韩精品免费视频一区二区三区| 国产男女内射视频| 久久久国产欧美日韩av| 亚洲免费av在线视频| 涩涩av久久男人的天堂| 国产精品秋霞免费鲁丝片| 日本五十路高清| 99久久精品国产亚洲精品| videos熟女内射| 久久精品国产99精品国产亚洲性色 | 每晚都被弄得嗷嗷叫到高潮| 国产欧美日韩综合在线一区二区| 纯流量卡能插随身wifi吗| 国产不卡一卡二| 成年女人毛片免费观看观看9 | 久久中文字幕人妻熟女| 久久精品亚洲精品国产色婷小说| 精品久久久久久久毛片微露脸| 香蕉久久夜色| 天堂中文最新版在线下载| 亚洲一区中文字幕在线| av超薄肉色丝袜交足视频| 97人妻天天添夜夜摸| 这个男人来自地球电影免费观看| 日韩中文字幕欧美一区二区| 欧美精品一区二区免费开放| 一进一出抽搐gif免费好疼 | 免费在线观看黄色视频的| 18禁观看日本| av片东京热男人的天堂| 在线视频色国产色| 国产成人欧美在线观看 | 欧美丝袜亚洲另类 | 十八禁人妻一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美大码av| 另类亚洲欧美激情| 精品久久久久久久久久免费视频 | 三上悠亚av全集在线观看| 人人妻人人澡人人看| 国产亚洲精品第一综合不卡| 亚洲avbb在线观看| 国产91精品成人一区二区三区| 国产在线精品亚洲第一网站| 亚洲av成人av| 91九色精品人成在线观看| 91av网站免费观看| 国产乱人伦免费视频|