• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    LINEAR COMPLEXITY OF GENERALIZED CYCLOTOMIC BINARY SEQUENCES OF PERIOD pq

    2020-03-14 09:07:28YANGBoDUTianqiXIAOZibi
    數(shù)學(xué)雜志 2020年2期

    YANG Bo DU Tian-qi XIAO Zi-bi

    (1.Hubei Province Key Laboratory of Systems Science in Metallurgical Process,Wuhan University of Science and Technology, Wuhan 430081, China)

    (2.College of Science, Wuhan University of Science and Technology, Wuhan 430081, China)

    Abstract: In this paper, a class of generalized cyclotomic binary sequences of period pq is proposed, where p and q are two distinct odd primes.By using Whiteman’s generalized cyclotomy of order 4 and classic cyclotomy of order 2, the sequences are almost balanced and the exact value of their linear complexity is calculated, which shows that the proposed sequences are quite good in terms of the linear complexity.

    Keywords: binary sequence; linear complexity;cyclotomy;generalized cyclotomic sequence

    1 Introduction

    Pseudo-random sequences were widely used in communication and cryptographic systems.For the application of stream cipher, the keystream sequences had unpredictability and randomness [1].One of the important indexes for measuring these properties is linear complexity of sequence,which is defined to be the length of the shortest linear feedback shift register that can generate the given sequence.Generally speaking, a sequence with large linear complexity(at least a half of its period)is considered to be favorable for cryptography to resist the well-known Berlekamp-Massey algorithm.

    For an integer N ≥ 2, let ZN= {0,1,··· ,N ? 1} denote the ring of integers modulo N anddenote the set of all invertible elements of ZN.Let {D0,D1,··· ,Dd?1} be a partition of.If D0is a multiplicative subgroup ofand there exist elements gi∈such that Di=giD0for all i ∈ {1,2,··· ,d ? 1}, then for prime (composite) N, these Diare called classical (generalized) cyclotomic classes of order d with respect to N.

    Using classical cyclotomy or generalized cyclotomy to construct sequences is an effective method to obtain sequences with large linear complexity.The linear complexity and autocorrelation property of generalized cyclotomic sequences with various period were extensively studied in the literature (see [2–7]).In this paper, we focus on the generalized cyclotomic binary sequences of period pq.

    The generalized cyclotomic binary sequences of period pq are by far constructed on the basis of Whiteman’s generalized cyclotomic classes or Ding-Helleseth generalized cyclotomic classes which are proposed in [8]and [9], respectively.Most of these sequences have large linear complexity.A brief review of these sequences are provided in Section 2.In this paper,a class of new generalized cyclotomic binary sequences of period pq based on Whiteman’s generalized cyclotomy of order 4 and classic cyclotomy of order 2 is proposed.By using the classic method for calculating the linear complexity described in [10], we determine the exact value of the linear complexity of such sequences.Our results show that the proposed sequences have large linear complexity.

    2 Preliminary

    In this section, we first recall the two types of generalized cyclotomy with respect to pq and the known generalized cyclotomic sequences of period pq, and then define a class of new generalized cyclotomic sequences of period pq.

    Let N =pq, where p and q are distinct odd primes with gcd(p ? 1, q ? 1)=d.DefineLet g be a fixed primitive root of both p and q.Then ordN(g) = lcm(p ?1,q ? 1)=e.Let x be an integer satisfying x ≡ g(mod p), x ≡ 1(mod q). Whiteman proved in [8]that

    Whiteman’s generalized cyclotomic classes of order d with respect to pq are defined by [8]

    Ding-Helleseth generalized cyclotomic classes of order d with respect to pq are defined by[9]

    On the basis of these two generalized cyclotomies of even order d, many generalized cyclotomic sequences of period pq were constructed.

    It is easily seen that the difference between the numbers of ones and zeros is q ? p ? 1 in all the above sequences, i.e., they are not balanced unless q = p+2 (note that in the case where the difference is equal to ±1 the sequences are called almost balanced).In [9]Ding and Helleseth introduced a new method to construct almost balanced sequences, that is, using the classic cyclotomy to divide the sets P and Q.Let d1be a divisor of d, and p ? 1=d1f1, q ? 1=d1f2.For i=0,1,··· ,d1? 1, define

    In the following,we define a family of generalized cyclotomic binary sequences of period N = pq, where p and q are distinct odd primes with gcd(p ? 1, q ? 1) = 4.Let Diwith i ∈ {0,1,2,3} be Whiteman’s generalized cyclotomic classes of order 4 defined in (2.1),with i ∈{0,1} be the classical cyclotomic classes of order 2 defined in (2.2).LetR={0}.Then

    Define two sets

    where a is an arbitrary integer with 0 ≤ a ≤ 3, and the subscripts i in Diare assumed to be taken modulo 4.For simplicity, the modulo operation is omitted in this paper.It is easy to see that {C0,C1} forms a partition of ZNand |C0|?|C1| = 1.Now we define a family of almost balanced binary sequences of period pq which admits C1as the characteristic set,i.e., the sequences s∞=(s0,s1,s2,···) are given by

    3 Linear Complexity

    Let s∞= (s0,s1,s2,···) be a periodic infinite sequence over a field F.The linear complexity of s∞is defined to be the least positive integer L such that there are constants c0= 1, c1,··· ,cL∈ F satisfying ?si= c1si?1+c2si?2+ ···+cLsi?Lfor all i ≥ L. The polynomial c(x)=c0+c1x+ ···cLxLis called the minimal polynomial of s∞.Let N be the period of s∞.It is well known that

    where s(x) = s0+s1x+ ···+sN?1xN?1is the generating polynomial of the sequence s∞.The linear complexity of {si} is given by

    In this section, we use (3.1) to determine the linear complexity of the new generalized cyclotomic binary sequences of period pq defined by (2.3).

    For a with 0 ≤ a ≤ 3, denote

    Then the generating polynomial of a sequence defined by (2.3) for a given integer a is sa(x).Let m be the order of 2 modulo N.Then there exists a primitive Nth root of unity α over the splitting field GF(2m) of xN?1.Thus the linear complexity of the sequence is given by

    That is to say, the problem of determining the linear complexity of the sequence defined by(2.3)is reduced to that of counting the number of roots in the set{αj: j =0,1,··· ,pq ?1}of the generating polynomial given in (3.2).

    To determine the linear complexity of the sequences defined by (2.3), we need the following lemmas.

    Lemma 2.1(see [23]) Let the symbols be the same as before.Then

    (i) if a ∈ Di, then aDj=D(i+j)(mod4), where i,j ∈ {0,1,2,3};

    (ii) for any odd prime p, if t(mod p) ∈where i,j ∈{0,1}.

    Lemma 2.2(see [15]) Let the symbols be the same as before.Then

    Lemma 2.3(see [12]) Let the symbols be the same as before.Then

    Lemma 2.4Let the symbols be the same as before.Then

    Proof(i) If t(mod p) ∈, then by Lemma 2.1 (ii), we havethus

    The assertions in (iii) and (iv) can be similarly proved, so we omit them here.

    Lemma 2.5Let the symbols be the same as before.For t ∈and t(mod q) ∈where i,j ∈ {0,1}.Then t ∈ D0∪ D2if and only if i = j, and t ∈ D1∪ D3if and only if ij.

    ProofLet t ∈ Dkwith k ∈ {0,1,2,3}.Then there exists a uniquely determined integer u0with 0 ≤ u0≤ e?1 such that t ≡ gu0xk(mod pq).Since x ≡ g(mod p)and x ≡ 1(mod q),we have t ≡ gu0+k≡ g(u0+k)(modp?1)(mod p) and t ≡ gu0≡ gu0(modq?1)(mod q).It is easily verified that k is even if and only if u0+k and u0have the same parity, or equivalently, if and only if (u0+k)(mod p ? 1) and u0(mod q ? 1) have the same parity since p ? 1 and q ?1 are both even.Therefore, t(mod p) and t(mod q) are either quadratic residues of both p and q or quadratic nonresidues of both p and q, and the desired result for even k follows immediately from the definition of the classical cyclotomic classes of order 2.The case of odd k can be proved in the similar way.

    Lemma 2.6Let the symbols be the same as before.Then

    ProofFor t ∈ D0∪ D2, it follows from Lemma 2.5 that t(mod p)and t(mod q)or t(mod p)and t(mod q)Then by Lemma 2.4, we always have

    For t ∈ D1∪ D3, it follows from Lemma 2.5 that t(mod p)and t(mod q)or t(mod p)and t(mod q)Then by Lemma 2.4, we always have

    Moreover, by Lemma 2.1 we have tDa= Da+k, tDa+1= Da+k+1for t ∈ Dkwith k ∈{0,1,2,3}, so that

    Thus, when t ∈D0,

    when t ∈D1,

    When t ∈D2, by Lemma 2.2 (iii), we have

    It follows then that

    By the same arguments, for the case t ∈D3, we have

    The proof is completed.

    Lemma 2.7Let the symbols be the same as before.Then

    ProofWhen t ∈ P, for any i ∈ Q1, ti(mod pq)=0, so that

    Then by Lemma 2.3, we get

    When t ∈ Q, for any i ∈ P1, ti(mod pq)=0, it follows that

    Again by Lemma 2.3, we obtain

    Lemma 2.8For any a ∈ {0,1,2,3}, sa(α) ∈ {0,1} if and only if 2 ∈ D0.

    ProofIf 2 ∈ D0, then by Lemma 2.6, sa(α2) = sa(α) for any a ∈ {0,1,2,3}.Since the characteristic of the field GF(2m) is 2, it follows that sa(α2) = [sa(α)]2.Thus we get[sa(α)]2=[sa(α)], and so sa(α)∈ {0,1}.

    To prove the necessity, we suppose, by way of contradiction, that 2D0.

    If 2 ∈ D1,then it follows from Lemma 2.6 that sa(α2)=1+sa+1(α).On the other hand,since sa(α) ∈ {0,1}, sa(α) = [sa(α)]2= sa(α2).Thus sa(α) = 1+sa+1(α), which implies sa+1(α) ∈ {0,1}.By the same argument, sa+1(α) = [sa+1(α)]2= sa+1(α2) = 1+sa+2(α),and so sa(α)=sa+2(α).But from (3.2) and Lemma 2.2 (iii), it follows that

    and so we arrive at a contradiction.

    If 2 ∈ D2, then by Lemma 2.6, sa(α) = [sa(α)]2= sa(α2) = 1+sa(α), an obvious contradiction.

    Similarly, if 2 ∈ D3, then sa(α) = [sa(α)]2= sa(α2) = sa+1(α) and sa+1(α) =[sa+1(α)]2=sa+1(α2)=sa+2(α). It follows that sa(α)=sa+2(α), a contradiction.

    Lemma 2.9(see [15]) Let the symbols be the same as before.Then

    Lemma 2.10(see [24]) 2 ∈if and only if p ≡ ±1(mod 8).

    Now the results on the linear complexity of the sequences defined by (2.3) are summarized in the following three theorems.

    Theorem 2.11Let p ≡ 1(mod 8) and q ≡ ?3(mod 8). Then

    ProofBy eq.(3.3),it suffices to count the number of roots in{αj: j =0,1,··· ,pq?1}of sa(x).For t ∈R={0}, it is easily verified that

    Since p ≡ 1(mod 8) and q ≡ ?3(mod 8), it follows from Lemma 2.10 that 2andand so 2 ∈ D1∪ D3by Lemma 2.5.Thus sa(αt)0 for any t ∈by Lemma 2.6 and Lemma 2.8.In addition, for any t ∈ P we have sa(αt)0 by Lemma 2.7 and Lemma 2.9 (i), but for any t ∈ Q we haveby Lemma 2.7 and Lemma 2.9(ii).We now distinguish the cases t ∈ Q0and t ∈ Q1.It is obviouswhen t ∈ Q0andwhen t ∈ Q1.Since

    it follows that sa(αt) = 0 either for all t ∈ Q0or for all t ∈ Q1.In conclusion, the size of the setthen by (3.3) we get that

    Theorem 2.12Let p ≡ ?3(mod 8) and q ≡ 1(mod 8).Then

    ProofWhen p ≡ ?3(mod 8) and q ≡ 1(mod 8), we have 2 ∈ D1∪ D3by Lemma 2.5,and hence sa(αt)0 for any t ∈by Lemma 2.6 and Lemma 2.8.By the same arguments as in Theorem 2.11, sa(αt)0 for any t ∈ Q and sa(αt) = 0 for half of t ∈ P.Therefore,by (3.3) we have

    Theorem 2.13Let p ≡ ?3(mod 8) and q ≡ ?3(mod 8).Then

    ProofSince p ≡ ?3(mod 8) and q ≡ ?3(mod 8), it follows from Lemmas 2.7 and 2.9 that sa(αt)0 for any t ∈ P and t ∈ Q.

    If 2 ∈D0, then sa(αt)=0 for half of t ∈by Lemma 2.6.If 2D0, then sa(αt)0 for any t ∈by Lemma 2.6.So the desired result follows immediately from (3.3).

    4 Conclusion

    In this paper,new class of almost balanced binary sequences of period pq is constructed via Whiteman’s generalized cyclotomy of order 4 and classic cyclotomy of order 2.The linear complexity of these sequences is determined.The results show that the proposed sequences have large linear complexity.In addition, since the parameter a in the characteristic set could be any integers in the range of 0 to 3, our construction can generate a number of binary sequences with large linear complexity.

    亚洲一区高清亚洲精品| 51午夜福利影视在线观看| 欧美+亚洲+日韩+国产| 国产熟女xx| 国产精品久久电影中文字幕| 大陆偷拍与自拍| 国产不卡一卡二| 成人特级黄色片久久久久久久| 欧美国产日韩亚洲一区| av超薄肉色丝袜交足视频| 国产在线观看jvid| 午夜福利影视在线免费观看| 国产区一区二久久| 夜夜爽天天搞| 国产成人精品久久二区二区91| 国产精品九九99| 免费少妇av软件| 亚洲一区二区三区不卡视频| 91麻豆av在线| 久久人妻福利社区极品人妻图片| 欧美一区二区精品小视频在线| 亚洲午夜理论影院| 极品人妻少妇av视频| 女人被躁到高潮嗷嗷叫费观| 一本久久中文字幕| 亚洲第一青青草原| 一边摸一边抽搐一进一出视频| 国产精品亚洲av一区麻豆| 亚洲激情在线av| 亚洲欧美日韩另类电影网站| 久久久久久久久中文| 午夜福利成人在线免费观看| 久久香蕉激情| 国产一区二区三区综合在线观看| 不卡一级毛片| 中文字幕av电影在线播放| 大香蕉久久成人网| 男女午夜视频在线观看| 脱女人内裤的视频| 亚洲色图 男人天堂 中文字幕| 18禁美女被吸乳视频| 国产精品久久久av美女十八| 一边摸一边抽搐一进一出视频| www国产在线视频色| 久久久久久久久久久久大奶| 国产亚洲精品第一综合不卡| 9色porny在线观看| 欧美人与性动交α欧美精品济南到| 国产av精品麻豆| 十八禁网站免费在线| 波多野结衣高清无吗| 国产在线精品亚洲第一网站| 午夜精品在线福利| 日本精品一区二区三区蜜桃| 少妇粗大呻吟视频| 精品久久久久久久久久免费视频| 午夜老司机福利片| 一级,二级,三级黄色视频| 久久人妻福利社区极品人妻图片| 天天添夜夜摸| 国产精品综合久久久久久久免费 | 午夜福利视频1000在线观看 | 欧美色欧美亚洲另类二区 | 一本综合久久免费| 成人欧美大片| 美女 人体艺术 gogo| 国产一区二区在线av高清观看| 午夜福利高清视频| 亚洲最大成人中文| 国产精品永久免费网站| 免费搜索国产男女视频| 亚洲视频免费观看视频| 麻豆久久精品国产亚洲av| 中文字幕精品免费在线观看视频| 亚洲国产欧美网| 欧美一级毛片孕妇| 制服丝袜大香蕉在线| 亚洲国产精品sss在线观看| 亚洲五月色婷婷综合| 国产精品一区二区免费欧美| 老鸭窝网址在线观看| 久久狼人影院| 亚洲精品国产区一区二| 国语自产精品视频在线第100页| 亚洲专区字幕在线| 日本在线视频免费播放| 午夜精品在线福利| 日日干狠狠操夜夜爽| 天堂动漫精品| 成人三级黄色视频| 嫩草影视91久久| 少妇粗大呻吟视频| 又紧又爽又黄一区二区| 精品久久久久久久人妻蜜臀av | 伦理电影免费视频| 亚洲免费av在线视频| 精品无人区乱码1区二区| 男女下面插进去视频免费观看| 19禁男女啪啪无遮挡网站| 午夜免费成人在线视频| 日本黄色视频三级网站网址| 亚洲一区二区三区不卡视频| 午夜成年电影在线免费观看| 欧美日韩一级在线毛片| 亚洲精华国产精华精| 99国产精品一区二区蜜桃av| 亚洲精品中文字幕一二三四区| 国产高清视频在线播放一区| 精品久久久精品久久久| 午夜久久久在线观看| 午夜福利在线观看吧| 国产一区二区三区在线臀色熟女| avwww免费| 自线自在国产av| 亚洲av成人一区二区三| 欧美另类亚洲清纯唯美| 无人区码免费观看不卡| 亚洲人成电影免费在线| 18禁黄网站禁片午夜丰满| 青草久久国产| 黑丝袜美女国产一区| 亚洲国产精品sss在线观看| 久久婷婷成人综合色麻豆| 一本综合久久免费| 成人18禁在线播放| tocl精华| 麻豆av在线久日| 国产精品 国内视频| 丝袜人妻中文字幕| 十八禁人妻一区二区| 久久久久久国产a免费观看| 国产精品久久久久久亚洲av鲁大| 中文亚洲av片在线观看爽| 久久 成人 亚洲| 欧洲精品卡2卡3卡4卡5卡区| 中文字幕人妻熟女乱码| 国产精品久久久久久人妻精品电影| 黄色视频,在线免费观看| 精品国产乱码久久久久久男人| 亚洲无线在线观看| 久久亚洲精品不卡| 免费一级毛片在线播放高清视频 | 久久国产亚洲av麻豆专区| 日本三级黄在线观看| 日韩一卡2卡3卡4卡2021年| 青草久久国产| a级毛片在线看网站| 国产一区二区激情短视频| 国产三级黄色录像| 黑丝袜美女国产一区| cao死你这个sao货| 欧美在线一区亚洲| 男女之事视频高清在线观看| 午夜免费观看网址| 午夜福利欧美成人| 国产亚洲精品第一综合不卡| 亚洲 欧美 日韩 在线 免费| 精品福利观看| 欧美乱码精品一区二区三区| 久久影院123| 亚洲第一欧美日韩一区二区三区| 久久草成人影院| 欧美成人免费av一区二区三区| 这个男人来自地球电影免费观看| 极品教师在线免费播放| 国产精品一区二区三区四区久久 | 欧美中文日本在线观看视频| tocl精华| 如日韩欧美国产精品一区二区三区| 免费看十八禁软件| 久久久久久久精品吃奶| 最近最新免费中文字幕在线| av超薄肉色丝袜交足视频| 久久久国产精品麻豆| 亚洲,欧美精品.| 黄色女人牲交| 美女大奶头视频| 亚洲欧美日韩无卡精品| 人人妻,人人澡人人爽秒播| 亚洲精品中文字幕在线视频| 好男人电影高清在线观看| 日韩 欧美 亚洲 中文字幕| 婷婷精品国产亚洲av在线| 亚洲国产精品999在线| 国产av一区二区精品久久| 国产成人系列免费观看| 男女午夜视频在线观看| 免费少妇av软件| 日韩欧美一区二区三区在线观看| 国产三级在线视频| 美女午夜性视频免费| 女人高潮潮喷娇喘18禁视频| 国产亚洲精品第一综合不卡| 午夜精品国产一区二区电影| 亚洲自偷自拍图片 自拍| 国产精品亚洲美女久久久| 国产精品亚洲美女久久久| 欧美激情久久久久久爽电影 | 88av欧美| 亚洲狠狠婷婷综合久久图片| 露出奶头的视频| 国产私拍福利视频在线观看| 美女高潮喷水抽搐中文字幕| 日韩欧美一区二区三区在线观看| 免费av毛片视频| 国产av在哪里看| 亚洲精品一区av在线观看| 亚洲成人免费电影在线观看| 亚洲人成网站在线播放欧美日韩| 国产精品亚洲美女久久久| 免费无遮挡裸体视频| av天堂中文字幕网| 成年版毛片免费区| 亚洲欧美日韩东京热| 日本熟妇午夜| 国产乱人伦免费视频| 成年版毛片免费区| 国产白丝娇喘喷水9色精品| 亚洲专区国产一区二区| 全区人妻精品视频| 午夜福利高清视频| 草草在线视频免费看| 色综合站精品国产| 观看美女的网站| 欧美激情在线99| 欧美日韩乱码在线| 亚洲黑人精品在线| 欧美黑人巨大hd| 99久久精品国产国产毛片| 99在线视频只有这里精品首页| 免费搜索国产男女视频| 国内精品宾馆在线| 韩国av在线不卡| 亚洲avbb在线观看| 国产亚洲精品综合一区在线观看| 亚洲色图av天堂| 网址你懂的国产日韩在线| 亚洲成人免费电影在线观看| 在线a可以看的网站| 国产熟女欧美一区二区| 欧美日韩综合久久久久久 | 欧美日韩综合久久久久久 | 国产一区二区在线观看日韩| 在线免费观看的www视频| 国内毛片毛片毛片毛片毛片| 亚洲四区av| 在线看三级毛片| 国产精品久久久久久久久免| 免费看av在线观看网站| 国内久久婷婷六月综合欲色啪| 亚洲男人的天堂狠狠| 久久久久久久久久久丰满 | 亚洲在线自拍视频| av在线老鸭窝| 国产精品不卡视频一区二区| 在线观看66精品国产| 久久精品人妻少妇| 亚洲自拍偷在线| 色吧在线观看| 国产黄a三级三级三级人| 欧美成人性av电影在线观看| 色精品久久人妻99蜜桃| 春色校园在线视频观看| 男插女下体视频免费在线播放| 少妇人妻精品综合一区二区 | 久久久精品大字幕| 欧美激情久久久久久爽电影| 国产亚洲精品久久久久久毛片| 欧美区成人在线视频| av在线蜜桃| 无遮挡黄片免费观看| 久久精品久久久久久噜噜老黄 | 变态另类成人亚洲欧美熟女| 一进一出抽搐gif免费好疼| 国产主播在线观看一区二区| 国产精品女同一区二区软件 | 色综合色国产| 国产三级在线视频| 热99在线观看视频| 色综合站精品国产| 天天躁日日操中文字幕| 亚洲精品影视一区二区三区av| 国产淫片久久久久久久久| 婷婷丁香在线五月| 国产伦精品一区二区三区四那| 亚洲av五月六月丁香网| 欧美精品啪啪一区二区三区| 免费观看在线日韩| 欧美bdsm另类| 嫩草影院精品99| 亚洲精品影视一区二区三区av| 99热这里只有是精品在线观看| 日本三级黄在线观看| 国产精品野战在线观看| 又黄又爽又免费观看的视频| 国产午夜福利久久久久久| 午夜影院日韩av| 日本精品一区二区三区蜜桃| 99九九线精品视频在线观看视频| 黄色视频,在线免费观看| 亚洲精品久久国产高清桃花| 成年女人毛片免费观看观看9| 精品久久久久久久人妻蜜臀av| 永久网站在线| 午夜福利欧美成人| 国产亚洲91精品色在线| 天美传媒精品一区二区| 亚洲五月天丁香| 午夜激情欧美在线| 久久久久久久久久久丰满 | 99久久精品一区二区三区| 成人国产综合亚洲| 欧美日韩精品成人综合77777| 久久精品综合一区二区三区| 精品一区二区三区视频在线| 日韩欧美国产在线观看| 日日摸夜夜添夜夜添av毛片 | 亚洲18禁久久av| 偷拍熟女少妇极品色| 亚洲成人久久爱视频| av黄色大香蕉| 国产精品亚洲美女久久久| 一级黄色大片毛片| 亚洲美女黄片视频| 91久久精品国产一区二区三区| 亚洲av免费高清在线观看| 亚洲人成网站高清观看| 不卡一级毛片| 欧美又色又爽又黄视频| 久久中文看片网| 欧美日韩乱码在线| 真人一进一出gif抽搐免费| 久久草成人影院| 欧美最黄视频在线播放免费| 看免费成人av毛片| 动漫黄色视频在线观看| 一级a爱片免费观看的视频| 18禁在线播放成人免费| 熟女人妻精品中文字幕| 欧美最黄视频在线播放免费| 婷婷丁香在线五月| 一进一出抽搐动态| 久久久久精品国产欧美久久久| 日韩大尺度精品在线看网址| 亚洲经典国产精华液单| 亚洲 国产 在线| 国产蜜桃级精品一区二区三区| 久久人人爽人人爽人人片va| 久久久久久久精品吃奶| aaaaa片日本免费| 91狼人影院| 亚洲精品成人久久久久久| 亚洲av第一区精品v没综合| 久久精品国产99精品国产亚洲性色| 亚洲在线观看片| 亚洲国产精品合色在线| 免费看a级黄色片| 国产亚洲91精品色在线| www.www免费av| 极品教师在线视频| 久久久久免费精品人妻一区二区| 在线a可以看的网站| 亚洲乱码一区二区免费版| 99在线人妻在线中文字幕| 免费观看人在逋| 美女 人体艺术 gogo| 亚洲成av人片在线播放无| 亚洲精品一区av在线观看| 五月玫瑰六月丁香| 在线观看午夜福利视频| 欧美国产日韩亚洲一区| 色5月婷婷丁香| 日韩精品青青久久久久久| 99热只有精品国产| 亚洲国产精品成人综合色| 国产单亲对白刺激| 国产成人一区二区在线| 亚洲av中文av极速乱 | 女的被弄到高潮叫床怎么办 | 舔av片在线| aaaaa片日本免费| 亚洲中文日韩欧美视频| 国产爱豆传媒在线观看| 十八禁网站免费在线| 国产精品女同一区二区软件 | 欧美绝顶高潮抽搐喷水| 成人国产一区最新在线观看| 国产精品av视频在线免费观看| 欧美一区二区国产精品久久精品| 春色校园在线视频观看| 久久久精品大字幕| av天堂在线播放| 69人妻影院| av黄色大香蕉| 久久香蕉精品热| 国产精品一区二区三区四区久久| 国产精品美女特级片免费视频播放器| 国产探花在线观看一区二区| 国内少妇人妻偷人精品xxx网站| 欧美日韩综合久久久久久 | 久久精品国产自在天天线| 狂野欧美激情性xxxx在线观看| av女优亚洲男人天堂| 淫妇啪啪啪对白视频| 一区二区三区高清视频在线| 亚洲自偷自拍三级| 午夜福利在线观看吧| 亚洲avbb在线观看| 久久久久久久久中文| 在线观看66精品国产| 亚洲一级一片aⅴ在线观看| 九九热线精品视视频播放| bbb黄色大片| 国产伦在线观看视频一区| 在线观看一区二区三区| 成年女人永久免费观看视频| 好男人在线观看高清免费视频| 中文字幕人妻熟人妻熟丝袜美| 国产乱人伦免费视频| 91麻豆精品激情在线观看国产| 欧美成人a在线观看| 精品人妻一区二区三区麻豆 | 色播亚洲综合网| 最近最新中文字幕大全电影3| 亚洲 国产 在线| 91久久精品国产一区二区成人| 亚洲第一电影网av| 久久久久久九九精品二区国产| 99热只有精品国产| 男人和女人高潮做爰伦理| 亚洲三级黄色毛片| 一区二区三区高清视频在线| 国产精品爽爽va在线观看网站| 性欧美人与动物交配| 不卡视频在线观看欧美| 国产不卡一卡二| 美女xxoo啪啪120秒动态图| 久久久国产成人精品二区| 国内精品一区二区在线观看| 国产精品国产三级国产av玫瑰| 久久99热6这里只有精品| 三级男女做爰猛烈吃奶摸视频| 国产黄a三级三级三级人| 国产精品伦人一区二区| 久久久久久久久久成人| 亚洲自拍偷在线| 欧美zozozo另类| 亚洲精品乱码久久久v下载方式| 国产白丝娇喘喷水9色精品| 久久婷婷人人爽人人干人人爱| 在线观看午夜福利视频| 成人美女网站在线观看视频| 精品一区二区三区视频在线观看免费| 人人妻人人澡欧美一区二区| 国产精品98久久久久久宅男小说| 99久久精品热视频| 非洲黑人性xxxx精品又粗又长| 搡老熟女国产l中国老女人| 国产高清视频在线观看网站| 桃色一区二区三区在线观看| 国产精品1区2区在线观看.| 国产一区二区亚洲精品在线观看| 欧美日韩亚洲国产一区二区在线观看| 日本-黄色视频高清免费观看| 成人特级av手机在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产高清在线一区二区三| 国产精品日韩av在线免费观看| 成熟少妇高潮喷水视频| 中文亚洲av片在线观看爽| 少妇的逼好多水| 免费看av在线观看网站| 日本-黄色视频高清免费观看| 露出奶头的视频| av在线老鸭窝| 无遮挡黄片免费观看| 日韩av在线大香蕉| 亚洲av中文字字幕乱码综合| 婷婷六月久久综合丁香| 国产中年淑女户外野战色| 夜夜看夜夜爽夜夜摸| 欧美成人性av电影在线观看| 精品久久久噜噜| 大型黄色视频在线免费观看| 搡老妇女老女人老熟妇| 老女人水多毛片| 久久人人精品亚洲av| 美女cb高潮喷水在线观看| 少妇的逼水好多| 亚洲美女视频黄频| 中文字幕精品亚洲无线码一区| 亚洲va日本ⅴa欧美va伊人久久| 草草在线视频免费看| 99热6这里只有精品| 久久热精品热| 高清毛片免费观看视频网站| 伦精品一区二区三区| 深夜精品福利| 亚洲国产精品久久男人天堂| 日本五十路高清| 国产精华一区二区三区| 日本熟妇午夜| 噜噜噜噜噜久久久久久91| 99久久精品一区二区三区| 哪里可以看免费的av片| 国产高清三级在线| 亚洲av.av天堂| 性欧美人与动物交配| 亚洲成人久久性| 欧美黑人巨大hd| 国产伦在线观看视频一区| 亚州av有码| 亚洲avbb在线观看| av天堂在线播放| 午夜精品在线福利| 黄色一级大片看看| 国内毛片毛片毛片毛片毛片| 午夜精品一区二区三区免费看| 国产伦精品一区二区三区视频9| 国产v大片淫在线免费观看| 久久久午夜欧美精品| 日本欧美国产在线视频| 成人国产综合亚洲| 极品教师在线免费播放| 日韩一区二区视频免费看| 99久久中文字幕三级久久日本| 亚洲精品456在线播放app | 在线观看一区二区三区| 免费人成视频x8x8入口观看| 黄色欧美视频在线观看| 日日啪夜夜撸| 少妇裸体淫交视频免费看高清| 日韩大尺度精品在线看网址| 男女下面进入的视频免费午夜| 国产人妻一区二区三区在| 国产乱人伦免费视频| 天美传媒精品一区二区| 国产精品人妻久久久久久| 波多野结衣高清作品| 日本三级黄在线观看| 国产不卡一卡二| 18禁黄网站禁片午夜丰满| 亚洲一区二区三区色噜噜| 亚洲精品久久国产高清桃花| 成人国产综合亚洲| 日本爱情动作片www.在线观看 | 国产视频内射| 999久久久精品免费观看国产| 女人十人毛片免费观看3o分钟| 天堂网av新在线| 国产精品久久久久久精品电影| 国产亚洲欧美98| 久久久久久九九精品二区国产| 嫁个100分男人电影在线观看| 国产精品99久久久久久久久| 欧美一区二区国产精品久久精品| 亚洲av成人精品一区久久| 午夜a级毛片| 国产单亲对白刺激| 无遮挡黄片免费观看| 国产成人av教育| 日韩人妻高清精品专区| 简卡轻食公司| 国产高潮美女av| 国产精华一区二区三区| 一级黄色大片毛片| 日韩av在线大香蕉| 亚洲国产日韩欧美精品在线观看| 99在线人妻在线中文字幕| 真实男女啪啪啪动态图| 久久99热这里只有精品18| 亚洲av电影不卡..在线观看| 村上凉子中文字幕在线| 好男人在线观看高清免费视频| 欧美日韩综合久久久久久 | 最近中文字幕高清免费大全6 | 日本黄大片高清| 久久国内精品自在自线图片| 亚洲成人免费电影在线观看| 中国美女看黄片| 小说图片视频综合网站| 欧美xxxx黑人xx丫x性爽| 在线a可以看的网站| 欧美成人a在线观看| 欧美激情久久久久久爽电影| 18禁在线播放成人免费| av在线亚洲专区| 国产精品爽爽va在线观看网站| 99久久精品一区二区三区| 国产男人的电影天堂91| 亚洲在线观看片| 色综合亚洲欧美另类图片| 国产精品久久电影中文字幕| 亚洲精品成人久久久久久| 国产精品久久久久久久久免| 欧美日本亚洲视频在线播放| 国产成人av教育| 日日夜夜操网爽| АⅤ资源中文在线天堂| 亚洲三级黄色毛片| 国产欧美日韩精品亚洲av| 国产精品不卡视频一区二区| 欧美日韩乱码在线| 看免费成人av毛片| 亚洲黑人精品在线| 国产精品98久久久久久宅男小说| 毛片一级片免费看久久久久 | 国产午夜福利久久久久久| 午夜免费激情av| 亚洲电影在线观看av| 99riav亚洲国产免费| 国产精品亚洲一级av第二区| 中国美女看黄片| 国产老妇女一区| a在线观看视频网站|