• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    抗菌醫(yī)藥左氧氟沙星在有機(jī)電致發(fā)光二極管中的應(yīng)用

    2015-12-29 11:18:54苗艷勤高志翔武鈺鈴杜曉剛李源浩劉慧慧賈虎生劉旭光
    物理化學(xué)學(xué)報(bào) 2015年3期
    關(guān)鍵詞:電致發(fā)光山西大同載流子

    苗艷勤 高志翔 武鈺鈴 杜曉剛 李源浩劉慧慧 賈虎生 王 華,* 劉旭光

    (1太原理工大學(xué)新材料界面科學(xué)與工程教育部重點(diǎn)實(shí)驗(yàn)室,太原030024;2山西大同大學(xué)物理與電子科學(xué)學(xué)院,山西大同037009;3太原理工大學(xué)新材料工程技術(shù)研究中心,太原030024;4太原理工大學(xué)材料科學(xué)與工程學(xué)院,太原030024;5太原理工大學(xué)化學(xué)化工學(xué)院,太原030024)

    抗菌醫(yī)藥左氧氟沙星在有機(jī)電致發(fā)光二極管中的應(yīng)用

    苗艷勤1,3高志翔2武鈺鈴1,3杜曉剛1,3李源浩1,3劉慧慧1,3賈虎生1,4,*王 華1,3,*劉旭光5

    (1太原理工大學(xué)新材料界面科學(xué)與工程教育部重點(diǎn)實(shí)驗(yàn)室,太原030024;2山西大同大學(xué)物理與電子科學(xué)學(xué)院,山西大同037009;3太原理工大學(xué)新材料工程技術(shù)研究中心,太原030024;4太原理工大學(xué)材料科學(xué)與工程學(xué)院,太原030024;5太原理工大學(xué)化學(xué)化工學(xué)院,太原030024)

    左氧氟沙星(LOFX)是一種知名的抗菌藥物,它的價(jià)格非常便宜,且有成熟的合成和純化技術(shù).本文中首次將LOFX作為一種藍(lán)光發(fā)光材料和電子傳輸材料應(yīng)用于有機(jī)電致發(fā)光器件(OLED)中.通過熱重分析、UVVis吸收光譜、發(fā)射光譜以及循環(huán)伏安曲線詳細(xì)地表征了LOFX的熱學(xué)及光物理特性.LOFX有高的分解溫度,為327°C;HOMO、LUMO能級分別為-6.2和-3.2 eV,光學(xué)帶隙為3.0 eV.以LOFX作為客體材料,摻雜在主體材料4,4'-二(9-咔唑)聯(lián)苯(CBP)中制備了藍(lán)光OLED,該器件的電致發(fā)光(EL)發(fā)射峰位于452 nm,最大亮度為2315 cd·m-2.進(jìn)一步,選擇8-羥基喹啉鋁(Alq3)作為參考材料,分別以LOFX和Alq3作為電子傳輸材料制備了結(jié)構(gòu)相同的單載流子器件和綠色磷光OLED.在相同的電壓下,以LOFX作為電子傳輸材料的單載流子器件的電流密度比以Alq3作為電子傳輸材料的單載流子器件更高.同時(shí),以LOFX作為電子傳輸材料的綠色磷光OLED獲得更高的器件效率.從這些EL性能可以看出,LOFX同時(shí)也是一很好的電子傳輸材料.

    有機(jī)電致發(fā)光器件;左氧氟沙星;藍(lán)光發(fā)光材料;電子傳輸材料;電致發(fā)光光譜;電致發(fā)光性能

    1 Introduction

    Organic light-emitting diodes(OLEDs)have attracted attention because of applications to full-color flat-panel displays,lighting, and sensor.1-7The fabrication cost is one of the important factors for the mass-production OLED companies.Organic materials, which are less-expensive and established in the synthesis and purification technologies,are preferable for the mass production of OLED devices.In our research to find such a material,beyond the field of chemical compounds for conventional light emitting semiconductors,we have extended our attention to a field of medicament and noticed a blue fluorescence emitting antimicrobial medicament,levofloxacin.

    Levofloxacin C18H20FN3O4((S)-9-fluoro-2,3-dihydro-3-methyl-10-(4-methylpiperazin-1-yl)-oxo-7H-pyrido[1,2,3-de]-1,4-benzoxazine-6-carboxylic acid,called LOFX hereafter)is an oral broad spectrum antibiotic of the fluoroquinolone drug,which is widely used in the treatment of certain bacterial infections including pneumonia,urinary tract infections,and abdominal infections.8-12A blue emission has been reported for LOFX.13The molecular structure is shown in Fig.1.

    Fig.1 Molecular structures of materials involved in this paper

    Gunasekaran et al.14have reported that the intense absorption bands from LOFX were observed at 323,281,and 255 nm.The absorption bands which appeared below 323 nm were confirmed from the photoluminescence excitation(PLE)spectra of LOFX in solution,which contain the 330 and 286 nm PLE bands corresponding to the 323 and 281 nm absorption bands,respectively.13Here,the 286 nm band is attributed to π-π*transition,while the 330 nm band to the n-π*transition.14

    Although the infrared vibrational,UV-Vis absorption,photoluminescence(PL),and PLE spectra have been reported for LOFX,13,14the optical properties have not fully established yet.Its application to OLED has never been examined.In the present paper,we report the detailed optical properties of LOFX and the possibility of application to OLED materials.

    Here,we investigate the physical properties(spectroscopic properties,electronic energy levels,and thermal stability)of LOFX,and fabricate three types of OLEDs,which are named as blue-light Device series-B,electron-only Device series-E,and green-light Device series-G,to examine whether LOFX is useful as OLED materials such as blue emitter and electron transporter. Molecular structures of all materials involved in this paper are shown in Fig.1.Schematic device structures and the energy levels of functional materials used in this work are shown in Fig.2.

    2 Experimental details

    LOFX was purchased from J&K Chemical and other materials involved in devices were purchased from Luminescence Technology Corp.The purity of all materials is>98%and directly used without further purification.

    The thermogravimetry analysis(TGA)of LOFX was performed in a NETZSCH STA409CTGAsystem at a ramping rate of 10°C· min-1under an argon flow of 10 mL·min-1from room temperature to 600°C.The differential scanning calorimetry(DSC)of LOFX was performed in a NETZSCH STA409C TGAsystem at a ramping rate of 10°C·min-1under an argon flow rate of 10 mL·min-1from room temperature to 300°C.The UV-Vis absorption spectrum of LOFX aqueous solution(10-5mol·L-1)was recorded by Hitachi U3900 UV-Vis spectrophotometer.The photoluminescence spectrum of LOFX solid powder was measured by Cary Eclipse fluorescence spectrophotometer.The photoluminescence quantum yield(PLQY)of LOFX was measured by a FluoroMax-4 fluorescence spectrophotometer equipped with an integrating sphere. To examine the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO)energies,the cyclic voltammetry(CV)curve was measured with Autolab/PG STAT302 electrochemical workstation in a three-electrode cell containing tetrabutyl perchloric acid amine(TBAP)(0.1 mol·L-1in the mixed solution of acetonitrile and methylene chloride(2:1, molar ratio))as an electrolyte at the scan speed of 50 mV·s-1.A platinum wire,a platinum electrode,and a calomel electrode were used as a working electrode,a counter electrode,and a reference electrode,respectively.

    OLEDs with the emission area of 3 mm×3 mm were fabricated on the pre-patterned indium tin oxide(ITO)glass substrate with sheet resistance of 15 Ω·□-1.ITO substrates were cleaned by ultrasonication in baths of detergent water,deionized water,and acetone for 15 min successively,and then blown dry nitrogen and treated with UV ozone for 8 min,respectively.Then,the substrates were transferred into a vacuum chamber for sequential deposition of all organic functional layers by thermal evaporation below a vacuum of 5×10-4Pa.The deposition rate for organic materials,LiF,and Al were about 0.1,0.01,and 0.6 nm·s-1,respectively.The device performances of OLEDs were characterized by Keithley 2400 source meter combined with Photo Research PR655 spectrometer simultaneously.All measurements were performed at room temperature in ambient atmosphere without device encapsulation.

    Fig.2 Schematic device structures of Device series-B,Device series-E,and Device series-G,and the energy levels of functional materials used in these devices

    3 Results and discussion

    3.1 Physical properties of LOFX

    Fig.3 shows the UV-Vis absorption and PL spectra of LOFX in deionized water.Absorption begins from about 400 nm,giving an absorption band with peak at 302 nm and a sideband at about 330 nm.Much intense band continues from about 230 nm.An intense PL band with peak at 445 nm is observed.Our absorption spectrum of LOFX in solution is consistent with the PLE spectrum of LOFX in aqueous solution by Polishchuk et al.13,although our PL spectrum is shifted from 485.3 nm13to 445 nm.However,our absorption spectrum is not consistent with the absorption spectrum by Gunasekaran et al.14who observed an absorption band at 400 nm.It seems that the 400 nm band is due to an aggregate.

    The thermal stability is an important factor for organic electroluminescent materials.Fig.4(a)shows the TG and differential thermogravimetry(DTG)curves of LOFX,and Fig.4(b)shows the DSC curves of LOFX.In TG curve,a 5%weight loss was observed at 327°C,indicating a high decomposition temperature (Td)and good thermal stability of LOFX.Meanwhile,in DSC curve,LOFX exhibited a high glass transition termperature(Tg) of 161°C.The high Tgand Tdvalues render LOFX an OLED material capable of forming stable amorphous films through vacuum thermal evaporation and upon heating.15

    Fig.3 UV-Vis absorption and PLspectra of LOFX in deionized water solution excited at 360 nm,compared with the electroluminescence(EL)spectrum

    Fig.4 (a)TG and DTG curves of LOFX;(b)DSC curve of LOFX

    Fig.5 shows the CV curve of LOFX.From the CV curve,two oxidation peaks at about 1.0 and 1.5 V can be observed.The oxidation peaks at about 1.0 V and the onset oxidation potential at about 0.8 V should be ascribed to the oxidation of acetonitrile. And the oxidation peak at about 1.5 V and onset oxidation potential at about 1.4 V should be assigned to the oxidation of LOFX.There is an empirical equation EHOMO=-(Eoxonset+4.8)(eV), where Eoxonsetstands for the onset potential for oxidation,the potential of saturated calomel electrode(SCE)relative to the vacuum level is 4.8 eV.16,17Therefore,the HOMO level is-6.2 eV for LOFX.From the absorption spectrum of LOFX(see Fig.3),the wavelength of absorption edge(λedge)is above 414 nm.The optical gap(Eg)was obtained according to the following equation:Eg= 1240/λedge.18So,the Egof LOFX is 3.0 eV,and ELUMO=Eg+EHOMO, is-3.2 eV.Here,the LUMO level of LOFX is lower than that of Alq3(-3.0 eV)but higher than the work function of Al(-4.1 eV),indicating that LOFX has an electron transport characteristic.

    Fig.5 CV curve of LOFX

    3.2 LOFX as blue-light emitting material in OLED

    From above experimental results,it can be seen that LOFX expresses remarkable blue fluorescence effect,indicates that LOFX has potential application in OLED.Further,we measured the fluorescence quantum yield of LOFX solid powders,pure LOFX film,and CBP doped with 1%LOFX film(in mass fraction).The results indicate that CBP doped with 1%LOFX film shows a high PLQY of 12.53%,is higher than those of LOFX solid powders(5.54%)and pure LOFX film(6.25%).It is expected that LOFX is doped into host material to structure high performance device.For identifying it,a series of blue light OLED(Device series-B)(see Fig.2)are fabricated using LOFX as blue emitter with the device configuration of indium tin oxide (ITO)/NPB(40 nm)/CBP(10 nm)/CBP:wLOFX(30 nm)/Bphen (40 nm)/LiF(1 nm)/Al(200 nm),where the concentrations(in w, mass fraction)of LOFX are changed as 0.5%,0.8%,1.0%,and 2.0%.Here,NPB is N,N′-bis-(naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine,which is used as hole transport layer(HTL); CBP is 4,4'-bis(carbazol-9-yl)biphenyl,which is used as the exciton-block layer;Bphen is 4,7-diphenyl-1,10-phenanthroline, which is used as electron transport layer(ETL).The layer of CBP doped with 1.0%LOFX is a light emitting layer(EML),while LiF and Al are used as electron injection layer(EIL)and cathode, respectively.

    Fig.6(a)shows the luminance-voltage(L-V)curves of Device series-B with different doping concentrations of LOFX in CBP.As doping concentrations increase from 0.5%to 1%,the maximum luminance of Device series-B increases from 1593 cd·m-2at 0.5% to 2315 cd·m-2at 1%.When doping concentration is 2%,the maximum luminance of Device series-B lowers to 736.8 cd·m-2. Lower doping concentrations limit radioactive recombination on dopant sites and induce in inadequate utilization of excited energy origined form CBP.On the contrary,higher doping concentrations result in serious concentration quenching of LOFX.19So,the optimum doping concentration of LOFX in CBP is determined to be 1.0%.The Device series-B(w=1.0%)exhibited a turn-on voltage,defined as the voltage measured at 1 cd·m-2,of around 4.5 V and a maximum luminance of 2315 cd·m-2driven by voltage of 7.5 V.

    Fig.6(b)shows the EL spectra of Device series-B(w=1.0%) driven by various bias voltages,inset is the photograph of Device series-B(w=1.0%)under voltage of 8 V.An EL band with emission peak at 452 nm due to LOFX is observed clearly when driven voltage is above 6 V.The EL band red-shifted by 7 nm from the PL band(Fig.3)observed in solution owing to a solid state effect.20From Fig.6(b),it can be seen that no obvious EL band shift was observed by changing the operating voltage.The Device series-B(w=1.0%)emitted a pure blue light with com-mission international del′eclairage(CIE)1931 coordinates coordinates of(0.17,0.14)at 7-10 V,which is close to the National Television System Committee(NTSC)blue standard.21These EL performances indicate that LOFX as blue emitter is useful for OLEDs.

    Fig.6 (a)Luminance-voltage(L-V)curves of Device series-B with different doping concentrations of LOFX in CBP;(b)EL spectra of Device series-B(w=1.0%)at various voltages with CIE coordinates

    3.3 LOFX as electron transport material in OLED

    Further,we investigate if LOFX is useful as electron transporting material in OLEDs.To check this point,we investigated the current density-voltage characteristic by fabricating an electron-carrier-only OLED(called Device E-2)with structure of ITO/Bphen(30 nm)/LOFX(30 nm)/Bphen(30 nm)/LiF(1 nm)/Al (200 nm)(see Fig.2).We compare its characteristics with another electron-carrier-only OLED(called Device E-1)based on Alq3, which is well-known as good electron transporting material. Device E-1 has the quite similar layer structure as Device E-2,i.e., ITO/Bphen(30 nm)/Alq3(30 nm)/Bphen(30 nm)/LiF(1 nm)/Al (200 nm)(see Fig.2).The current densities of these two devices are plotted against applied voltage in Fig.7.Device E-2 with LOFX has higher current density than Device E-1 withAlq3at the same driving voltage.Device E-2 has much lower turn-on voltage than Device E-1.From these results,LOFX is confirmed its superiority toAlq3in electron-transporting capability.

    Fig.7 Current density-voltage curves of Device E-1 and Device E-2

    To further check the electron-transporting superiority of LOFX to Alq3,we fabricate two green-emitting OLEDs with Ir(ppy)3((fac-tris(2-phenylpyridine)iridium)emitter(Devices G-1 and G-2).Devices G-1 and G-2 have the same structure except ETL layer,i.e.,ITO/NPB(40 nm)/BP:Ir(ppy)3(8%,30 nm)/Bphen(10 nm)/Alq3or LOFX(20 nm)/Bphen(10 nm)/LiF(1 nm)/Al(200 nm)(see Fig.2),respectively,where NPB is used as HTL,CBP: Ir(ppy)3complex)as EML,and Bphen adjacent to LiF as EIL. Fig.8(a,b,c,d)show the luminance-voltage,current densityvoltage,current efficiency-current density,and power efficiencyvoltage characteristics of Device G-1 with Alq3and G-2 with LOFX,respectively.For Devices G-1 and G-2,the turn-on voltages are 3.5 and 4.0 V,the high luminance of 36267 cd·m-2at 7.5 V and 36600 cd·m-2at 8.5 V,the maximum current efficiency of 15 cd·A-1at 47.5 mA·cm-2and 17.7 cd·A-1at 16.7 mA·cm-2,the maximum power efficiency of 8.86 lm·W-1at 4.5 V and 9.96 lm· W-1at 5.5 V,respectively.The current efficiency is higher at low current densities of 8-200 mA·cm-2in Device G-2 than that in Device G-1(Fig.8(a,c)),and the maximum power efficiency is also higher in Device G-2 than that in Device G-1(Fig.8(d)).One of the reasons of higher efficiency of Device G-2 than Device G-1 is higher electron transport of LOFX than Alq3.Another reason is that Device G-2 blocks holes more efficiently thanAlq3because LOFX has lower HOMO level(-6.2 eV)thanAlq3(-5.8 eV).

    Regarding the low operational voltage,Alq3is superior to LOFX.This is understood by higher electron injection barrier(0.2 eV)at LOFX/Bphen interface relative to the barrier(0 eV)atAlq3/ Bphen interface,leading to more difficulty to enter electrons from cathode to EML in Device G-2 than that in Device G-1.

    The maximum current efficiency of Device G-2 with LOFX is superior to Device G-1 withAlq3.However the efficiency of 17.7 cd·A-1is smaller than the conventional efficiencies of OLEDs with phosphorescence Ir(ppy)3.For example,Baldo et al.22obtained 28 cd·A-1using an OLED with EML of CBP doped with 6%Ir(ppy)3.

    To find this reason,we examine the EL spectra of Device G-2 carefully by semi-log plotting.As seen in Fig.9,a small EL band appears at about 445 nm besides the 510 nm EL band due to Ir(ppy)3.We compare the PL spectrum of NPB neat film with the EL spectra(Fig.9).NPB gives PL band with peak at about 445 nm,which coincides with the weak band.Therefore the 445 nm EL band is attributable to NPB.This indicates that electrons fromcathode are leaked to the NPB layer.This leakage is understood from the energy level diagram of Device G-2 which shows that the energy gap(0.2 eV)of LUMO energy between CBP of EML and NPB of HTL is small(Fig.2).

    Device G-2 is more enhanced the roll-off effect than Device G-1.This is understood as follows.Better electron transportation leads to higher triplet-triplet annihilation and roll-off.23-25It is suggested that the electron injection to EML is better to LOFX layer than to Alq3layer because of better electron transportation in LOFX layer than in Alq3layer as mentioned above.This leads to higher electron accumulation in EML with phosphorescent Ir(ppy)3emitter of Device G-2 at high current densities than in EML of Device G-1,resulting in stronger roll-off for Device G-2 than for Device G-1.In this way,the superior of LOFX electron transportation toAlq3is confirmed from the roll-off.

    Fig.8 (a)Current density-voltage curves,(b)luminance-voltage characteristic,(c)current efficiency-current density curves,and (d)power efficiency-voltage curves of Devices G-1 and G-2

    Fig.9 Semi-log plotted ELspectra of Device G-2 at various voltages,compared with the PLspectrum of NPB neat film excited at 350 nm

    4 Conclusions

    To investigate whether LOFX,well-known as an antimicrobial medicament,is useful as OLED materials such as blue emitter and electron transporter,we have studied the spectroscopic properties, electronic energy levels,thermal stability,electroluminescence, and OLED characteristics.LOFX shows a blue PL band at 446 nm,HOMO and LUMO energies of-6.2 and-3.2 eV,respectively,and high molecule decomposition temperature(Td)at 327°C. The blue OLED with LOFX emitter shows a pure blue emission with a peak at 452 nm and a maximum luminance of 2315 cd·m-2. Further,LOFX is found to be higher in electron-transporting ability thanAlq3,which was obtained using the electron-transportonly device.In the case that LOFX is used as ETL in green emitting OLED with Ir(ppy)3,the maximum current density of 17.7 cd·A-1and the maximum power efficiency of 9.96 lm·W-1are obtained,which are higher than 15.0 cd·A-1and 8.86 lm·W-1in the OLED with ETL of Alq3.The current efficiency is lower than the conventional efficiency of OLEDs with Ir(ppy)3.This is attributed to leakage of electrons from EMLto HTLof NPB in the present OLED device.From the EL performances,it is suggested that LOFX can act as a desired bifunctional material:not only a pure blue emitter,but also a excellent electron transport material in OLED devices,which is useful for OLEDs.

    References

    (1)Kido,J.;Kimura,M.;Nagai,K.Science1995,267,1332.doi: 10.1126/science.267.5202.1332

    (2)D′Andrade,B.W.;Forrest,S.R.Adv.Mater.2004,16,1585.

    (3)Yu,S.J.;Suo,F.;Li,W.Z.;Lin,H.;Li,L.;Jiang,Y.D.Acta Phys.-Chim.Sin.2007,23,1821.[于勝軍,鎖 釩,黎威志,林 慧,李 璐,蔣亞東.物理化學(xué)學(xué)報(bào),2007,23,1821.] doi:10.3866/PKU.WHXB20071132

    (4)Shinar,J.;Shinar,R.J.Phys.D:Appl.Phys.2008,41,133001/ 1.doi:10.1088/0022-3727/41/13/133001

    (5)Reineke,S.;Lindner,F.;Schwartz,G.;Seidler,N.;Walzer,K.; Lüssem,B.;Leo,K.Nature2009,459,234.doi:10.1038/ nature08003

    (6)Xiao,L.X.;Hu,S.Y.;Kong,S.;Chen,Z.J.;Qu,B.;Gong,Q. H.Acta Phys.-Chim.Sin.2011,27,977.[肖立新,胡雙元,孔 勝,陳志堅(jiān),曲 波,龔旗煌.物理化學(xué)學(xué)報(bào),2011,27, 977.]doi:10.3866/PKU.WHXB20110325

    (7)Chang,Y.L.;Song,Y.;Wang,Z.B.;Helander,M.G.;Qiu,J.; Chai,L.;Liu,Z.W.;Scholes,G.D.;Lu,Z.H.Adv.Funct. Mater.2013,23,705.doi:10.1002/adfm.v23.6

    (8)Nelson,J.M.;Chiller,T.M.;Powers,J.H.;Angulo,F.J.Clin. Infect.Dis.2007,44,977.doi:10.1086/512369

    (9)Mandell,L.A.;Wunderink,R.G.;Anzueto,A.Clin.Infect.Dis.2007,44,S27.

    (10)Solomkin,J.S.;Mazuski,J.E.;Bradley,J.S.Clin.Infect.Dis.2010,50,133.doi:10.1086/648977

    (11)Chien,S.C.;Wong,F.A.;Fowler,C.L.;Callery-D′Amico,S. V.;Williams,R.R.;Nayak,R.;Chow,A.T.Antimicrob.Agents Chemother.1998,42,4885.

    (12)Zhang,J.L.;Yang,X.Z.;Han,Y.;Li,W.;Wang,J.K.Fluid Phase Equilib.2012,335,1.doi:10.1016/j.fluid.2012.05.027

    (13)Polishchuk,A.V.;Karaseva,E.T.;proskurina,N.A.;Karasev, V.E.High Energy Chem.2008,42,459.doi:10.1134/ S0018143908060076

    (14)Gunasekaran,S.;Rajalakshmi,K.;Kumaresan,S.Spectroc. Acta Pt.A-Molec.Biomolec.Spectr.2013,112,351. doi:10.1016/j.saa.2013.04.074

    (15)Lin,M.S.;Chi,L.C.;Chang,H.W.;Huang,Y.H.;Tien,K.C.; Chen,C.C.;Chang,C.H.;Wu,C.C.;Chaskar,A.;Chou,S.H.; Ting,H.C.;Wong,K.T.;Liu,Y.H.;Chi,Y.J.Chem.Mater.2012,22,870.doi:10.1039/c1jm13323c

    (16)Pomrnerehne,J.;Vestweber,H.;Gun,W.;Muhrt,R.F.;Basler, H.;Porsch,M.;Daub,J.Adv.Mater.1995,7,551.

    (17)Zhuang,J.Y.;Su,W.M.;Li,W.F.;Zhou,Y.Y.;Shen,Q.;Zhou, M.Org.Electron.2012,13,2210.doi:10.1016/j. orgel.2012.06.025

    (18)Bredas,J.L.;Silbey,R.;Boudreaux,D.S.;Chance,R.R.J.Am. Chem.Soc.1983,105,6555.doi:10.1021/ja00360a004

    (19)Lüssem,B.;Riede,M.;Leo,K.Phys.Status Solidi A2013,210, 9.doi:10.1002/pssa.v210.1

    (20)Bulovic,V.;Deshpande,R.;Thompson,M.E.;Forrest,S.R. Chem.Phys.Lett.1999,308,317.doi:10.1016/S0009-2614(99) 00580-1

    (21)Kang,G.W.;Ahn,Y.J.;Lim,J.T.;Lee,C.H.Synth.Met.2003,137,987.

    (22)Baldo,M.;Lamansky,S.;Burrows,P.E.;Thompson,M.E.; Forrest,S.R.Appl.Phys.Lett.1999,75,4.doi:10.1063/ 1.124258

    (23)Baldo,M.A.;Adachi,C.;Forrest,S.R.Phys.Rev.B2000,62, 10967.doi:10.1103/PhysRevB.62.10967

    (24)Ern,V.;Merrifield,R.E.Phys.Rev.Lett.1968,21,609.doi: 10.1103/PhysRevLett.21.609

    (25)Kondakova,M.E.;Deaton,J.C.;Pawlik,T.D.;Giesen,D.J.; Kondakov,D.Y.;Young,R.H.;Royster,T.L.;Comfort,D.L.; Shore,J.D.J.Appl.Phys.2010,107,014515/1.doi:10.1063/ 1.3275053

    Antimicrobial Drug Levofloxacin Applied to an Organic Light-Emitting Diode

    MIAO Yan-Qin1,3GAO Zhi-Xiang2WU Yu-Ling1,3DU Xiao-Gang1,3LI Yuan-Hao1,3LIU Hui-Hui1,3JIAHu-Sheng1,4,*WANG Hua1,3,*LIU Xu-Guang5
    (1Key Laboratory of Interface Science and Engineering in Advanced Materials,Ministry of Education,Taiyuan University of Technology,Taiyuan 030024,P.R.China;2School of Physical Science and Electronics,Shanxi Datong University,Datong 037009, Shanxi Province,P.R.China;3Research Center of Advanced Materials Science and Technology,Taiyuan University of Technology, Taiyuan 030024,P.R.China;4College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024, P.R.China;5College of Chemistry and Chemical Engineering,Taiyuan University of Technology,Taiyuan 030024,P.R.China)

    Levofloxacin(LOFX)is a well-known and inexpensive antimicrobial drug that can be easily synthesized and purified.We report the first application of LOFX to an organic light emitting diode(OLED).Its thermal and photophysical properties were thoroughly investigated using thermogravimetric analysis(TGA), UV-Vis absorption spectra,emission spectra,and cyclic voltammetry.LOFX has HOMO and LUMO energiesof-6.2 and-3.2 eV,respectively,and high molecule decomposition temperature(Td)of 327°C.An OLED with a LOFX emitter shows electroluminescence(EL)at 452 nm and maximum luminance of 2315 cd·A-1,which can be used in a white OLED.To investigate the electron transporting ability of LOFX,an electron-carrier only OLED was made.In addition,a green OLED based on Ir(ppy)3(fac-tris(2-phenylpyridine)iridium)with electron transporting layer of LOFX was made,comparing with that with electron transporting layer of tris(8-hydroxyquinoline)aluminum(Alq3).The former exhibited higher device efficiencies than that of the latter.The results show that LOFX has a higher electron transport ability thanAlq3.?Editorial office ofActa Physico-Chimica Sinica

    Organic light-emitting diode;Levofloxacin;Blue-light emitting material;Electron transport material;Electroluminescence spectrum;Electroluminescence performance

    O649

    10.3866/PKU.WHXB201501051www.whxb.pku.edu.cn

    Received:October 27,2014;Revised:January 4,2015;Published on Web:January 5,2015.

    ?Corresponding authors.WANG Hua,Email:wanghua001@tyut.edu.cn;Tel:+86-13613477492.JIAHu-Sheng,Email:jia_husheng@126.con;

    Tel:+86-351-6014852.

    The project was supported by the Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-13-0927),

    International Science&Technology Cooperation Program of China(2012DFR50460),National Natural Science Foundation of China(61307029, 21101111),and Shanxi Provincial Key Innovative Research Team in Science and Technology,China(2012041011).

    教育部新世紀(jì)人才計(jì)劃(NCET-13-0927),科技部國際科技合作專項(xiàng)項(xiàng)目(2012DFR50460),國家自然科學(xué)基金(61307029,21101111)和山西省科技創(chuàng)新重點(diǎn)團(tuán)隊(duì)項(xiàng)目(2012041011)資助

    猜你喜歡
    電致發(fā)光山西大同載流子
    全噴涂逐層組裝實(shí)現(xiàn)可穿戴電子織物高亮電致發(fā)光
    Cd0.96Zn0.04Te 光致載流子動(dòng)力學(xué)特性的太赫茲光譜研究*
    山西大同 黃花菜豐收在望
    Sb2Se3 薄膜表面和界面超快載流子動(dòng)力學(xué)的瞬態(tài)反射光譜分析*
    《山西大同大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    山西大同大學(xué)采礦研究所簡介
    山西大同邀客共賞“小黃花大產(chǎn)業(yè)”
    ZnO納米晶摻雜的有機(jī)電致發(fā)光特性
    利用CASTEP計(jì)算載流子有效質(zhì)量的可靠性分析
    兩種紅光銥配合物的合成和電致發(fā)光性能研究
    国产精品久久久久久久电影 | 日韩欧美一区二区三区在线观看| 老汉色∧v一级毛片| 亚洲欧美精品综合一区二区三区| av天堂中文字幕网| 色老头精品视频在线观看| 欧美日韩精品网址| 国产亚洲精品久久久久久毛片| 亚洲中文字幕一区二区三区有码在线看 | 999久久久精品免费观看国产| 欧美一区二区精品小视频在线| 日韩免费av在线播放| 丁香欧美五月| 九色成人免费人妻av| 欧美成人一区二区免费高清观看 | 久久天堂一区二区三区四区| 俺也久久电影网| 蜜桃久久精品国产亚洲av| 免费在线观看视频国产中文字幕亚洲| 国产三级在线视频| 亚洲精品中文字幕一二三四区| 国产日本99.免费观看| 一级毛片精品| 母亲3免费完整高清在线观看| 首页视频小说图片口味搜索| 亚洲欧美日韩东京热| 亚洲欧美日韩无卡精品| 男女之事视频高清在线观看| 少妇的丰满在线观看| 韩国av一区二区三区四区| 成人国产一区最新在线观看| 久久中文字幕人妻熟女| 99热6这里只有精品| 中文字幕久久专区| 女同久久另类99精品国产91| 大型黄色视频在线免费观看| 黄色女人牲交| 噜噜噜噜噜久久久久久91| 成人无遮挡网站| 免费观看的影片在线观看| av片东京热男人的天堂| 人妻久久中文字幕网| 亚洲在线自拍视频| 欧美乱色亚洲激情| 高潮久久久久久久久久久不卡| 欧美最黄视频在线播放免费| 国产v大片淫在线免费观看| 亚洲欧洲精品一区二区精品久久久| 久久久精品大字幕| 无限看片的www在线观看| 熟女电影av网| 亚洲欧美日韩无卡精品| 一二三四社区在线视频社区8| av在线天堂中文字幕| 丝袜人妻中文字幕| 久久精品国产99精品国产亚洲性色| svipshipincom国产片| 可以在线观看毛片的网站| 国产精品电影一区二区三区| 一级毛片高清免费大全| 又黄又爽又免费观看的视频| 国产一区二区三区视频了| 亚洲自拍偷在线| 宅男免费午夜| 黄色视频,在线免费观看| 91久久精品国产一区二区成人 | 在线观看美女被高潮喷水网站 | 免费在线观看影片大全网站| 2021天堂中文幕一二区在线观| 麻豆国产97在线/欧美| 精品熟女少妇八av免费久了| 国产成人精品久久二区二区免费| 男人舔奶头视频| 久久久久久久午夜电影| www国产在线视频色| 免费看光身美女| 国产不卡一卡二| 日韩av在线大香蕉| 国产高清三级在线| 亚洲 国产 在线| 精品久久久久久久毛片微露脸| 国产淫片久久久久久久久 | 美女午夜性视频免费| 久久久国产欧美日韩av| 黄色女人牲交| av在线天堂中文字幕| 男插女下体视频免费在线播放| 色视频www国产| 99热这里只有是精品50| 成人高潮视频无遮挡免费网站| 欧美三级亚洲精品| 天天躁狠狠躁夜夜躁狠狠躁| 欧美黄色片欧美黄色片| 91av网站免费观看| 久久久色成人| 亚洲精品乱码久久久v下载方式 | 成人特级黄色片久久久久久久| 国产一区在线观看成人免费| 国产三级黄色录像| 欧美成人免费av一区二区三区| 久久久久国产精品人妻aⅴ院| 日本 av在线| 丝袜人妻中文字幕| 亚洲国产欧美网| 丁香欧美五月| 亚洲五月婷婷丁香| netflix在线观看网站| 在线视频色国产色| 俺也久久电影网| 99热精品在线国产| 精华霜和精华液先用哪个| 天天躁日日操中文字幕| 亚洲在线观看片| 18禁观看日本| 国产精品av久久久久免费| 成熟少妇高潮喷水视频| 我的老师免费观看完整版| 琪琪午夜伦伦电影理论片6080| 国产亚洲欧美98| 欧美激情久久久久久爽电影| 哪里可以看免费的av片| 夜夜夜夜夜久久久久| 欧美日韩瑟瑟在线播放| 久久精品影院6| 在线观看免费午夜福利视频| 成人国产综合亚洲| 女生性感内裤真人,穿戴方法视频| 老司机午夜十八禁免费视频| 欧美不卡视频在线免费观看| 一二三四社区在线视频社区8| 久久这里只有精品19| 一本综合久久免费| 男女下面进入的视频免费午夜| 丝袜人妻中文字幕| 看片在线看免费视频| 精品电影一区二区在线| 叶爱在线成人免费视频播放| 亚洲av电影不卡..在线观看| 全区人妻精品视频| 日本免费a在线| 亚洲avbb在线观看| 99久久久亚洲精品蜜臀av| 中文字幕熟女人妻在线| 欧美中文综合在线视频| 亚洲无线观看免费| avwww免费| 久久九九热精品免费| 免费一级毛片在线播放高清视频| 亚洲片人在线观看| 99久久国产精品久久久| 在线观看66精品国产| АⅤ资源中文在线天堂| 成年女人毛片免费观看观看9| 亚洲精品一卡2卡三卡4卡5卡| 波多野结衣高清作品| 亚洲欧美日韩高清专用| 国产熟女xx| 男女做爰动态图高潮gif福利片| 亚洲成av人片免费观看| 天天一区二区日本电影三级| 亚洲18禁久久av| 色视频www国产| 白带黄色成豆腐渣| 女生性感内裤真人,穿戴方法视频| 国产成人欧美在线观看| 一个人看的www免费观看视频| 亚洲18禁久久av| 欧美3d第一页| 亚洲精品一卡2卡三卡4卡5卡| 久久久水蜜桃国产精品网| 最新在线观看一区二区三区| 国产乱人伦免费视频| 日本精品一区二区三区蜜桃| 亚洲人与动物交配视频| 成人高潮视频无遮挡免费网站| 日韩欧美一区二区三区在线观看| 亚洲国产色片| 波多野结衣巨乳人妻| 搞女人的毛片| 亚洲成人中文字幕在线播放| 久久精品综合一区二区三区| 性欧美人与动物交配| 午夜两性在线视频| 亚洲18禁久久av| 国产精品亚洲av一区麻豆| 日本成人三级电影网站| 女生性感内裤真人,穿戴方法视频| 欧美一级毛片孕妇| 国产精品一区二区精品视频观看| 99在线人妻在线中文字幕| 国产成人一区二区三区免费视频网站| 日韩精品中文字幕看吧| 一进一出好大好爽视频| 久久这里只有精品19| 搞女人的毛片| 亚洲精品色激情综合| 精品熟女少妇八av免费久了| 天天一区二区日本电影三级| 国产蜜桃级精品一区二区三区| 最近最新免费中文字幕在线| 亚洲av中文字字幕乱码综合| 99久久久亚洲精品蜜臀av| 久久久精品欧美日韩精品| 99久久成人亚洲精品观看| 国产99白浆流出| 性色av乱码一区二区三区2| 精品久久久久久成人av| 一进一出抽搐gif免费好疼| 亚洲熟妇熟女久久| 久久这里只有精品19| 在线a可以看的网站| 欧美黄色片欧美黄色片| 成人鲁丝片一二三区免费| 亚洲av五月六月丁香网| 久久香蕉国产精品| 欧美丝袜亚洲另类 | cao死你这个sao货| 制服人妻中文乱码| 婷婷精品国产亚洲av在线| 舔av片在线| 两人在一起打扑克的视频| 亚洲欧洲精品一区二区精品久久久| 久久久久免费精品人妻一区二区| 手机成人av网站| 精品人妻1区二区| 人人妻人人澡欧美一区二区| 岛国视频午夜一区免费看| 亚洲无线在线观看| 夜夜爽天天搞| 精品久久蜜臀av无| 一级毛片高清免费大全| 神马国产精品三级电影在线观看| 岛国视频午夜一区免费看| 亚洲aⅴ乱码一区二区在线播放| 色av中文字幕| 久久久久免费精品人妻一区二区| 男人舔奶头视频| 免费大片18禁| 欧美3d第一页| h日本视频在线播放| 日本精品一区二区三区蜜桃| 久久久国产成人精品二区| 女同久久另类99精品国产91| 男女床上黄色一级片免费看| 久久这里只有精品19| 老熟妇乱子伦视频在线观看| 久久久国产精品麻豆| 欧美日韩亚洲国产一区二区在线观看| 又粗又爽又猛毛片免费看| 狠狠狠狠99中文字幕| 国产伦精品一区二区三区四那| 搡老岳熟女国产| 久99久视频精品免费| 不卡av一区二区三区| 亚洲精品美女久久av网站| 婷婷丁香在线五月| 久久精品人妻少妇| 亚洲av电影在线进入| 久久热在线av| 亚洲精品一区av在线观看| 青草久久国产| 小蜜桃在线观看免费完整版高清| 精品国产美女av久久久久小说| 女警被强在线播放| 全区人妻精品视频| av在线天堂中文字幕| 看免费av毛片| 国产成人系列免费观看| 黄片大片在线免费观看| 国产午夜精品论理片| 男女午夜视频在线观看| 1024手机看黄色片| av福利片在线观看| 成人特级av手机在线观看| 欧美大码av| 国产野战对白在线观看| 一个人观看的视频www高清免费观看 | 99热这里只有精品一区 | 夜夜爽天天搞| 好看av亚洲va欧美ⅴa在| 国产av在哪里看| 久久精品国产亚洲av香蕉五月| 悠悠久久av| 一a级毛片在线观看| 午夜亚洲福利在线播放| xxxwww97欧美| 人妻夜夜爽99麻豆av| 国产私拍福利视频在线观看| 香蕉国产在线看| 亚洲在线自拍视频| 国产视频一区二区在线看| www.999成人在线观看| 成年人黄色毛片网站| 亚洲中文日韩欧美视频| 日本免费一区二区三区高清不卡| 19禁男女啪啪无遮挡网站| 国产亚洲欧美98| 亚洲成av人片在线播放无| 18禁黄网站禁片免费观看直播| 老鸭窝网址在线观看| 日韩欧美在线二视频| 成人永久免费在线观看视频| 欧美黑人欧美精品刺激| 91麻豆av在线| 亚洲乱码一区二区免费版| 午夜福利视频1000在线观看| 在线观看66精品国产| 最近视频中文字幕2019在线8| 一级毛片精品| 九九久久精品国产亚洲av麻豆 | 亚洲国产欧美网| 亚洲熟妇熟女久久| 久久伊人香网站| 国产一区在线观看成人免费| 日韩有码中文字幕| 精品国产超薄肉色丝袜足j| 51午夜福利影视在线观看| 亚洲午夜理论影院| 亚洲av免费在线观看| svipshipincom国产片| 国产av在哪里看| 国产成人av教育| 又紧又爽又黄一区二区| 国产成人精品久久二区二区91| 丁香六月欧美| 长腿黑丝高跟| 亚洲第一电影网av| 一区福利在线观看| 亚洲欧美激情综合另类| 成人国产一区最新在线观看| 久久久久九九精品影院| 黄色成人免费大全| 制服丝袜大香蕉在线| 国产熟女xx| 五月玫瑰六月丁香| 久久国产精品人妻蜜桃| 精华霜和精华液先用哪个| 性欧美人与动物交配| 亚洲精品一卡2卡三卡4卡5卡| 亚洲欧美日韩卡通动漫| 成人一区二区视频在线观看| 中文字幕人妻丝袜一区二区| 国产又黄又爽又无遮挡在线| 巨乳人妻的诱惑在线观看| 又爽又黄无遮挡网站| 一进一出抽搐gif免费好疼| 1024手机看黄色片| 变态另类成人亚洲欧美熟女| 久久亚洲真实| 国产成+人综合+亚洲专区| 中文字幕熟女人妻在线| 男人舔女人下体高潮全视频| 午夜福利视频1000在线观看| 国产黄片美女视频| 91久久精品国产一区二区成人 | 看片在线看免费视频| 99在线人妻在线中文字幕| 伦理电影免费视频| 国产精品久久久久久精品电影| 欧美黄色淫秽网站| 久久国产乱子伦精品免费另类| 香蕉国产在线看| 国产一级毛片七仙女欲春2| 久久中文字幕人妻熟女| 日韩大尺度精品在线看网址| 国产精品一区二区三区四区久久| 国产久久久一区二区三区| 久久亚洲精品不卡| 亚洲一区高清亚洲精品| 久久人人精品亚洲av| 可以在线观看的亚洲视频| 欧美一区二区精品小视频在线| 嫁个100分男人电影在线观看| 亚洲成人免费电影在线观看| 桃红色精品国产亚洲av| 黄色日韩在线| 国模一区二区三区四区视频 | 99久久无色码亚洲精品果冻| 国产午夜精品论理片| 在线观看美女被高潮喷水网站 | 国产精品综合久久久久久久免费| 亚洲黑人精品在线| 黄色成人免费大全| 在线观看午夜福利视频| 亚洲午夜精品一区,二区,三区| 91av网站免费观看| 亚洲国产欧美网| 叶爱在线成人免费视频播放| 国产伦精品一区二区三区四那| 欧美一区二区国产精品久久精品| 中文字幕久久专区| xxx96com| 精品国产亚洲在线| 中国美女看黄片| 亚洲最大成人中文| 国产精品久久久久久人妻精品电影| 脱女人内裤的视频| 女生性感内裤真人,穿戴方法视频| 日本一本二区三区精品| 亚洲18禁久久av| 国产又黄又爽又无遮挡在线| 男女床上黄色一级片免费看| 一本精品99久久精品77| 岛国视频午夜一区免费看| 欧美国产日韩亚洲一区| 亚洲激情在线av| 成人三级做爰电影| 草草在线视频免费看| 黄色片一级片一级黄色片| 亚洲一区二区三区色噜噜| av女优亚洲男人天堂 | 亚洲色图 男人天堂 中文字幕| 在线观看66精品国产| 亚洲五月婷婷丁香| 成人国产综合亚洲| 免费看十八禁软件| 日韩精品中文字幕看吧| 久久精品91无色码中文字幕| 国产亚洲av高清不卡| 一个人观看的视频www高清免费观看 | 亚洲成人免费电影在线观看| 午夜精品在线福利| 欧美日韩黄片免| 女警被强在线播放| 国产乱人视频| 欧美丝袜亚洲另类 | 欧美日韩一级在线毛片| 嫩草影视91久久| 午夜精品久久久久久毛片777| 国产爱豆传媒在线观看| 午夜精品久久久久久毛片777| 亚洲av成人不卡在线观看播放网| 在线观看日韩欧美| 人人妻人人澡欧美一区二区| 久99久视频精品免费| 国产高潮美女av| 在线看三级毛片| 99国产极品粉嫩在线观看| 国产单亲对白刺激| 国产成人系列免费观看| 国内久久婷婷六月综合欲色啪| 日本 av在线| 高清在线国产一区| 97超视频在线观看视频| 国产在线精品亚洲第一网站| 亚洲精品粉嫩美女一区| 成人永久免费在线观看视频| 久久中文字幕人妻熟女| 欧美日韩精品网址| 欧美成人性av电影在线观看| 欧美日韩综合久久久久久 | av片东京热男人的天堂| 99re在线观看精品视频| 99久国产av精品| 香蕉av资源在线| 99精品欧美一区二区三区四区| 天堂影院成人在线观看| 欧美黄色片欧美黄色片| 中文字幕高清在线视频| 久久中文字幕人妻熟女| 在线a可以看的网站| 青草久久国产| 日韩人妻高清精品专区| 久久久久国产一级毛片高清牌| 国产一区在线观看成人免费| 亚洲av成人精品一区久久| 欧美日韩中文字幕国产精品一区二区三区| 在线国产一区二区在线| 亚洲黑人精品在线| 九九在线视频观看精品| 美女 人体艺术 gogo| 亚洲国产精品sss在线观看| 女人被狂操c到高潮| 久久久成人免费电影| 国产综合懂色| 天天添夜夜摸| 网址你懂的国产日韩在线| 国产精品久久视频播放| 999久久久国产精品视频| 最近在线观看免费完整版| 精品人妻1区二区| 国产成人啪精品午夜网站| 久久精品aⅴ一区二区三区四区| 淫妇啪啪啪对白视频| 精品人妻1区二区| 99热这里只有精品一区 | 午夜激情福利司机影院| 午夜a级毛片| 法律面前人人平等表现在哪些方面| 亚洲国产欧洲综合997久久,| 欧美日韩国产亚洲二区| 亚洲aⅴ乱码一区二区在线播放| 午夜福利在线观看免费完整高清在 | 岛国在线观看网站| 久久性视频一级片| 欧美一区二区精品小视频在线| www国产在线视频色| 国产精品,欧美在线| 国产高清三级在线| 我要搜黄色片| 成人特级黄色片久久久久久久| 久久久国产成人免费| 成人三级黄色视频| 国产成人啪精品午夜网站| 日韩三级视频一区二区三区| 天堂影院成人在线观看| 天天添夜夜摸| 99视频精品全部免费 在线 | 午夜免费成人在线视频| 国产精品永久免费网站| 免费av毛片视频| 一区二区三区国产精品乱码| 亚洲aⅴ乱码一区二区在线播放| 在线观看免费视频日本深夜| aaaaa片日本免费| 2021天堂中文幕一二区在线观| 国产高清videossex| 色综合站精品国产| 国产精品亚洲美女久久久| 亚洲精品久久国产高清桃花| 小说图片视频综合网站| 国产淫片久久久久久久久 | 久久九九热精品免费| 一二三四在线观看免费中文在| 又大又爽又粗| 日本五十路高清| 伦理电影免费视频| 久久久水蜜桃国产精品网| 欧美激情久久久久久爽电影| 欧美日韩一级在线毛片| 免费看a级黄色片| 日韩欧美国产在线观看| 一个人免费在线观看的高清视频| 亚洲国产精品合色在线| 在线观看免费午夜福利视频| 在线观看一区二区三区| 两个人看的免费小视频| 一夜夜www| 色老头精品视频在线观看| 别揉我奶头~嗯~啊~动态视频| 男女午夜视频在线观看| 日韩欧美在线二视频| 亚洲无线在线观看| 在线观看舔阴道视频| 久久久久久久精品吃奶| 国产乱人视频| 色视频www国产| 亚洲精品色激情综合| 日韩国内少妇激情av| 在线观看午夜福利视频| 亚洲美女黄片视频| 九色国产91popny在线| 久久精品综合一区二区三区| 在线a可以看的网站| 给我免费播放毛片高清在线观看| 日韩欧美精品v在线| 天堂网av新在线| 九九热线精品视视频播放| 变态另类成人亚洲欧美熟女| 97超级碰碰碰精品色视频在线观看| 色噜噜av男人的天堂激情| 久久国产精品人妻蜜桃| 亚洲av电影在线进入| 小蜜桃在线观看免费完整版高清| 18禁美女被吸乳视频| 国产精品综合久久久久久久免费| 日韩欧美在线二视频| 国产av不卡久久| 亚洲色图av天堂| or卡值多少钱| 欧美日本视频| 亚洲欧美一区二区三区黑人| 午夜福利高清视频| 亚洲国产精品久久男人天堂| 99精品欧美一区二区三区四区| 欧美激情久久久久久爽电影| 热99re8久久精品国产| 美女午夜性视频免费| 小蜜桃在线观看免费完整版高清| 十八禁人妻一区二区| 男人舔奶头视频| xxx96com| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩黄片免| 亚洲国产中文字幕在线视频| 精品久久久久久久毛片微露脸| 手机成人av网站| 在线观看日韩欧美| 日韩 欧美 亚洲 中文字幕| 久久热在线av| 免费看美女性在线毛片视频| 每晚都被弄得嗷嗷叫到高潮| 午夜成年电影在线免费观看| 叶爱在线成人免费视频播放| 黑人巨大精品欧美一区二区mp4| 久久精品国产99精品国产亚洲性色| 亚洲精品粉嫩美女一区| 岛国在线观看网站| 免费在线观看亚洲国产| www.999成人在线观看| 特级一级黄色大片| 国产美女午夜福利| 国产私拍福利视频在线观看| 久久精品国产综合久久久| 国产精华一区二区三区| 免费在线观看影片大全网站| 国产精品亚洲av一区麻豆| 国产蜜桃级精品一区二区三区| 99精品在免费线老司机午夜| 久久久国产精品麻豆| 精品福利观看| 色视频www国产| 国产三级黄色录像| 亚洲色图av天堂| 久久久国产成人精品二区|