華南師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院(510631) 李湖南
這是今年美國數(shù)學(xué)競賽(高三年級)在中國統(tǒng)一使用的考試B 卷.
1.Alicia had two containers.The first wasfull of water and the second was empty.She poured all the water from the first container into the second container,at which point the second container wasfull of water.What is the ratio of the volume of the smaller container to the volume of the larger container?
譯文艾麗西婭有兩個容器.第一個裝滿了的水,第二個是空的.她把第一個容器里的水全部倒進(jìn)第二個容器里,這時第二個容器里充滿了的水.問小容器與大容器的容積之比是多少?
解設(shè)第一、二個容器的容積分別為V1和V2,依題意有故(D)正確.
2.Consider the statement,“Ⅰfnis not prime,thenn-2 is prime.”Which of the following values ofnis a counterexample to this statement?
(A)11 (B)15 (C)19 (D)21 (E)27
譯文考慮陳述“若n不是素數(shù),則n-2 是素數(shù).”以下哪個值n是這個陳述的一個反例?
解反例是指符合命題的條件但不符合命題的結(jié)論的例子,即滿足“若n不是素數(shù),則n-2 不是素數(shù).”選項中只有27 滿足,故(E)正確.
3.Which one of the following rigid transformations(isometries)maps the line segmentonto the line segmentA′B′so that the image ofA(-2,1)isA′(2,-1)and the image ofB(-1,4)isB′(1,-4)?
(A)reflection in the-axis
(B)counterclockwise rotation around the origin by 90°
(C)translation by 3 units to the right and 5 units down
(D)reflection in the-axis
(E)clockwise rotation about the origin by 180°
譯文以下哪個剛體變換(等距變換)將線段映成線段使得點A(-2,1)對應(yīng)A′(2,-1)且點B(-1,4)對應(yīng)B′(1,-4)?
解由于點A(-2,1)和A′(2,-1)的兩個坐標(biāo)均互為相反數(shù),可知原點O為線段AA′的中點,同理O也為線段BB′的中點.因此,將線段繞原點O順時針旋轉(zhuǎn)180°可得到,故(E)正確.
4.A positive integernsatisfies the equation (n+ 1)! +(n+2)!=440·n!.What is the sum of the digits ofn?
(A)2 (B)5 (C)10 (D)12 (E)15
譯文正整數(shù)n滿足方程(n+1)!+(n+2)!=440·n!,則n的各位數(shù)字之和是多少?
解原方程等價于(n+1)+(n+1)(n+2)=440,解得n=19,故(C)正確.
5.Each piece of candy in a shop costs a whole number of cents.Casper has exactly enough money to buy either 12 pieces of red candy,14 pieces of green candy,15 pieces of blue candy,ornpieces of purple candy.A piece of purple candy costs 20 cents.What is the least possible value ofn?
(A)18 (B)21 (C)24 (D)25 (E)28
譯文商店里的每一塊糖果的價格都是整數(shù)美分.卡斯帕剛好夠錢買12 塊紅糖,或14 塊綠糖,或15 塊藍(lán)糖,或n塊紫糖.1 塊紫糖值20 美分.問n的最小可能值是多少?
解最小公倍數(shù)[12,14,15]= 420,卡斯帕的錢一定是420 美分的整數(shù)倍,因此最小值n= 420/20=21,故(B)正確.
6.Ⅰn a given plane,pointsAandBare 10 units apart.How many pointsCare there in the plane such that the perimeter of?ABCis 50 units and the area of ?ABCis 100 square units?
(A)0 (B)2 (C)4 (D)8 (E)infinitely many
譯文在一個給定的平面上,點A,B相距10 個單位,有多少個點C使得?ABC的周長是50 個單位且面積是100個平方單位?
解不妨設(shè)A(0,0),B(10,0),由于?ABC的面積為100,則點C到AB的高為20,可設(shè)C(x,20),此時,?ABC的周長為10+20+20=50,因此符合條件的點C不存在,故(A)正確.
7.What is the sum of all real numbersxfor which the median of the numbers 4,6,8,17,andxis equal to the mean of those five numbers?
譯文所有使得五個數(shù)4,6,8,17 和x的中位數(shù)和平均數(shù)相等的實數(shù)x之和是多少?
解中位數(shù)只可能是6,8 或x: (1)若中位數(shù)是6,則解得x=-5;(2)若中位數(shù)是8,則解得x= 5,不符合要求; (3)若中位數(shù)是x,則解得也不符合要求.故(A)正確.
8.Letf(x)=x2(1-x)2.What is the value of the sum
譯文設(shè)f(x)=x2(1-x)2,則下列式子的值是多少?
因此所求式子為0,故(A)正確.
9.For how many integral values ofxcan a triangle of positive area be formed having side lengths log2x,log4x,3?once.(Paula is allowed to visit a city more than once.)How many different routes can Paula take?
(A)0 (B)1 (C)2 (D)3 (E)4
圖1
圖2
譯文圖1給出了12 個城市和連接兩個城市之間的17條路段.保羅想從城市A出發(fā),不重復(fù)地走過13 條路段,到達(dá)城市L(允許保羅經(jīng)過同一個城市多次).問保羅有多少條路可以選擇?
解如圖2所示,點A,D,I,L的度數(shù)均為2,點B,C,E,H,J,K的度數(shù)均為3,點F,G的度數(shù)均為4.由于不走重復(fù)路段,所以除了出發(fā)城市和到達(dá)城市的度數(shù)是奇數(shù)之外,其它經(jīng)過城市的度數(shù)必須是偶數(shù).又要求走過13 條路段,即有4 條路段不需走過,度數(shù)和要減少8,可 知 點A,B,C,E,H,J,K,L的 度 數(shù) 均 需 減 少1,而 點D,F,G,I的度數(shù)均保持不變.因此,去掉的路段只能是AE,BC,JK,HL.所以保羅選擇的路為
每個圈均有順時針和逆時針兩種方式,故共有4 種選擇,(E)正確.
11.How many unordered pairs of edges of a given cube determine a plane?
(A)57 (B)59 (C)61 (D)62 (E)63
譯文有多少個整數(shù)x使得以log2x,log4x,3 為邊長可以構(gòu)成一個三角形?
解由于log2x ≥log4x,當(dāng)x為 正 整數(shù)時.以log2x,log4x,3 為邊長可以構(gòu)成一個三角形,從而只要滿足解得4<x <64,即滿足條件的x共有59 個,故(B)正確.
10.The figure below is a map showing 12 cities and 17 roads connecting certain pairs of cities.Paula wishes to travel along exactly 13 of those roads,starting at cityAand ending at cityL,without traveling along any portion of a road more than
(A)12 (B)28 (C)36 (D)42 (E)66
譯文在一個立方體中,有多少對無序的邊決定一個平面?
圖3
解如圖3所示,ABCD -EFGH是一個立方體,對于任意一條邊,不妨設(shè)為AB,可以與AB構(gòu)成一個平面的邊有BC,CD,AD,AE,BF,EF,HG,共7 條.因此所求數(shù)目為對,故(D)正確.
12.Right triangleACDwith right angle atCis constructed outwards on the hypotenuseof isosceles right triangleABCwith leg length 1,as shown,so that the two triangles have equal perimeters.What is sin(2∠BAD)?
圖4
譯文如圖4所示,ABC是一個腰長為1 的等腰直角三角形,在斜邊上建立直角三角形ACD,∠ACD為直角,使得兩個三角形周長相等.求sin(2∠BAD)的值是多少?
解依題意,∠CAB= 45°,設(shè)CD=x,則由于周長相等,從而CD+AD=解得于是進(jìn)而于是有
故(D)正確.
13.A red ball and a green ball are randomly and independently tossed into bins numbered with the positive integers so that for each ball,the probability that it is tossed into binkis 2-kfork=1,2,3,··· ,What is the probability that the red ball is tossed into a higher-numbered bin than the green ball?
譯文一個紅球和一個綠球被隨機(jī)地、獨立地拋入用正整數(shù)編號的箱子中,每個球被拋入箱子k的概率為2-k,其中k=1,2,3···.則紅球被拋入比綠球編號更高的箱子的概率是多少?
解紅球被拋入比綠球編號更高的箱子的概率與綠球被拋入比紅球編號更高的箱子的概率是相等的,而紅球與綠球被拋入同一個箱子的概率是結(jié)果為因此所求概率為故(C)正確.
14.LetSbe the set of all positive integer divisors of 100,000.How many numbers are the product of two distinct elements ofS?
(A)98 (B)100 (C)117 (D)119 (E)121
譯文設(shè)S是100,000 的所有正整數(shù)因子的集合,則S中兩個不同元素的乘積共有多少個?
解100000 = 25×55,則S={2i×5j:i,j=0,1,2,3,4,5},于是S中兩個元素乘積的集合為{2i×5j:i,j=0,1,2,3,··· ,10},共121 個數(shù).注意到題目要求兩個元素不同,所以乘積中要去掉1,210,510,210×510這四個數(shù),剩下117 個,故(C)正確.
15.As showing in the figure,line segmentis trisected by pointsBandCso thatAB=BC=CD= 2.Three semicircles of radius 1,have their diameters onlie in the same halfplane determined by lineAD,and are tangent to lineEGatE,FandG,respectively.A circle of radius 2 has its center atF.The area of the region inside the circle but outside the three semicircles,shaded in the figure,can be expressed in the formwherea,b,canddare positive integers andaandbare relatively prime.What isa+b+c+d?
(A)13 (B)14 (C)15 (D)16 (E)17
圖5
圖6
譯文如圖5所示,線段被點B,C三等分,AB=BC=CD=2.三個半徑為1 的半圓和的直徑均在上,位于由直線AD確定的同一半平面上,且和直線EG分別相切于點E,F,G.另有一個以點F為圓心、半徑為2 的圓,圓內(nèi)而三個半圓外的區(qū)域被涂成了陰影部分,面積可以表示為其中a,b,c,d都是正整數(shù)且a,b互素.問a+b+c+d是多少?
解如圖6所示,設(shè)⊙F與線段AD相交于點H,I,取線段BC,CD的中點分別為J,K,連結(jié)FH,FI,FJ,GK,則FJKG是個矩形,且FJ=GK= 1,從而∠IFJ= 60°,所求陰影部分的面積S=S1+S2+S3,其中S1為⊙F的上半圓,S2為⊙F被HI所截的弓形,S3為其余部分.于是,因此S=即有a=7,b=3,c=3,d=4,得a+b+c+d=17,故(E)正確.
16.There are lily pads in a row numbered 0 to 11,in that order.There are predators on lily pads 3 and 6,and a morsel of food on lily pad 10.Fiona the frog starts on pad 0,and from any given lily pad,has achance to hop to the next pad,and an equal chance to jump 2 pads.What is the probability that Fiona reaches pad 10 without landing on either pad 3 or pad 6?
譯文有0 到11 號睡蓮葉子按順序排成一排,3 號和6號蓮葉上有捕食動物,10 號蓮葉上有一小塊食物.青蛙菲奧納在0 號蓮葉上,從任意一片蓮葉開始,它跳到下一片蓮葉和跳到下兩片蓮葉的概率均為問菲奧納不經(jīng)過3 號和6號蓮葉就到達(dá)10 號蓮葉的概率是多少?
解菲奧納不經(jīng)過3 號和6 號蓮葉,就必須從2 號跳到4 號,再跳到5 號,然后跳到7 號,這三步連跳的概率是菲奧納從0 號跳到2 號有兩種方法: 直接跳過去,或者先跳到1 號再跳到2 號,概率是菲奧納從7 號跳到10 號有三種方法: 一步步跳過去,或者先跳到8 號再跳到10 號,或者先跳到9 號再跳到10 號,概率是因此所求概率為故(A)正確.
17.How many nonzero complex numberszhave the property that 0,zandz3,when represented by points in the complex plane,are the three distinct vertices of an equilateral triangle?
(A)0 (B)1 (C)2 (D)4 (E)infinitely many
譯文有多少個非零復(fù)數(shù)z使得三個復(fù)數(shù)0,z,z3在復(fù)平面上表示的點恰好構(gòu)成一個等邊三角形?
解設(shè)z=r(cosθ+i sinθ),其中r >0,0° ≤θ <360°,則z3=r3(cos 3θ+ i sin 3θ),由于0,z,z3在復(fù)平面上表示的點構(gòu)成正三角形,從而有k ∈?,解得r= 1,θ= 30°,150°,210°,330°,所以符合條件的z有4 個,故(D)正確.
18.Square pyramidABCDEhas baseABCD,which measures 3 cm on a side,and altitudeperpendicular to the base,which measures 6 cm.PointPlies on,one third of the way fromBtoE;pointQlies on,one third of the way fromDtoE;and pointRlies on,two thirds of the way fromCtoE.What is the area,in square centimeters,of ?PQR?
圖7
譯文ABCDE是一個正方棱錐,底面ABCD是一個邊長為3 cm 的正方形,棱垂直于底面,長度為6 cm.點P是上從B到E的第一個三等分點;點Q是上從D到E的第一個三等分點;點R是上從C到E的第二個三等分點.則?PQR的面積是多少平方厘米?
解如圖7所示,建立空間直角坐標(biāo)系,設(shè)A(0,0,0),B(0,3,0),C(3,3,0),D(3,0,0),E(0,0,6),則有P(0,2,2),Q(2,0,2),R(1,1,4),于是求得PR=同理有點R到PQ邊上的高為從而所求面積為故(C)正確.
19.Raashan,Sylvia,and Ted play the following game.Each starts with$1.A bell rings every 15 seconds,at which time each of the players who currently has money simultaneously chooses one of the other two players independently and at random and gives$1 to that player.What is the probability that after the bell has rung 2019 times,each player will have$1? (For example,Raashan and Ted may each decide to give$1 to Sylvia,and Sylvia may decide to give her dollar to Ted,at which point Raashan will have$0,Sylvia will have$2,and Ted will have$1,and that is the end of the first round of play.Ⅰn the second round Raashan has no money to give,but Sylvia and Ted might choose each other to give their$1 to,and the holdings will be the same at the end of the second round.)
譯文拉珊、西爾維婭和特德在玩下列游戲: 開始每人持有1 美元,鈴每15 秒響一次,然后每個手上有錢的玩家同時獨立、隨機(jī)地選擇另外兩個玩家中的一個,并給該玩家1美元.請問鈴響2019 次后,每個玩家仍然持有1 美元的可能性是多少? (例如,拉珊和特德各自決定給西爾維婭1 美元,西爾維婭決定給特德1 美元,第一輪游戲結(jié)束,此時拉珊將得到0 美元,西爾維婭將得到2 美元,特德得到1 美元,在第二輪中,拉珊沒有錢可給,但西爾維婭和特德可能會選擇給對方1 美元,那么第二輪結(jié)束時,他們的持有量將不變.)
解記拉珊、西爾維婭和特德分別持有的現(xiàn)金m,n,k美元為 (m,n,k),則在任何時候都有 (m,n,k)∈ {(1,1,1),(2,1,0),(2,0,1),(1,2,0),(1,0,2),(0,1,2),(0,2,1)}.
(1)當(dāng)(m,n,k)= (1,1,1)時,鈴響之后,可能出現(xiàn)以下8 種情況:
此時的結(jié)果分別為(1,1,1),(1,1,1),(2,1,0),(1,2,0),(0,2,1),(0,1,2),(2,0,1),(1,0,2),即一輪過后結(jié)果仍然是(1,1,1)的概率為
(2)當(dāng)三個人持有現(xiàn)金不一樣的時候,不妨設(shè)(m,n,k)=(2,1,0),鈴響之后,可能出現(xiàn)以下4 種情況:
此時的結(jié)果分別為(2,1,0),(1,1,1),(2,0,1),(1,0,2),即一輪過后結(jié)果是(1,1,1)的概率為: 因此,不管哪種情況,2019 輪過后,結(jié)果回到(1,1,1)的概率就是,故(B)正確.
20.PointsA(6,13)andB(12,11)lie on a circleωin the plane.Suppose that the tangent lines toωatAandBintersect at a point on thex-axis.What is the area ofω?
譯 文A(6,13)和B(12,11)是平面上的一個圓ω上的兩點.設(shè)ω上的過A和B兩點的切線相交于x軸上的同一個點,則圓ω的面積是多少?
圖8
解如圖8所示,設(shè)圓ω的圓心為E,半徑為r,兩條切線交點為C,點C的坐標(biāo)為(x,0),連結(jié)EA,EB,EC,AB,且AB交EC于D,依題意有CA=CB,EA=EB,則點E,C均在AB的中垂線上,即EC ⊥AB,且有AC=DB,于是點D的坐標(biāo)為(9,12),另外,CB=解 得x= 5,即C的坐標(biāo)為(5,0),代入上式可得再 根據(jù)?BCD∽ ?CDB,可得有BE=因此,圓ω的面積為故(C)正確.
21.How many quadratic polynomials with real coefficients are there such that the set of roots equals the set of coefficients?(For clarification: Ⅰf the polynomial isax2+bx+0,and the roots arerands,then the requirement is that{a,b,c}={r,s}.)
(A)3 (B)4 (C)5 (D)6 (E)infinitely many
譯文有多少個實系數(shù)二次多項式使得根的集合與系數(shù)的集合相等? (舉例說明: 若多項式為ax2+bx+0,且根為r和s,則需要{a,b,c}={r,s}.)
解依題意,多項式ax2+bx+0 的系數(shù)中必出現(xiàn)相等的情況,分成以下四種:
(1)a=b=c,即a(x2+x+1): 由于?=-3a2<0,從而多項式?jīng)]有實根,不符合條件;
(2)a=b,即ax2+ax+c:兩根為a,c,此時有a+c=-1,ac=解得兩組解為或
(3)a=c,即ax2+bx+a:兩根為a,b,此時有a+b=ab= 1,化簡后可得a3+a+ 1 = 0,經(jīng)圖像分析可知該方程有唯一一組實數(shù)解;
(4)b=c,即ax2+bx+b:兩根為a,b,此時有解得一組解為
綜上可得,符合條件的二次多項式共有4 個,故(B)正確.
22.Define a sequence recursively byx0= 5 andfor all nonnegative integersn.Letmbe the least positive integer such thatⅠn which of the following intervals doesmlie?
(A)[9,26](B)[27,80](C)[81,242](D)[243,728](E)[729,∞)
譯文定義遞歸數(shù)列如下:x0= 5,xn+1=,?n ∈?.令m是使得成立的最小正整數(shù),則m在以下哪個區(qū)間?
由于x0>4,可得xn+1>4,?n ∈?; 又xn+1- xn=可得數(shù)列{xn}是單調(diào)下降的,則4<xn ≤5,從而
23.How many sequences of 0s and 1s of length 19 are there that begin with a 0,end with a 0,contain no two consecutive 0s,and contain no three consecutive 1s?
(A)55 (B)60 (C)65 (D)70 (E)75
譯文有多少個長度為19 的只含0 和1 的序列: 以0 開頭,以0 結(jié)尾,不包含兩個連續(xù)的0,也不包含三個連續(xù)的1?
解0 后面只能接1 或11,記01 為A,011 為B,原問題就相當(dāng)于將一些A和B排列在長度為18 的序列上,可能出現(xiàn)(1)6 個B: 只有1 種排列; (2)4 個B,3 個A: 共有種排列;(3)2 個B,6 個A: 共有種排列;(4)9 個A: 只有1 種排列.因此,符合條件的序列共有1+35+28+1=65 個,故(C)正確.
24.Letω=i.LetSdenote all points in the complex plane of the forma+bω+cω2,where0≤a ≤1,0≤b ≤1 and 0≤c ≤1.What is the area ofS?
譯文設(shè)S表示復(fù)平面上所有形式為a+bω+cω2的點的集合,其中0≤a,b,c ≤1.問S的面積是多少?
解如圖9所示,在復(fù)平面上,點A代表ω,點B代表ω2,則根據(jù)向量的加法,所有形式為bω+cω2,0≤b,c ≤1 的點集構(gòu)成一個菱形AOBD及其內(nèi)部.
再令點C代表1,則所有形式為a+bω+cω2,0≤a,b,c ≤1 的點集就是將菱形AOBD向右平移1 個單位,即得到正六邊形AECFBD及其內(nèi)部.因此所求面積為故(C)正確.
圖9
25.LetABCDbe a convex quadrilateral withBC= 2 andCD= 6 .Suppose that the centroids of ?ABC,?BCDand ?ACDform the vertices of an equilateral triangle.What is the maximum possible value of the area ofABCD?
譯文設(shè)ABCD是一個凸四邊形,BC= 2,CD= 6,若?ABC,?BCD,?ACD的重心構(gòu)成一個等邊三角形,則ABCD的面積最大值是多少?
解如圖10 所示,分別取BC,CD,AC的中點為E,F,G,連結(jié)AE,BG交于點O1,連結(jié)BF,DE交于點O2,連結(jié)AF,DG交于點O3,則 點O1,O2,O3分別為?ABC,?BCD,?ACD的重心,由題意可得,?O1O2O3是等邊三角形.
圖10
另外,同 理2?O1O3‖ EF,而EF是?BDC的中位線,即得EF ‖BD ?O1O3‖BD.因此,?ABD也是等邊三角形.則所求面積為SABCD=S?ABD+S?BCD=,過點D作BC的垂線,交BC的延長線于H,則有DH=CDsin ∠DCH=6 sin ∠BCD,CH=-6 cos ∠BCD,于 是BD2=BH2+DH2= (2-6 cos ∠BCD)2+(6 sin ∠BCD)2=40-24 cos ∠BCD,進(jìn)而
當(dāng)∠BCD= 150°時,面積取最大值為故(C)正確.