蒙莉娜,丁建麗,王敬哲,葛翔宇
基于環(huán)境變量的渭干河-庫(kù)車河綠洲土壤鹽分空間分布
蒙莉娜,丁建麗※,王敬哲,葛翔宇
(1. 新疆大學(xué)資源與環(huán)境科學(xué)學(xué)院智慧城市與環(huán)境建模自治區(qū)普通高校重點(diǎn)實(shí)驗(yàn)室,烏魯木齊 830046;2. 新疆大學(xué)綠洲生態(tài)教育部重點(diǎn)實(shí)驗(yàn)室,烏魯木齊 830046)
土壤屬性的數(shù)字制圖對(duì)精準(zhǔn)農(nóng)業(yè)生產(chǎn)和環(huán)境保護(hù)治理至關(guān)重要。為了在大尺度上盡可能精確的監(jiān)測(cè)土壤鹽分空間變異性,該文使用普通克里格(ordinary kriging,OK)、地理加權(quán)回歸(geographically weighted regression,GWR)和隨機(jī)森林(random forest,RF)方法,結(jié)合地形、土壤理化性質(zhì)和遙感影像數(shù)據(jù)等16個(gè)環(huán)境輔助變量,繪制渭干河-庫(kù)車河綠洲表層土壤鹽分分布圖?;跊Q定系數(shù)(2)、均方根誤差(RMSE)和平均絕對(duì)誤差(MAE)驗(yàn)證模型精度。結(jié)果表明:不同方法預(yù)測(cè)的鹽分分布趨勢(shì)沒(méi)有顯著差異,大體上從研究區(qū)的西北向東南部方向增加;結(jié)合輔助變量的不同預(yù)測(cè)方法中,RF方法預(yù)測(cè)精度最高,2為0.74,RMSE和MAE分別為9.07和7.90 mS/cm,說(shuō)明該模型可以有效地對(duì)區(qū)域尺度的土壤鹽分進(jìn)行定量估算;RF方法對(duì)電導(dǎo)率(electric conductivity,EC)低于2 mS/cm時(shí)預(yù)測(cè)精度最高,RMSE為3.96 mS/cm,很好的削弱了植被覆蓋對(duì)電導(dǎo)率EC的影響。
土壤鹽份;遙感;機(jī)器學(xué)習(xí);環(huán)境變量
隨著現(xiàn)代數(shù)學(xué)發(fā)展以及遙感制圖輔助變量的類型日益廣泛和易于獲取,一種新興的、高效表達(dá)土壤空間分布的技術(shù)方法,數(shù)字土壤制圖(digital soil mapping,DSM)在過(guò)去的30 a得到了飛速發(fā)展[1]。DSM方法被廣泛用到了土壤學(xué)領(lǐng)域中,用以描述土壤屬性的空間變異規(guī)律。土壤發(fā)生學(xué)理論與數(shù)學(xué)模型緊密結(jié)合,研究土壤鹽漬化制圖成為主流。
土壤的空間分布是土壤形成與發(fā)展過(guò)程的體現(xiàn),具有復(fù)雜性和時(shí)空變異性。土壤鹽分的空間分布在一定程度上反映了土壤耕作層內(nèi)土壤鹽漬化的程度和狀態(tài),因此進(jìn)行土壤鹽漬化的變異性研究對(duì)于鹽漬土的改良和防治,提高農(nóng)業(yè)產(chǎn)量具有重要意義[2]。Guo等[3]證明遙感和近感輔助數(shù)據(jù)可以作為土壤鹽漬化區(qū)域識(shí)別的指標(biāo),進(jìn)行了沿海地區(qū)土壤鹽分?jǐn)?shù)字制圖。Peng等[4]使用多種環(huán)境變量構(gòu)建電導(dǎo)率的立體模型和偏最小二乘模型,在大面積上監(jiān)測(cè)鹽分的空間分布并進(jìn)行溫宿地區(qū)的數(shù)字制圖。Sheng等[5]進(jìn)行了干旱區(qū)鹽漬化土壤定量分類及數(shù)字制圖方法的研究。常見(jiàn)的數(shù)字土壤屬性制圖方法有地統(tǒng)計(jì)學(xué)方法、機(jī)器學(xué)習(xí)方法和混合模型方法等。Grunstra等[6]表明普通克里格(ordinary kriging,OK)插值效果優(yōu)于反距離插值方法。為了更好的揭示土壤屬性空間變異的局部信息,結(jié)合輔助變量的地理加權(quán)回歸(geographically weighted regression,GWR)方法被應(yīng)用到土壤屬性制圖當(dāng)中。郭龍等[7]表明在輔助變量較多的情況下地理加權(quán)回歸模型比協(xié)同克里格插值更為簡(jiǎn)單且具有更高的預(yù)測(cè)精度。但國(guó)內(nèi)關(guān)于GWR的應(yīng)用主要在人文地理和統(tǒng)計(jì)學(xué)領(lǐng)域,GWR在土壤和環(huán)境科學(xué)方面的應(yīng)用還十分有限,需進(jìn)一步嘗試[8]。目前一些研究者認(rèn)為更復(fù)雜和精密的方法能顯著提高土壤屬性制圖精度,Brungard等[9]對(duì)比11種機(jī)器學(xué)習(xí)算法,發(fā)現(xiàn)隨機(jī)森林和人工神經(jīng)網(wǎng)絡(luò)等復(fù)雜的建模方法優(yōu)于K鄰近距離等簡(jiǎn)單建模方法。相比神經(jīng)網(wǎng)絡(luò)的參數(shù)較多難以確定和模型結(jié)果不易解釋[10],隨機(jī)森林(random forest,RF)模型能夠處理高維度數(shù)據(jù)且模型參數(shù)較少,在土壤屬性預(yù)測(cè)中得到了廣泛的應(yīng)用。但隨著環(huán)境條件的變化,模型的預(yù)測(cè)能力有所不同。為了盡可能準(zhǔn)確地反演干旱區(qū)土壤鹽分的空間分布,選取優(yōu)勢(shì)模型與合適的變量尤為重要。
本文以渭干河-庫(kù)車河綠洲(以下簡(jiǎn)稱渭-庫(kù)綠洲)為研究靶區(qū),篩選出新疆典型綠洲渭-庫(kù)地區(qū)土壤鹽度敏感性較高的環(huán)境變量,研究綠洲土壤鹽分的空間分布以及與環(huán)境變量之間的關(guān)系。選用傳統(tǒng)的普通克里格方法與地理加權(quán)回歸和隨機(jī)森林方法進(jìn)行對(duì)比分析,對(duì)土壤鹽分變異性被制圖方法揭示的程度進(jìn)行探究,優(yōu)選模型提高土壤鹽漬化制圖精度,為該地區(qū)土壤鹽漬化的治理提供科學(xué)依據(jù)。
渭-庫(kù)綠洲(80°37′~83°59′E,41°06′~42°40′N)位于塔里木盆地北麓中段。該范圍包括新和、庫(kù)車和沙雅3個(gè)縣,總面積523.76萬(wàn)km2。海拔范圍892~1 100 m,由西北向東南遞減(圖1)。該區(qū)屬典型的溫帶大陸性干旱氣候,年平均氣溫10.5~14.4 ℃,年平均降水量51.6 mm,年均潛在蒸發(fā)量達(dá)2 356 mm。土壤類型眾多,其中主要土壤類型為潮土,其次為草甸土,鹽土、沼澤土和棕鈣土等也分布較多。土地利用類型主要包括農(nóng)田、草地、林地、荒地、鹽漬地等。在平原區(qū)中下部地勢(shì)較平坦,地下水位較高,蒸發(fā)作用強(qiáng)烈,導(dǎo)致鹽分隨水運(yùn)動(dòng)積累于地表造成土壤鹽漬化,灌區(qū)內(nèi)鹽漬化面積已達(dá)50%以上,其中嚴(yán)重鹽漬化面積達(dá)30%。選擇該地區(qū)作為研究區(qū)具有較好的代表性,對(duì)其改善生態(tài)環(huán)境及農(nóng)業(yè)生產(chǎn)的發(fā)展有著重大意義。
圖1 研究區(qū)采樣點(diǎn)分布示意圖
采樣設(shè)計(jì)綜合考慮渭-庫(kù)綠洲土壤類型、植被類型、景觀特征以及土地利用方式等因素。在野外采樣過(guò)程中,選取樣點(diǎn)(30 m×30 m)的土壤,保持土壤性質(zhì)相對(duì)一致,環(huán)境因素相似,異質(zhì)性相對(duì)較小,用五點(diǎn)法采集土樣,將測(cè)試的數(shù)據(jù)求平均值作為本樣點(diǎn)的實(shí)際觀測(cè)值。采樣時(shí)間為2018年7月11日至7月23日,采樣深度為0~10 cm,樣本數(shù)量為73個(gè)。待土壤樣品自然風(fēng)干后去除雜質(zhì),過(guò)2 mm(10目)孔篩備用。稱量20 g土壤樣品與100 mL去離子水配制成水土比5:1的土壤懸濁液,用Cond7310土壤測(cè)試儀測(cè)定土壤電導(dǎo)率(electric conductivity,EC),用pHS-3C采集土壤溶液的pH值,使用烘干稱重法進(jìn)行土壤含水量(soil mass content,SMC)的測(cè)量。
結(jié)合采樣時(shí)間和云量(<10%),本文選取2018年7月23日的Landsat8 OLI影像,數(shù)據(jù)來(lái)源于美國(guó)地質(zhì)調(diào)查局(United States Geological Survey, USGS http:// glovisusgsgov/),行列號(hào)為145/31,數(shù)據(jù)級(jí)為L(zhǎng)IT,空間分辨率為30 m。數(shù)據(jù)描述信息詳見(jiàn)文獻(xiàn)[11]。使用ENVI 5.3中的FLAASH模型對(duì)影像進(jìn)行大氣糾正,用校正后的圖像進(jìn)行主成分分析(principal component analysis,PCA)和基于相關(guān)矩陣的纓帽(tasseled cap,TC)變換,以減少數(shù)據(jù)層的總數(shù),更好地區(qū)分鹽漬土和非鹽漬土壤。糾正后的反射率數(shù)據(jù)用于計(jì)算環(huán)境變量。
土壤鹽漬化在不同尺度下受土壤、氣候、地形、生物等因素的綜合影響,本研究選取6個(gè)鹽度指數(shù),6個(gè)植被指數(shù),6個(gè)遙感影像數(shù)據(jù)指數(shù)和15個(gè)地形指數(shù)作為土壤鹽分預(yù)測(cè)的環(huán)境變量。具體指數(shù)參見(jiàn)表1。其中地形指數(shù)采用空間分辨率為30 m的DEM數(shù)據(jù),運(yùn)用SAGA GIS從30 m數(shù)字高程模型進(jìn)行計(jì)算,該模型經(jīng)過(guò)校正進(jìn)行填凹處理。30 m的網(wǎng)格大小被證明是最適合土壤-景觀分析[12],也可以更好的匹配Landsat8 OLI的空間分辨率。
OK是根據(jù)區(qū)域化變量的原數(shù)據(jù)及半方差函數(shù)的結(jié)構(gòu)特點(diǎn),通過(guò)線性無(wú)偏最優(yōu)估計(jì)來(lái)預(yù)測(cè)未知樣點(diǎn)區(qū)域化變量的常用方法。本文通過(guò)EC含量半方差函數(shù)以及擬合參數(shù),用OK方法預(yù)測(cè)EC空間分布。
GWR是一種局域回歸模型,是在經(jīng)典多元線性回歸模型的基礎(chǔ)上進(jìn)行的空間局域擴(kuò)展[13-14],將樣點(diǎn)數(shù)據(jù)的地理位置嵌入到回歸參數(shù)之中,對(duì)于存在非平穩(wěn)性的空間數(shù)據(jù),該模型可反映出不同地理位置的變量對(duì)該區(qū)域的影響程度,由此可探尋該研究區(qū)域內(nèi)各環(huán)境因素對(duì)EC影響的空間分異特征。其參數(shù)設(shè)定在GWR4軟件中實(shí)現(xiàn),其中模型帶寬的計(jì)算運(yùn)用AICc方法,帶寬的確定一般有固定帶寬和自適應(yīng)帶寬2種方法,前者給出確定性帶寬,后者則根據(jù)樣點(diǎn)密度分布進(jìn)行自動(dòng)調(diào)整,本研究選擇自適應(yīng)帶寬,以滿足采樣點(diǎn)分布不均的情況。
RF是指利用多棵決策樹(shù)對(duì)樣本進(jìn)行訓(xùn)練并預(yù)測(cè)的一種機(jī)器學(xué)習(xí)算法。該算法的優(yōu)勢(shì)在于具備非線性挖掘能力,數(shù)據(jù)的分布不需要符合任何假設(shè),同時(shí)處理等級(jí)和連續(xù)變量[15]。RF模型需要用戶定義3個(gè)參數(shù):終端節(jié)點(diǎn)樹(shù)(),作為每棵樹(shù)的預(yù)測(cè)特征的特征個(gè)數(shù)(),以及每個(gè)終端節(jié)點(diǎn)的最小值[16]。的默認(rèn)值為500,但一般認(rèn)為它不足以產(chǎn)生可靠的結(jié)果[17],因此在該模型中通過(guò)遍歷確定的最優(yōu)值為1 000。用以確定單一樹(shù)與模型中其他樹(shù)之間的相關(guān)性。隨著值的增加,每棵樹(shù)和樹(shù)之間的相關(guān)強(qiáng)度逐漸增加[18]。以預(yù)測(cè)誤差最小化為目標(biāo)函數(shù),通過(guò)遍歷比較確定的最優(yōu)值為3,節(jié)點(diǎn)大小為5。
表1 基于Landsat OLI和DEM衍生的環(huán)境變量
注:F為藍(lán)波段反射率,F為綠波段反射率,F為紅波段反射率,NIR為近紅外波段反射率;取值2、3、4;=1和=0.9是氣溶膠和大氣相關(guān)參數(shù)。
Note:Fis blue band reflectivity,Fis green band reflectivity,Fis red band reflectivity,NIRis near infrared reflectivity;is set to 2, 3, 4, respectively; the aerosol and atmospheric related parametersandare set to 1 and 0.9, respectively.
將73個(gè)土壤樣品根據(jù)其EC值按升序排序,等間距選取58個(gè)樣本作為訓(xùn)練集,剩余的15個(gè)樣本構(gòu)成驗(yàn)證集,分別用于模型的建立以及精度的驗(yàn)證。決定系數(shù)(R),均方根誤差(RMSE)和平均絕對(duì)誤差(MAE)用于評(píng)估和比較上述模型的性能。R、RMSE和MAE的計(jì)算公式如下
式中V為樣本點(diǎn)處的實(shí)測(cè)值;V為點(diǎn)處的預(yù)測(cè)值;為總樣點(diǎn)個(gè)數(shù)。2范圍在0~1之間,越接近1模型的穩(wěn)定性越高,RMSE和MAE越小模型的預(yù)測(cè)能力越強(qiáng)精度也越高。
采樣點(diǎn)的土壤特性描述性統(tǒng)計(jì)特征如表2所示。整個(gè)研究區(qū)的EC值變化很大,EC在0.08~74.30 mS/cm之間變化,其平均值為13.38 mS/cm,變異系數(shù)(variable coefficient,CV)值大于1,表明土壤含鹽量的空間變異性較強(qiáng)。土壤含水量SMC的范圍在0.52%~20.28%,CV值為53.79%。pH值的范圍在7.21~10.21之間,整個(gè)研究區(qū)的pH值變化不大。
表2 土壤屬性描述性統(tǒng)計(jì)
注:EC為電導(dǎo)率,mS·cm-1;SMC為土壤含水量,%。
Note: EC is electric conductivity, mS·cm-1; SMC is soil mass content, %.
基于預(yù)處理后的Landsat8 OLI影像計(jì)算并根據(jù)樣點(diǎn)數(shù)據(jù)的地理位置提取遙感數(shù)據(jù)衍生變量相應(yīng)點(diǎn)的信息,樣點(diǎn)的EC與環(huán)境變量之間的相關(guān)性見(jiàn)表3。
表3 EC與參選變量之間的相關(guān)性
注:**表示在<0.01水平顯著;*表示在<0.05水平顯著。
Note: ** means significant at<0.01 levels; * means significant at<0.05 levels.
在33個(gè)參選變量中,有16個(gè)變量與EC具有顯著相關(guān)性。地形指數(shù)被證明是十分有效的預(yù)測(cè)變量,在植被覆蓋密集的地區(qū)能夠顯著提高準(zhǔn)確性[28]。但在15個(gè)地形指數(shù)中,只有DEM、CNBL和VD與EC呈顯著相關(guān)性,這主要因?yàn)檠芯繀^(qū)地形較為平坦,加上該地區(qū)降雨量有限,地表徑流大大削弱了地形因素對(duì)土壤鹽分再分布的影響。6個(gè)遙感影像數(shù)據(jù)指數(shù)中PC2、TC1和TC2與EC顯著相關(guān),在遙感圖像中PC2的高值主要分布在高亮度區(qū)域,TC1攜帶圖像的亮度信息,高亮度區(qū)域?qū)?yīng)圖像內(nèi)的高EC值,由于TC2攜帶圖像的綠色信息,因此TC2值高的區(qū)域?qū)?yīng)于綠色植被覆蓋區(qū)域,TC2值低的區(qū)域?qū)?yīng)于高EC值。在鹽度指數(shù)中NDSI在<0.01閾值為±0.296時(shí)顯著,1、2和SI1在<0.05閾值為±0.192時(shí)顯著。植被指數(shù)均與EC在<0.05時(shí)呈顯著相關(guān)性。雖然鹽度指數(shù)與植被指數(shù)在鹽分預(yù)測(cè)方面表現(xiàn)良好,但其受植被覆蓋度、耐鹽性、土壤濕度和土壤類型等因素的影響,且植被指數(shù)對(duì)植被覆蓋度越高的土壤鹽分變化越敏感,其適用性和泛化程度較差[29],因此需要根據(jù)植被覆蓋度選擇合適的光譜指數(shù)。
通過(guò)RF模型迭代100次獲得輔助變量的相對(duì)重要性(relative importance,RI),如圖2所示。CRSI、VD、CNBL、DEM和TC2是模型中最重要的變量。此外,遙感影像數(shù)據(jù)對(duì)EC含量的解釋能力最高,其次是地形指數(shù)。這表明從遙感圖像中提取的變量對(duì)于預(yù)測(cè)植被覆蓋區(qū)域的EC含量影響最大。
圖2 輔助變量的重要性
從不同預(yù)測(cè)方法精度驗(yàn)證結(jié)果來(lái)看(表4),訓(xùn)練集中OK方法的預(yù)測(cè)誤差最大,均方根誤差值為10.14 mS/cm,OK模型使用的方差函數(shù)是基于整個(gè)研究區(qū)的,在過(guò)程中一直不變導(dǎo)致部分局部信息被忽略。相對(duì)于OK模型,GWR模型表現(xiàn)出了土壤屬性指標(biāo)的局部空間依賴性和異質(zhì)性,因此可以很好地結(jié)合土壤屬性指標(biāo)的空間性對(duì)EC進(jìn)行預(yù)測(cè),提高了土壤鹽分的空間預(yù)測(cè)精度,其2達(dá)到0.69,RMSE為9.23 mS/cm。RF模型的預(yù)測(cè)性能明顯優(yōu)于OK和GWR,2達(dá)到0.85,RMSE和MAE分別為8.29和5.66 mS/cm,RF方法在本研究區(qū)的應(yīng)用效果較好。在驗(yàn)證集中,各精度結(jié)果略有變化,但RF模型的預(yù)測(cè)性能仍為最優(yōu)。
表4 基于不同方法的土壤鹽度預(yù)測(cè)精度驗(yàn)證
注:OK:普通克里格;GWR:地理加權(quán)回歸;RF:隨機(jī)森林。
Note: OK: ordinary kriging; GWR: geographically weighted regression; RF: random forest.
依據(jù)土壤鹽漬化水平分類標(biāo)準(zhǔn),將研究區(qū)土壤樣本劃分為以下5類:EC≥16 mS/cm為鹽土,8≤EC<16 mS/cm為重度鹽漬化,4≤EC<8 mS/cm為中度鹽漬化,2≤EC<4 mS/cm為輕度鹽漬化,EC<2 mS/cm為非鹽漬化[30-31]。從不同方法預(yù)測(cè)的EC空間分布圖來(lái)看,鹽分的分布趨勢(shì)有一定差異,RF方法預(yù)測(cè)鹽分含量在西北山體處偏高,主要由地形影響引起的輻射誤差導(dǎo)致。灌區(qū)內(nèi)部輕微的地形起伏,加上農(nóng)業(yè)生產(chǎn)過(guò)程中引水及灌溉提高地下水位,導(dǎo)致深層土壤鹽分積聚于表層形成鹽漬化土。總體上鹽分的分布從研究區(qū)的西北部向東南部方向增加,鹽土和重度鹽漬化土壤集中在區(qū)域的東南部。中度鹽漬化土壤主要為鹽漬草地,呈帶狀分布在區(qū)域內(nèi)部。輕度鹽漬化和非鹽漬化土壤主要分布在灌溉和排水科學(xué)管理的農(nóng)田和地勢(shì)較高的區(qū)域。
對(duì)比不同制圖方法對(duì)土壤鹽漬化的揭示程度,OK方法僅能預(yù)測(cè)出EC含量的整體空間分布規(guī)律,缺乏對(duì)EC含量空間變異的細(xì)節(jié)描述。相較于OK方法,GWR方法有較好的整體擬合性,預(yù)測(cè)的結(jié)果在EC<2 mS/cm和EC≥16 mS/cm的區(qū)域縮小,中間區(qū)域擴(kuò)大,內(nèi)部圖斑破碎化使得制圖效果的細(xì)節(jié)更為豐富。RF預(yù)測(cè)結(jié)果很大程度上避免了平滑效應(yīng)和圖斑邊界兩側(cè)的突變,很好的突出了空間變異的細(xì)節(jié),更好的揭示了輕度鹽漬化和中度鹽漬化的區(qū)域呈條帶狀分布。GWR和RF方法采用非線性回歸方式進(jìn)行建模,制圖精度明顯優(yōu)于OK方法。然而,GWR方法并沒(méi)有明確地考慮自變量的自相關(guān)問(wèn)題,難以避免局部多重共線性。因此,RF方法的總體制圖效果最優(yōu)(圖3)。
圖3 基于不同方法預(yù)測(cè)的土壤鹽度空間分布
根據(jù)鹽漬化程度對(duì)EC進(jìn)行分段統(tǒng)計(jì),如表5所示,OK方法在EC低值和高值區(qū)的誤差很大,RMSE分別為9.77和18.06 mS/cm,在中度鹽漬化區(qū)域RMSE較小為6.87 mS/cm。GWR和RF方法均表現(xiàn)出隨著EC值的增加,RMSE也逐漸增加,GWR方法在輕度,中度和重度鹽漬化區(qū)域顯示出與RF方法大致相同的精度,對(duì)低值和高值區(qū)的預(yù)測(cè)誤差較大,分別為6.33和15.23 mS/cm。RF方法對(duì)各個(gè)EC區(qū)的預(yù)測(cè)精度均高于OK和GWR方法,對(duì)低值的預(yù)測(cè)誤差最小,RMSE為3.96 mS/cm。
表5 基于電導(dǎo)度和NDVI的3種方法預(yù)測(cè)精度對(duì)比
植被光譜指數(shù)在EC預(yù)測(cè)中表現(xiàn)良好,而NDVI是植被覆蓋度計(jì)算的關(guān)鍵因素,其值越高表明植被覆蓋度越大[32]。隨著NDVI值的增加,GWR方法的RMSE增加,當(dāng)NDVI大于等于0.2時(shí)RMSE達(dá)到15.68 mS/cm。OK和RF方法均在NDVI為0.1~0.2之間預(yù)測(cè)誤差最大,分別為16.65和8.7 mS/cm,由于該區(qū)間的土壤位于稀疏植被區(qū)域,遙感影像顯示出植被和土壤光譜信息的混合,而在裸地和耕地區(qū)域中觀察到NDVI在0~0.1和大于等于0.2時(shí),分別具有相對(duì)純凈的土壤和植被光譜信息。總體來(lái)說(shuō)RF方法在3個(gè)區(qū)間內(nèi)的RMSE變化不大,說(shuō)明該方法顯著削弱了植被覆蓋對(duì)EC預(yù)測(cè)的影響。
本研究采用OK、GWR和RF方法結(jié)合地形屬性、植被光譜指數(shù)和鹽度指數(shù)等環(huán)境變量對(duì)該區(qū)表層EC含量的空間分布規(guī)律進(jìn)行預(yù)測(cè)。結(jié)果表明GWR和RF采用非線性回歸方式進(jìn)行建模的效果明顯優(yōu)于OK方法,對(duì)EC含量的局部變異信息描述地更加詳細(xì)。RF方法的預(yù)測(cè)精度最高,2為0.74,RMSE和MAE分別為9.07和7.90 mS/cm。RF方法在EC低值區(qū)預(yù)測(cè)精度最高RMSE為3.96 mS/cm,削弱了植被覆蓋對(duì)EC的影響。本文為下一步在干旱或半干旱地區(qū)的鹽漬化監(jiān)測(cè)進(jìn)行推廣,選擇更為有效的環(huán)境變量,提高土壤屬性數(shù)字制圖的準(zhǔn)確性提供了基礎(chǔ)。
[1]朱阿興,楊琳,樊乃卿,等. 數(shù)字土壤制圖研究綜述與展望[J]. 地理科學(xué)進(jìn)展,2018,37(1):66-78.
Zhu Axing, Yang Lin, Fan Naiqing, et al. The review and outlook of digital soil mapping[J]. Progress in Geography, 2018, 37(1): 66-78. (in Chinese with English abstract)
[2]姚榮江,楊勁松,姜龍,等. 基于聚類分析的土壤鹽漬剖面特征及其空間分布研究[J]. 土壤學(xué)報(bào),2008,45(1):56-65.
Yao Rongjiang, Yang Jinsong, Jiang Long, et al. Profile characteristics and spatial distribution of soil salinity based on hierarchical cluster analysis[J]. Acta Pedologica Sinica, 2008, 45(1): 56-65. (in Chinese with English abstract)
[3]Guo Yan, Zhou Yin, Zhou Lianqing, et al. Application of digital soil mapping methods for identifying salinity management classes based on a study on coastal central China[J]. Soil Use and Management, 2013, 29(3): 445-456.
[4]Peng Jie, Biswas A, Qingsong Jiang, et al. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China[J]. Geoderma, 2019, 337: 1309-1319.
[5]Sheng Jiandong, Ma Lichun, Jiang Pingan, et al. Digital soil map-ping to enable classification of the salt-affected soils in desert agro-ecological zones[J]. Agricultural Water Management, 2010, 90: 1944-1951.
[6]Grunstra M, Auken OW V. Using GIS to display complex soil salinity patterns in an inland salt marsh[J]. Developments in Environmental Science, 2007, 5(1): 407-431.
[7]郭龍,張海濤,陳家贏,等. 基于協(xié)同克里格插值和地理加權(quán)回歸模型的土壤屬性空間預(yù)測(cè)比較[J]. 土壤學(xué)報(bào),2012,49(5):1037-1042.
Guo Long, Zhang Haitao, Chen Jiaying, et al. Comparison between co-kriging model and geographically weighted regression model in spatial prediction of soil attributes[J]. Acta Pedologica Sinica, 2012, 49(5): 1037-1042. (in Chinese with English abstract)
[8]瞿明凱,李衛(wèi)東,張傳榮,等. 地理加權(quán)回歸及其在土壤和環(huán)境科學(xué)上的應(yīng)用前景[J]. 土壤,2014,46(1):15-22.
Qu Mingkai, Li Weidong, Zhang Chuanrong, et al. Geographically weighted regression and its application prospect in soil and environmental sciences[J]. Soils, 2014, 46(1): 15-22. (in Chinese with English abstract)
[9]Brungard C W, Boettinger J L, Duniway M C, et al. Machine learning for predicting soil classes in three semi-arid landscapes[J]. Geoderma, 2015(239/240): 68-83.
[10]黃文,正林. 數(shù)據(jù)挖掘:R語(yǔ)言實(shí)戰(zhàn)[M]. 北京:電子工業(yè)出版社,2014.
[11]徐涵秋,唐菲. 新一代 Landsat 系列衛(wèi)星:Landsat 8遙感影像新增特征及其生態(tài)環(huán)境意義[J]. 生態(tài)學(xué)報(bào),2013,33(11): 3249-3257.
Xu Hanqiu, Tang Fei. Analysis of new characteristics of the first Landsat 8 image and their eco-environmental significance[J]. Acta Ecologica Sinica, 2013, 33(11): 3249-3257. (in Chinese with English abstract)
[12]Wang Jingzhe, Ding Jianli, Abulimiti A, et al. Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS-NIR) spectroscopy, Ebinur Lake Wetland, Northwest China[J/OL]. PeerJ., 2018, 6: e4703.
[13]羅罡輝. 基于GWR模型的城市住宅地價(jià)空間結(jié)構(gòu)研究[D].杭州:浙江大學(xué),2007.
Luo Ganghui. Spatial Structure of Urban Housing Land Prices Based on GWR Model[D]. Hangzhou: Zhejiang University, 2007. (in Chinese with English abstract)
[14]Fotheringham A S, Brunsdon C, Charlton M. Geographically Weighted Regression: The Analysis Of Spatially Varying Relationships[M]. West Sussex: John Wiley & Sons, 2003.
[15]王飛,楊勝天,丁建麗. 環(huán)境敏感變量?jī)?yōu)選及機(jī)器學(xué)習(xí)算法預(yù)測(cè)綠洲土壤鹽分[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,4(22):102-110.
Wang Fei, Yang Shengtian, Ding Jianli. Environmental sensitive variable optimization and machine learning algorithm using in soil salt prediction at oasis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 102-110. (in Chinese with English abstract)
[16]Friedam J H, Meulman J J. Multiple additive regression trees with application in epidemiology[J]. Statistics in Medicine, 2003, 22(9): 1365-1381.
[17]Yang Renmin, Zhang Ganlin. Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem[J]. Ecological Indicators, 2016, 60: 870-878.
[18]Prasad A M, Liaw I A. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction[J]. Ecosystems, 2006, 9(2): 181-199.
[19]Brunner P, Li H T, Kinzelbach W, et al. Generating soil electrical conductivity maps at regional level by integrating measurements on the ground and remote sensing data[J]. International Journal of Remote Sensing, 2007, 28(15): 3341-3361.
[20]Lobell D B, Lesch S M, Corwin D L, et al. Regional-scale assessment of soil salinity in the red river valley using multi-yearmodisevi and ndvi[J]. Journal of Environmental Quality, 2010, 39(1): 35-41.
[21]Scudiero E, Skaggs T H, Corwin D L. Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA[J]. Geoderma Regional, 2014(2/3): 82-90.
[22]Scudiero E, Skaggs T H, Corwin D L. Regional-scale soil salinity assessment using Landsat ETM+canopy reflectance[J]. Remote Sensing of Environment, 2015(169): 335-343.
[23]Wu Weicheng. The generalized difference vegetation index (GDVI) for dryland characterization[J]. Remote Sensing, 2014, 6(2): 1211-1233.
[24]Allbed A, Kumar L, Aldakheel Y Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region[J]. Geoderma, 2014(230/231): 1-8.
[25]Khan N M, Rastoskuev V V, Sato Y. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators[J]. Agricultural Water Management, 2005, 77(1/2/3): 96-109.
[26]Khan S, Abbas A. Using remote sensing techniques for appraisal of irrigated soil salinity[C]//New Zealand: MODSIM 2007 International Congress on Modelling and Simulation, 2007.
[27]Douaoui A E K, Hervé Nicolas, Walter C. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data[J]. Geoderma, 2006, 134(1/2): 217-230.
[28]Wang Shuai, Jin Xinxin, Adhikari K, et al. Mapping total soil nitrogen from a site in northeastern China[J]. Catena, 2018, 166: 134-146.
[29]Wang Jingzhe, Ding Jianli, Yu Danlin, et al. Capability of Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China[J]. Geoderma, 2019, 353: 172-187.
[30]Scudiero E, Skaggs T H, Corwin D L. Regional-scale soil salinity assessment using Landsat ETM+ canopy reflectance[J]. Remote Sensing of Environment, 2015, 169: 335-343.
[31]梁靜,丁建麗,王敬哲,等. 基于反射光譜與 Landsat 8 OLI多光譜數(shù)據(jù)的艾比湖濕地土壤鹽分估算[J]. 土壤學(xué)報(bào),2019,56(2):320-330.
Liang Jing, Ding Jianli, Wang Jingzhe, et al. Quantitative estimation and mapping of soil salinity in the Ebinur lake wetland based on VIS-NIR reflectance and Landsat 8 OLI data[J]. Acta pedologica sinica, 2019, 56(2): 320-330. (in Chinese with English abstract)
[32]Zhang Chi, Lu Dengsheng, Chen Xi, et al. The spatiotemporal patterns of vegetation coverage and biomass of the temperate deserts in Central Asia and their relationships with climate controls[J]. Remote Sensing of Environment, 2016, 175: 271-281.
Spatial distribution of soil salinity in Ugan-Kuqa River delta oasis based on environmental variables
Meng Lina, Ding Jianli※, Wang Jingzhe, Ge Xiangyu
(1.,,830046,; 2.,,830046,)
Digital soil mapping (DSM) is the creation and population of spatial soil information systems by numerical models inferring the spatial and temporal variations of soil types and soil properties from soil observations and knowledge and from related environmental variables. DSM is critical to precise agricultural production and environmental protection. Accurately mapping soil salinity through remote sensing techniques has been an active research area in the past few decades particularly for agricultural lands. A total of 73 cropland topsoil samples (0-10 cm) were collected from Ugan-Kuqa River Delta Oasis, southern parts of Xinjiang Uyghur Autonomous Region of China for the measurement of soil electrical conductivity (EC) based on 1:5 soil-water extraction solution. Three spatial prediction models, i.e., ordinary kriging (OK), geographically weighted regression (GWR) and random forest (RF) methods were employed for digital mapping of soil salinity. Multi-source remote sensing data were resampled in the spatial resolution of 30m and calculated various derived environmental variables, such as terrain attributes, soil physiochemical properties, and spectral indices. We selected 16 most sensitive variables to calibrate the estimation models based on the correlation analysis. Finally, the validation results of different models were compared under different intervals of EC and vegetation coverage. The mean absolute prediction error (MAE), root mean square error (RMSE) and coefficient of determination (2) were used to evaluate and compare the performance of the above methods. The spatial distribution patterns of EC obtained by different methods were quite similar, in general the distribution of salt increased from northwest to southeast of the study area, salt soil and severe salinity soil were concentrated in the southeast of the region. Among the different prediction methods combined with the variables, the OK method lacked a detailed description of the spatial variation of the EC content, and the internal map fragmentation of the GWR method made the details of the drawing effect more abundant. For the RF method the RMSE and MAE of both datasets were lower than OK and GWR method,2, RMSE and MAE were 0.74, 9.07 and 7.90 mS/cm, could effectively estimate the soil salinity at the regional scale. From the segmentation statistics of EC, the error of the RF method in the low and high values was small. The RF method had the highest prediction accuracy of 3.96 mS/cm for the EC of 0-2 mS/cm, which weakens the influence of vegetation cover on EC. Both the OK and the GWR methods had the largest prediction error between 0.1 and 0.2 of NDVI, but the RF method had little change in RMSE under different vegetation coverage. The best predicting model in these methods was selected based on corresponding performance and accuracy measures. The effect of GWR and RF modeling by nonlinear regression was obviously better than that of OK method. The local variation information of EC content was described in more detail. This study could provide a basis for the next step in the promotion of salinization monitoring in arid or semi-arid areas, selecting more effective environmental synergy variables, and improving the accuracy of soil mapping digital mapping.
soil salt; remote sensing; machine learning; environmental variables
蒙莉娜,丁建麗,王敬哲,葛翔宇. 基于環(huán)境變量的渭干河-庫(kù)車河綠洲土壤鹽分空間分布[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(1):175-181.doi:10.11975/j.issn.1002-6819.2020.01.020 http://www.tcsae.org
Meng Lina, Ding Jianli, Wang Jingzhe, Ge Xiangyu. Spatial distribution of soil salinity in Ugan-Kuqa River delta oasis based on environmental variables[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 36(1): 175-181. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.01.020 http://www.tcsae.org
2019-06-02
2019-10-25
國(guó)家自然科學(xué)基金(41771470,41661046);國(guó)家自然科學(xué)基金聯(lián)合基金項(xiàng)目(U1603241)
蒙莉娜,主要從事遙感應(yīng)用研究。Email:menglina_xj@163.com
丁建麗,教授,主要從事干旱區(qū)環(huán)境演變與遙感應(yīng)用研究。Email:watarid@xju.edu.cn
10.11975/j.issn.1002-6819.2020.01.020
S153
A
1002-6819(2020)-01-0175-07