• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于科學(xué)計(jì)量的天然橡膠學(xué)科領(lǐng)域前沿?zé)狳c(diǎn)分析

    2020-02-22 03:19:20李一萍茶正早王大鵬
    熱帶作物學(xué)報(bào) 2020年12期

    李一萍 茶正早 王大鵬

    摘? 要:當(dāng)前天然橡膠產(chǎn)業(yè)持續(xù)低迷,追蹤國際天然橡膠研究前沿?zé)狳c(diǎn)對于我國天然橡膠產(chǎn)業(yè)發(fā)展和升級具有重要參考價(jià)值。本研究采用科學(xué)計(jì)量方法結(jié)合CiteSpace技術(shù),對Web of Science數(shù)據(jù)庫的天然橡膠文獻(xiàn)進(jìn)行共被引、共詞和聚類分析,概述了該領(lǐng)域重要的基礎(chǔ)文獻(xiàn),揭示其學(xué)科領(lǐng)域研究前沿和熱點(diǎn)。結(jié)果表明,共探測出6個(gè)前沿?zé)狳c(diǎn),高度聚合在三大學(xué)科領(lǐng)域。其中,在化學(xué)與材料科學(xué)領(lǐng)域,領(lǐng)先優(yōu)勢十分明顯,共遴選出4個(gè)前沿?zé)狳c(diǎn):(1)功能化改性石墨烯或氧化石墨/天然橡膠納米復(fù)合材料;(2)生物基體/天然橡膠納米復(fù)合材料;(3)彈性體或天然橡膠納米復(fù)合材料的應(yīng)變誘導(dǎo)結(jié)晶行為;(4)廢舊橡膠的自修復(fù)與回收加工。在生物科學(xué)領(lǐng)域,遴選出1個(gè)前沿?zé)狳c(diǎn),即橡膠樹基因組測序、橡膠生物合成路徑與關(guān)鍵基因。在生態(tài)與環(huán)境科學(xué)領(lǐng)域,遴選出1個(gè)前沿?zé)狳c(diǎn),即橡膠林的擴(kuò)張及其對生態(tài)環(huán)境的影響。高頻和高突現(xiàn)關(guān)鍵詞在三大學(xué)科呈現(xiàn)由多到少分布,反映了當(dāng)前天然橡膠研究領(lǐng)域發(fā)展趨于多方向性,但其前沿?zé)狳c(diǎn)相對集中在天然橡膠全產(chǎn)業(yè)鏈的下游。

    關(guān)鍵詞:天然橡膠;學(xué)科領(lǐng)域;科學(xué)計(jì)量;前沿?zé)狳c(diǎn)

    中圖分類號:S794.1;G353.1? ? ? 文獻(xiàn)標(biāo)識碼:A

    Abstract: At present, the natural rubber industry has fallen into continuous tremor. Consequently, tracking and analyzing the hotspots in the fields of international natural rubber research is of important referring values for developing and upgrading the natural rubber industry of China. Based on the database from Web of Science, scientometrics methods and CiteSpace were used to analyze the co-citation, co-word and clustering of natural rubber literature. The basic articles were summarized to track and reveal the future fronts and hotspots in this field. The results showed that six hotspots were detected, which were highly concentrated in the three fields. Of the fields of chemistry and material science, the leading advantage was very obvious, and four hotspots were protruded: (1) functionally modified grapheme or graphene oxide/natural rubber nanocomposites; (2) biobased/natural rubber nanocomposites; (3) strain-induced crystallization behavior of elastomers or natural rubber; (4) self-healing and recycling of waste rubber. Of the field of biological science, there was one hotspot: rubber tree genome sequencing, rubber biosynthesis pathway and key genes. Of the field of ecological and environmental science, the expansion of rubber plantation and its impact on the ecological environment is becoming important research hotspots in this field. High-frequency and high-emergency keywords showed a distribution trend of gradually less in the three major disciplines, which reflecting that the current research field of natural rubber intends to be multi-directional, but its frontier hotspots are relatively concentrated in the downstream link of the whole natural rubber industry chain.

    Keywords: natural rubber; discipline field; scientometrics; fronts and hotspots

    DOI: 10.3969/j.issn.1000-2561.2020.12.028

    天然橡膠是由含橡膠的植物中采割其膠乳加工而成。據(jù)統(tǒng)計(jì)[1-2],世界上能產(chǎn)膠的植物約有2 000多種,其中重要的有大戟科的巴西橡膠樹(Hevea brasiliensis),菊科的橡膠草(Taraxacum brevicorniculatum)和銀色橡膠菊(Parthenium argentatum),杜仲科的杜仲(Eucommia ulmoides Oliver)等。巴西橡膠樹(又稱橡膠樹)由于其產(chǎn)量高、品質(zhì)好、經(jīng)濟(jì)壽命長、生產(chǎn)成本低等優(yōu)點(diǎn),成為人工栽培中最為重要的產(chǎn)膠植物,其產(chǎn)量占世界天然橡膠總產(chǎn)量的99%以上。橡膠是熱帶地區(qū)典型的經(jīng)濟(jì)林作物,是重要的戰(zhàn)略物資。在熱帶農(nóng)林業(yè)中,橡膠具有特殊和重要的地位。迄今為止,天然橡膠在航天、軍工及醫(yī)療等高端和特殊用途領(lǐng)域中仍具有不可替代性。當(dāng)前,天然橡膠產(chǎn)業(yè)持續(xù)低迷,國際天然橡膠產(chǎn)品供大于求,但我國天然橡膠的自給率仍不到20%。而與此同時(shí),國內(nèi)高端和特殊用途的高性能膠卻仍然幾乎完全依賴進(jìn)口。我國天然橡膠產(chǎn)業(yè)發(fā)展中的一些重大問題已逐漸發(fā)生轉(zhuǎn)變,如從早期的追求高產(chǎn)轉(zhuǎn)變?yōu)楦弋a(chǎn)與優(yōu)質(zhì)并重、膠木兼優(yōu)品種的選育和推廣、勞動(dòng)力成本的不斷上升、加工領(lǐng)域工藝改進(jìn)和技術(shù)創(chuàng)新等。從我國天然橡膠產(chǎn)業(yè)發(fā)展歷程來看,科學(xué)技術(shù)的提升是推動(dòng)橡膠產(chǎn)業(yè)升級的重要?jiǎng)恿?。?dāng)前一些高新尖的技術(shù)領(lǐng)域,如天然高分子或納米微粒補(bǔ)強(qiáng)天然橡膠合成納米復(fù)合材料、橡膠微生物降解、產(chǎn)膠植物橡膠生物合成與調(diào)控等,未來很可能極大地影響天然橡膠產(chǎn)業(yè)的發(fā)展。

    科學(xué)知識圖譜是進(jìn)行領(lǐng)域分析和可視化的通用過程,其分析范圍可以是一門學(xué)科、一個(gè)研究領(lǐng)域、或特定研究問題的主題領(lǐng)域。換句話說,知識圖譜的分析單元是科學(xué)知識的一一個(gè)領(lǐng)域,它通過一個(gè)科學(xué)團(tuán)體或更精確定義的專業(yè)成員的智力貢獻(xiàn)集合來反映[3-4]。常用的科學(xué)文獻(xiàn)數(shù)據(jù)來源有Web of Science、Scopus、Google Scholar和PubMed等??茖W(xué)計(jì)量方法包括作者共引分析、文獻(xiàn)共引分析、共詞分析和共現(xiàn)分析等[5-6]。知識圖譜工具通常將一組文獻(xiàn)作為輸入,生成具有復(fù)雜結(jié)構(gòu)的交互式圖像用于定量分析和視覺探索。許多知識圖譜技術(shù)起源于共被引分析理論,這一理論描述了知識基礎(chǔ)在共被引文獻(xiàn)網(wǎng)絡(luò)中的結(jié)構(gòu)特征[7-8]。本研究依據(jù)科學(xué)計(jì)量學(xué)理論,基于CiteSpace可視化分析工具,對近15年天然橡膠學(xué)科領(lǐng)域的研究成果和重要文獻(xiàn)進(jìn)行識別和可視化,建立學(xué)科領(lǐng)域知識圖譜,跟蹤和揭示國際天然橡膠學(xué)科領(lǐng)域的前沿?zé)狳c(diǎn),以期為科研管理者、政策制定者、相關(guān)科研人員及天然橡膠產(chǎn)業(yè)發(fā)展提供科學(xué)參考和借鑒。

    1? 材料與方法

    1.1? 數(shù)據(jù)來源

    數(shù)據(jù)來源于Web of Science核心合集的SCI-EXPANDED和SSCI。本文定義的天然橡膠,是指從巴西橡膠樹(Hevea brasiliensis)提取的天然膠乳。為了確保天然橡膠文獻(xiàn)數(shù)據(jù)集的查全率,采用表1制定的檢索策略進(jìn)行主題檢索。檢索詞主要有天然橡膠、天然膠乳、橡膠膠乳、橡膠樹、橡膠林、橡膠種植園、膠園、植膠區(qū)、橡膠間作、橡膠生物合成、橡膠產(chǎn)量、割膠、產(chǎn)膠、排膠等。經(jīng)檢索得到9960條記錄,除重后獲得9579篇文獻(xiàn),這些文獻(xiàn)共引用了179 317篇引文(檢索日期:2019-09-17,數(shù)據(jù)庫更新日期:2019-09-16)。

    1.2? 研究工具和方法

    采用CiteSpace(5.5.R2)進(jìn)行天然橡膠文獻(xiàn)數(shù)據(jù)集的可視化分析。CiteSpace使用時(shí)間切片技術(shù)構(gòu)建隨時(shí)間變化的時(shí)間序列網(wǎng)絡(luò)模型,并綜合這些單獨(dú)的網(wǎng)絡(luò)形成一個(gè)概覽網(wǎng)絡(luò),以便系統(tǒng)地回顧相關(guān)文獻(xiàn)。以每年引用次數(shù)排序前100的文獻(xiàn)構(gòu)建當(dāng)年共被引網(wǎng)絡(luò),然后合成各個(gè)網(wǎng)絡(luò)。合成的網(wǎng)絡(luò)被劃分為多個(gè)共被引文獻(xiàn)聚類。相似的論文和相關(guān)的聚類被定位在接近的位置,而不同論文和聚類則相距較遠(yuǎn)。采用文獻(xiàn)[4]中的方法,排除檢索結(jié)果中的干擾文獻(xiàn):基于CiteSpace技術(shù)特點(diǎn),對檢索策略的持續(xù)精煉以及對檢索結(jié)果文獻(xiàn)的手工剔除,在一定程度上會(huì)導(dǎo)致相關(guān)研究文獻(xiàn)的缺失并影響文獻(xiàn)的關(guān)聯(lián)。通過對原始檢索結(jié)果所生成的圖譜,辨別分析有效文獻(xiàn)所生成的大型活躍聚類,而對無效文獻(xiàn)生成的聚類則加以識別和排除,能夠有效地保證文獻(xiàn)查全率,同時(shí)能夠排除與研究無關(guān)的干擾文獻(xiàn)。每個(gè)聚類成員(被引文獻(xiàn))代表研究領(lǐng)域的知識基礎(chǔ),引用這些文獻(xiàn)的施引文獻(xiàn)是與這些聚類相關(guān)的研究前沿[3-4]。由于文章篇幅所限,只列出前5~10篇被引文獻(xiàn)和施引文獻(xiàn)進(jìn)行陳述和解讀。一個(gè)節(jié)點(diǎn)的引文歷史描述為若干個(gè)引用年輪,每一個(gè)引用年輪代表共被引網(wǎng)絡(luò)中相應(yīng)年份的引用次數(shù)。

    2? 結(jié)果與分析

    合成的網(wǎng)絡(luò)包含1499篇引文。4個(gè)最大的連接網(wǎng)絡(luò)包括1272個(gè)節(jié)點(diǎn),占整個(gè)網(wǎng)絡(luò)的84%。該網(wǎng)絡(luò)具有非常高的模塊化值,為0.8307,表明各學(xué)科領(lǐng)域在共被引聚類中有明確的定義。圖譜展示了4個(gè)主要學(xué)科領(lǐng)域(圖1):左側(cè)區(qū)域涉及化學(xué)與材料科學(xué),右上方涉及生物科學(xué)、生態(tài)與環(huán)境科學(xué),右下方涉及免疫學(xué)。不同顏色區(qū)域表示這些區(qū)域共被引連接首次出現(xiàn)的時(shí)間,紫色區(qū)域比粉色區(qū)域生成的時(shí)間早,黃色區(qū)域是在粉色區(qū)域之后生成。黃色區(qū)域是仍在持續(xù)發(fā)展的聚類,目前仍在活躍的大型聚類象征著學(xué)科的前沿方?向,也是本文重點(diǎn)分析的部分。每個(gè)聚類都可以通過標(biāo)題術(shù)語、關(guān)鍵字和引用聚類文獻(xiàn)的抽象術(shù)語進(jìn)行標(biāo)記。如最右側(cè)黃色區(qū)域被標(biāo)記為橡膠人工林與生態(tài)環(huán)境,表明關(guān)于橡膠人工林與生態(tài)環(huán)境的論文引用了#8聚類。表2按照核心論文數(shù)量列出了前13個(gè)聚類。輪廓值是衡量聚類同質(zhì)性或一致性的指標(biāo),同質(zhì)聚類的平均輪廓值趨于1[3-4]。

    2.1? 化學(xué)與材料科學(xué)活躍聚類的研究前沿探測

    2.1.1? 功能化石墨烯納米復(fù)合材料——#2聚類? #2是活躍的大型聚類,關(guān)注功能化改性石墨烯或氧化石墨烯補(bǔ)強(qiáng)天然橡膠制備納米復(fù)合材料(表3),由121篇共被引文獻(xiàn)組成。聚類中引用次數(shù)較高的文章[9-12],展示了超聲輔助膠乳共混法和原位還原法等將氧化石墨烯均勻分散于天然橡膠基體,顯著提高材料的拉伸強(qiáng)度、機(jī)械、電熱和屏蔽性能等。Wu等[13]系統(tǒng)研究了石墨烯/天然橡膠納米復(fù)合材料的硫化動(dòng)力學(xué)特性的變化。覆蓋率前5的施引文獻(xiàn)[14-18],引用了該聚類8%~12%的引文。Papageorgiou等[14]、Srivastava等[17]和Mensah等[18]的文章綜述了不同類型石墨烯應(yīng)用于補(bǔ)強(qiáng)天然橡膠或彈性體納米復(fù)合材料,及其對復(fù)合材料的拉伸強(qiáng)度、熱穩(wěn)定性、氣體屏蔽、電學(xué)、機(jī)械和動(dòng)態(tài)力學(xué)性能等的影響。其他施引文獻(xiàn)[15-16]也在關(guān)注改進(jìn)的方法制備功能化改性石墨烯或氧化石墨烯/天然橡膠納米復(fù)合材料及其性能的增強(qiáng)。

    2.1.2? 生物基納米復(fù)合材料——#10聚類? #10聚類代表了聚乳酸、納米微晶纖維素等生物基體補(bǔ)強(qiáng)天然橡膠制備納米復(fù)合材料活躍的施引文獻(xiàn)和被引文獻(xiàn)(表4)。該聚類引用次數(shù)第一的文章由Bitinis等[19]發(fā)表,關(guān)于聚乳酸/天然橡膠共混物的微觀結(jié)構(gòu)、結(jié)晶行為和機(jī)械性能研究。其他共被引文獻(xiàn)代表了聚乳酸基或形狀記憶聚乳酸基與天然橡膠或環(huán)氧化天然橡膠制備共混物及其韌性、晶體穩(wěn)定性增強(qiáng)的知識基礎(chǔ)[20-23]。覆蓋率前5的施引文獻(xiàn)[24-28],引用了該聚類6%~7%的引文。Cao等[24, 28]采用兩2種方法制備海鞘納米微晶纖維素/天然橡膠納米復(fù)合材料,對其形態(tài)、力學(xué)性能和水膨脹行為進(jìn)行了比較研究。Heuwers等[25]、Quitmann等[26]研究了不同形狀記憶聚乳酸基天然橡膠納米復(fù)合材料的儲(chǔ)能、力學(xué)和機(jī)械應(yīng)力性能。Chen等[27]研發(fā)了一種生物基動(dòng)態(tài)硫化聚乳酸/天然橡膠共混物,其中交聯(lián)NR相具有連續(xù)的網(wǎng)狀分散。

    3? 討論與結(jié)論

    一個(gè)領(lǐng)域的研究前沿體現(xiàn)的是該領(lǐng)域當(dāng)前的科學(xué)發(fā)展水平。天然橡膠領(lǐng)域的跨學(xué)科、跨專業(yè)和學(xué)科交叉視角明顯,使得新興研究領(lǐng)域和主題不斷出現(xiàn)。本研究借助知識圖譜可視化分析概述了2004—2018年天然橡膠領(lǐng)域重要的基礎(chǔ)文獻(xiàn),突出了持續(xù)發(fā)展的研究領(lǐng)域;并通過關(guān)鍵詞共現(xiàn)分析尋找研究熱點(diǎn),探索活躍的研究方向。主要研究結(jié)果如下:

    (1)在共被引文獻(xiàn)和施引文獻(xiàn)分析的基礎(chǔ)上,按照學(xué)科探測研究前沿,在三大學(xué)科探測出6個(gè)研究前沿。①化學(xué)與材料科學(xué)領(lǐng)域識別出4個(gè)研究前沿:功能化改性石墨烯或氧化石墨烯補(bǔ)強(qiáng)天然橡膠制備納米復(fù)合材料;生物基體補(bǔ)強(qiáng)天然橡膠制備納米復(fù)合材料;彈性體或天然橡膠納米復(fù)合材料的應(yīng)變誘導(dǎo)結(jié)晶行為;廢舊橡膠的自修復(fù)與回收加工。②生物科學(xué)領(lǐng)域識別出1個(gè)研究前沿:橡膠樹基因組測序、調(diào)控橡膠樹乳管橡膠生物合成路徑與關(guān)鍵基因。③生態(tài)與環(huán)境科學(xué)領(lǐng)域識別出1個(gè)研究前沿:土地利用變化背景下橡膠人工林的擴(kuò)張對生態(tài)環(huán)境的影響。

    (2)在關(guān)鍵詞共現(xiàn)頻次和強(qiáng)度分析基礎(chǔ)上,發(fā)現(xiàn)高頻和高突現(xiàn)關(guān)鍵詞主要分布在化學(xué)與材料科學(xué)領(lǐng)域,如“納米復(fù)合材料”“共混”“改性”“石墨烯”“聚合物基體”“誘導(dǎo)結(jié)晶”“性能”等,其次分布在生態(tài)與環(huán)境科學(xué)領(lǐng)域,如“生物多樣性”“熱帶雨林”“土地利用”等,分布在生物科學(xué)領(lǐng)域的關(guān)鍵詞較少,主要有“基因表達(dá)”“乳管”“聚異戊二烯”等。這預(yù)示著當(dāng)前天然橡膠研究趨于多方向性,但活躍的研究主題主要集中在天然橡膠全產(chǎn)業(yè)鏈的下游。伴隨著天然橡膠產(chǎn)業(yè)發(fā)展帶來的環(huán)境和社會(huì)問題,防止砍伐森林,保護(hù)生物多樣性,確保天然橡膠產(chǎn)業(yè)的可持續(xù)生產(chǎn)非常值得關(guān)注。在基礎(chǔ)研究領(lǐng)域,提高天然橡膠產(chǎn)量和質(zhì)量,明確調(diào)控橡膠生物合成關(guān)鍵路徑和基因,為橡膠樹優(yōu)異種質(zhì)的發(fā)掘利用和高產(chǎn)優(yōu)質(zhì)抗逆遺傳改良奠定基礎(chǔ),也是活躍的研究主題。

    (3)本研究所指“研究前沿”是一簇共被引聚類形成的高被引論文及其后續(xù)的施引論文形成的一個(gè)“專業(yè)研究方向”,還不能完全等同于科學(xué)研究中的前沿科學(xué)問題和前沿研究領(lǐng)域,所以本方法只是監(jiān)測分析科學(xué)研究發(fā)展態(tài)勢的一種視角。另外,論文的寫作、發(fā)表和被引用存在一定的滯后性,影響了研究前沿成果的及時(shí)揭示,因此需要補(bǔ)充各類相關(guān)信息,如施引論文,才能更為全面地監(jiān)測和分析科學(xué)研究發(fā)展態(tài)勢。

    參考文獻(xiàn)

    國家天然橡膠產(chǎn)業(yè)技術(shù)體系. 中國現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)可持續(xù)發(fā)展戰(zhàn)略研究:天然橡膠分冊[M]. 北京:中國農(nóng)業(yè)出版社, 2016: 11-35.

    International Rubber Research and Development Board. Portrait of the global rubber industry[M]. Kuala Lumpur: IRRDB, 2006: 73-86.

    Chen C M. CiteSpace II: Detecting Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377.

    Chen C M. Science mapping: A systematic review of the literature[J]. Journal of Data and Information Science, 2017, 2(2): 1-40.

    White H D, McCain K W. Visualizing a discipline: An author co-citation analysis of information science, 1972- 1995[J]. Journal of the AmericanSociety for Information Science, 1998, 49(4): 327-355.

    Callon M, Courtial J P, Turner W A, et al. From translations to problematic networks: An introduction to co-word analysis[J]. Information (International Social Science Council), 1983, 22(2): 191-235.

    Shneider A M. Four stages of a scientific discipline; four types of scientist[J]. Trends in Biochemical Sciences, 2009, 34(5): 217-223.

    Fuchs S. A sociological theory of scientific change[J]. Social Forces, 1993, 71(4): 933-953.

    Potts J R, Shankar O, Du L, et al. Processing– morphology–property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites[J]. Macromolecules, 2012, 45(15): 6045 -6055.

    Zhan Y H, Lavorgna M, Buonocore G, et al. Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing[J]. Journal of Materials Chemistry, 2012, 22(21): 10 464-10 468.

    Potts J R, Shankar O, Murali S, et al. Latex and two-roll mill processing of thermally-exfoliated graphite oxide/natural rubber nanocomposites[J]. Composites Science and Technology, 2013, 74: 166-172.

    Zhan Y H, Wu J K, Xia H S, et al. Dispersion and exfoliation of graphene in rubber by an ultrasonically- assisted latex mixing and in situ reduction process[J]. Macromolecular Materials and Engineering, 2011, 296(7): 590-602.

    Wu J R, Xing W, Huang G S, et al. Vulcanization kinetics of graphene/natural rubber nanocomposites[J]. Polymer, 2013, 54(13): 3314-3323.

    Papageorgiou D G, Kinloch I A, Young R J. Graphene/ elastomer nanocomposites[J]. Carbon, 2015, 95: 460-484.

    Galimberti M, Cipolletti V, Musto S, et al. Recent advancements in rubber nanocomposites[J]. Rubber Chemistry and Technology, 2014, 87(3): 417-442.

    Wu S W, Tang Z H, Guo B C, et al. Effects of interfacial interaction on chain dynamics of rubber/graphene oxide hybrids: A dielectric relaxation spectroscopy study[J]. RSC Advances, 2013, 3(34): 14 549-14 559.

    Srivastava S K, Mishra Y K. Nanocarbon reinforced rubber nanocomposites: Detailed insights about mechanical, dynamical mechanical properties, payne, and mullin effects[J]. Nanomaterials, 2018, 8(11): 945.

    Mensah B, Gupta K C, Kim H, et al. Graphene-reinforced elastomeric nanocomposites: A A review[J]. Polymer Testing, 2018, 68: 160-184.

    Bitinis N, Verdejo R, Cassagnau P, et al. Structure and properties of polylactide/natural rubber blends[J]. Materials Chemistry and Physics, 2011, 129(3): 823-831.

    Zhang C M, Wang W W, Huang Y, et al. Thermal, mechanical and rheological properties of polylactide toughened by expoxidized natural rubber[J]. Materials & Design, 2013, 45: 198-205.

    Heuwers B, Quitmann D, Hoeher R, et al. Stress-induced stabilization of crystals in shape memory natural rubber[J]. Macromolecular Rapid Communications, 2013, 34(2): 180-184.

    Jaratrotkamjorn R, Khaokong C, Tanrattanakul V. Toughness enhancement of poly (lactic acid) by melt blending with natural rubber[J]. Journal of Applied Polymer Science, 2012, 124(6): 5027-5036.

    Xu C H, Cao L M, Lin B F, et al. Design of self-healing supramolecular rubbers by introducing ionic cross-links into natural rubber via a controlled vulcanization[J]. ACS Applied Materials & Interfaces, 2016, 8(27): 17 728-17 737.

    Cao L M, Yuan D S, Fu X F, et al. Green method to reinforce natural rubber with tunicate cellulose nanocrystals via one-pot reaction[J]. Cellulose, 2018, 25(8): 4551-4563.

    Heuwers B, Beckel A, Krieger A, et al. Shape-memory natural rubber: An exceptional material for strain and energy storage[J]. Macromolecular Chemistry and Physics, 2013, 214(8): 912-923.

    Quitmann D, Gushterov N, Sadowski G, et al. Solvent- sensitive reversible stress-response of shape memory natural rubber[J]. ACS Applied Materials & Interfaces, 2013, 5(9): 3504-3507.

    Chen Y K, Yuan D S, Xu C H. Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase[J]. ACS Applied Materials & Interfaces, 2014, 6(6): 3811-3816.

    Cao L M, Huang J R, Chen Y K. Dual cross-linked epoxidized natural rubber reinforced by tunicate cellulose nanocrystals with improved strength and extensibility[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14 802-14 811.

    Toki S, Che J, Rong L, et al. Entanglements and networks to strain-induced crystallization and stress–strain relations in natural rubber and synthetic polyisoprene at various temperatures[J]. Macromolecules, 2013, 46(13): 5238-5248.

    Huneau B. Strain-induced crystallization of natural rubber: A review of X-ray diffraction investigations[J]. Rubber Che mistry and Technology, 2011, 84(3): 425-452.

    Candau N, Laghmach R, Chazeau L, et al. Strain-induced crystallization of natural rubber and cross-link densities he terogeneities[J]. Macromolecules, 2014, 47(16): 5815-5824.

    Bru?ning K, Schneider K, Roth S V, et al. Kinetics of strain-induced crystallization in natural rubber studied by WAXD: Dynamic and impact tensile experiments[J]. Macromolecules, 2012, 45(19): 7914-7919.

    Vieyres A, Pe?rez-Aparicio R, Albouy P A, et al. Sulfur- cured natural rubber elastomer networks: Correlating cross- link density, chain orientation, and mechanical response by combined techniques[J]. Macromolecules, 2013, 46(3): 889-899.

    Fu X, Huang G S, Xie Z T, et al. New insights into reinforcement mechanism of nanoclay-filled isoprene rubber during uniaxial deformation by in situ synchrotron X-ray diffraction[J]. RSC Advances, 2015, 5(32): 25 171-25 182.

    Rublon P, Huneau B, Saintier N, et al. In situ synchrotron wide-angle X-ray diffraction investigation of fatigue cracks in natural rubber[J]. Journal of Synchrotron Radiation, 2013, 20(1): 105-109.

    Pe?rez-Aparicio R, Vieyres A, Albouy P A, et al. Reinforcement in natural rubber elastomer nanocomposites: Breakdown Breakdown of entropic elasticity[J]. Macromolecules, 2013, 46(22): 8964-8972.

    Pe?rez-Aparicio R, Schiewek M, Valenti?n J L, et al. Local chain deformation and overstrain in reinforced elastomers: An NMR study[J]. Macromolecules, 2013, 46(14): 5549- 5560.

    Mondal M, Gohs U, Wagenknecht U, et al. Additive free thermoplastic vulcanizates based on natural rubber[J]. Materials Chemistry and Physics, 2013, 143(1): 360-366.

    Karger-Kocsis J, Mészáros L, Bárány T. Ground tyre rubber (GTR) in thermoplastics, thermosets, and rubbers[J]. Journal of Materials Science, 2013, 48(1): 1-38.

    Shi J W, Jiang K, Ren D Y, et al. Structure and performance of reclaimed rubber obtained by different methods[J]. Journal of Applied Polymer Science, 2013, 129(3): 999-1007.

    Faruk O, Bledzki A K, Fink H P, et al. Biocomposites reinforced with natural fibers: 2000-2010[J]. Progress in Polymer Science, 2012, 37(11): 1552-1596.

    Riyajan S A, Sasithornsonti Y, Phinyocheep P. Green natural rubber-g-modified starch for controlling urea release[J]. Carbohydrate Polymers, 2012, 89(1): 251-258.

    Myhre M, Saiwari S, Dierkes W, et al. Rubber recycling: Chemistry, processing, and applications[J]. Rubber Chemistry and Technology, 2012, 85(3): 408-449.

    Imbernon L, Norvez S. From landfilling to vitrimer chemistry in rubber life cycle[J]. European Polymer Journal, 2016, 82: 347-376.

    Imbernon L, Norvez S, Leibler L. Stress relaxation and self-adhesion of rubbers with exchangeable links[J]. Macromolecules, 2016, 49(6): 2172-2178.

    Xiang H P, Rong M Z, Zhang M Q. Self-healing, reshaping, and recycling of vulcanized chloroprene rubber: A case study of multitask cyclic utilization of cross-linked polymer[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(5): 2715-2724.

    Denissen W, Winne J M, Du Prez F E. Vitrimers: Permanent organic networks with glass-like fluidity[J]. Chemical Science, 2016, 7(1): 30-38.

    Xu C H, Huang X H, Li C H, et al. Design of “Zn2+ Salt-Bondings” cross-linked carboxylated styrene butadiene rubber with reprocessing and recycling ability via rearrangements of ionic cross-linkings[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 6981-6990.

    Rahman A Y A, Usharraj A O, Misra B B, et al. Draft genome sequence of the rubber tree Hevea brasiliensis[J]. BMC Genomics, 2013, 14(1): 75.

    Li D J, Deng Z, Qin B, et al. De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.)[J]. BMC Genomics, 2012, 13(1): 192.

    Tang C R, Yang M, Fang Y J, et al. The rubber tree genome reveals new insights into rubber production and species adaptation[J]. Nature Plants, 2016, 2(6): 16073.

    Triwitayakorn K, Chatkulkawin P, Kanjanawattanawong S, et al. Transcriptome sequencing of Hevea brasiliensis for development of microsatellite markers and construction of a genetic linkage map[J]. DNA Research, 2011, 18(6): 471-482.

    Chow K S, Mat-Isa M N, Bahari A, et al. Metabolic routes affecting rubber biosynthesis in Hevea brasiliensis latex[J]. Journal of Experimental Botany, 2012, 63(5): 1863-1871.

    Nawamawat K, Sakdapipanich J T, Ho C C, et al. Surface nanostructure of Hevea brasiliensis natural rubber latex particles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 390(1-3): 157-166.

    Chow K S, Wan K L, Isa M N M, et al. Insights into rubber biosynthesis from transcriptome analysis of Hevea brasiliensis latex[J]. Journal of Experimental Botany, 2007, 58(10): 2429-2440.

    Sansatsadeekul J, Sakdapipanich J, Rojruthai P. Characterization of associated proteins and phospholipids in natural rubber latex[J]. Journal of Bioscience and Bioengineering, 2011, 111(6): 628-634.

    Berthelot K, Lecomte S, Estevez Y, et al. Hevea brasiliensis REF (Hev b 1) and SRPP (Hev b 3): An An overview on rubber particle proteins[J]. Biochimie, 2014, 106: 1-9.

    Hillebrand A, Post J J, Wurbs D, et al. Down-regulation of small rubber particle protein expression affects integrity of rubber particles and rubber content in Taraxacum brevicorniculatum[J]. PLoS One, 2012, 7(7): e41874.

    Duan C F, Argout X, Gébelin V, et al. Identification of the Hevea brasiliensis AP2/ERF superfamily by RNA sequen cing[J]. BMC Genomics, 2013, 14(1): 30.

    Tang C R, Huang D B, Yang J H, et al. The sucrose transporter HbSUT3 plays an active role in sucrose loading to laticifer and rubber productivity in exploited trees of Hevea brasiliensis (para rubber tree)[J]. Plant, Cell and Environment, 2010, 33(10): 1708-1720.

    Dusotoit-Coucaud A, Porcheron B, Brunel N, et al. Cloning and characterization of a new polyol transporter (HbPLT2) in Hevea brasiliensis[J]. Plant and Cell Physiology, 2010, 51(11): 1878-1888.

    Dusotoit-Coucaud A, Kongsawadworakul P, Maurousset L, et al. Ethylene stimulation of latex yield depends on the expression of a sucrose transporter (HbSUT1B) in rubber tree (Hevea brasiliensis)[J]. Tree Pysiology, 2010, 30(12): 1586-1598.

    Deng X M, Guo D, Yang S G, et al. Jasmonate signalling in the regulation of rubber biosynthesis in laticifer cells of rubber tree, Hevea brasiliensis[J]. Journal of Experimental Botany, 2018, 69(15): 3559-3571.

    Montoro P, Wu S, Favreau B, et al. Transcriptome analysis in Hevea brasiliensis latex revealed changes in hormone signalling pathways during ethephon stimulation and consequent Tapping Panel Dryness[J]. Scientific Reports, 2018, 8(1): 1-12.

    de Fa? E. Histo-and cytopathology of trunk phloem necrosis, a form of rubber tree (Hevea brasiliensis Müll. Arg.) Tapping Panel Dryness[J]. Australian Journal of Botany, 2011, 59(6): 563-574.

    Zou Z, Gong J, An F, et al. Genome-wide identification of rubber tree (Hevea brasiliensis Muell. Arg.) aquaporin genes and their response to ethephon stimulation in the laticifer, a rubber-producing tissue[J]. BMC Genomics, 2015, 16(1): 1001.

    Ahrends A, Hollingsworth P M, Ziegler A D, et al. Current trends of rubber plantation expansion may threaten biodiversity and livelihoods[J]. Global Environmental Change, 2015, 34: 48-58.

    Fox J, Castella J C. Expansion of rubber (Hevea brasiliensis) in Mainland Southeast Asia: What are the prospects for smallholders?[J]. The Journal of Peasant Studies, 2013, 40(1): 155-170.

    Li Z, Fox J M. Mapping rubber tree growth in mainland Southeast Asia using time-series MODIS 250 m NDVI and statistical data[J]. Applied Geography, 2012, 32(2): 420-432.

    Dong J W, Xiao X M, Chen B Q, et al. Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery[J]. Remote Sensing of Environment, 2013, 134: 392-402.

    Xu J C, Grumbine R E, Becksch?fer P. Landscape transformation through the use of ecological and socioeconomic indicators in Xishuangbanna, Southwest China, Mekong Region[J]. Ecological Indicators, 2014, 36: 749-756.

    Warren-Thomas E, Dolman P M, Edwards D P. Increasing demand for natural rubber necessitates a robust sustainability initiative to mitigate impacts on tropical biodiversity[J]. Conservation Letters, 2015, 8(4): 230-241.

    Guillaume T, Maranguit D, Murtilaksono K, et al. Sensitivity and resistance of soil fertility indicators to land-use changes: New concept and examples from conversion of Indonesian rainforest to plantations[J]. Ecological Indicators, 2016, 67: 49-57.

    Drescher J, Rembold K, Allen K, et al. Ecological and socio-economic functions across tropical land use systems after rainforest conversion[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371(1694): 10.1098/rstb.2015.0275.

    Clough Y, Krishna V V, Corre M D, et al. Land-use choices follow profitability at the expense of ecological functions in indonesian smallholder landscapes[J]. Nature Communica- tions, 2016(7): 13137.

    Guillaume T, Holtkamp A M, Damris M, et al. Soil degradation in oil palm and rubber plantations under land resource scarcity[J]. Agriculture, Ecosystems & Environment, 2016, 232: 110-118.

    浦城县| 石屏县| 肥西县| 江安县| 庆阳市| 平武县| 卢湾区| 凉城县| 新兴县| 福清市| 故城县| 新绛县| 区。| 久治县| 双流县| 秦皇岛市| 盐山县| 金坛市| 朔州市| 会宁县| 长治县| 湟源县| 乌鲁木齐市| 贡山| 政和县| 浦城县| 勃利县| 遂川县| 天柱县| 苗栗县| 囊谦县| 买车| 卢氏县| 金秀| 荆州市| 中西区| 府谷县| 日照市| 武夷山市| 双鸭山市| 博白县|