• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reasoning with Rawls’Maximin Criterion*

    2020-01-03 06:33:46YaozhenHuangWeiXiong
    邏輯學(xué)研究 2019年6期

    Yaozhen Huang Wei Xiong

    Abstract.Reasoning about group rationality is a very important research topic in the areas of social choice,game theory,social norms,and among others.In this paper we develop strategic games with the concept of Rawls group rationality and argue the existence of solutions in such games.Further,we use the established strategic games to analyze some social dilemmas,which in turn helps us understand the social norm of cooperation.

    1 Introduction

    In traditional game theory,players are assumed to be rational individuals who always pursue the maximization of their own interests when they make decisions.[14])Based on this assumption,we can find Nash equilibria as solutions for a game.Yet,when analyzing such solutions of games,we might face a situation in which there is a conflict between individual and collective interest.That is,we will face a social dilemma in which the Nash equilibrium results in outcomes below the Pareto optimal.Particularly,the prisoner’s dilemma and the public goods game are well-known examples of social dilemmas.Indeed,in these games all individuals are all better off if all cooperate than if all defect,the action being rational for each player.

    Currently,there has been an increasing research focus on social norms involving dilemmas in the literature.One way for exploring the problem of social dilemmas is to develop a norm for social cooperation under the concept of collective rationality.In [3,11,15],the researchers provide some valuable ideas concerning the question of how to identify a group utility and thus offer some approaches to studying social norms and team reasoning.

    Rawls’ theory of justice ([12])is another one,being worthy of consideration here,to guide for studying social norms.This theory,an alternative to classical utilitarianism,is a monumental work in moral philosophy and philosophy of political science.One of main contributions of the theory is that it offers us an essential understanding of fairness.([6])In particular,Rawls proposes a maximin criterion,a wellknown decision rule,which embodies his basic idea about social fairness.

    As such the purpose of the paper is to develop a strategic game based on Rawls’maximin criterion and use the model to analyze some social dilemmas.Our basic idea is that the preference of each player in a game can be represented by Rawls’maximin criterion.With which,we can define a game model and its solutions,social welfare equilibria ([11]).We can also show that Rawls’ maximin criterion for the fairness norm can induce a cooperative behavior in some canonical social dilemmas,in contrast to the result of reasoning with traditional concept of rationality.

    The remainder of this paper is organized as follows.In Section 2,we recall Rawls’maximin criterion and define the concept of Rawls group rationality.Based on the concept,we establish strategic games with Rawls group rationality,and argue the existence of social welfare equilibria,solutions for such games.Section 3 uses our game model to analyze the prisoner’s dilemma and public goods games,showing that Rawls’maximin criterion can induce a cooperative behavior in these social dilemmas.Section 4 concludes the paper and suggests some possible future work.

    2 Strategic Games with Rawls Group Rationality

    In this section,we will establish strategic games based on the concept of Rawls group rationality.To this end,let us first recall some notions of Rawls’ theory of justice.

    2.1 Rawls Group Rationality

    In his seminal book([12]),Rawls argues a well-known opinion in which a fair society should be organized so as to admit economic inequalities to the extent that they are beneficial to the less advantaged agents.With this,he proposes a maximin criterion for the fairness norm.The main idea of this criterion is that we should make the least happy agent as happy as possible when considering a fairness norm.More specifically,the social preference should maximize the collective utility that is represented by the individual’s utility of the less advantaged agents.Formally,we have the following definition.

    Definition 1(Rawls’maximin criterion)Given a set of possible outcomesW,and a groupNof decision makers.LetUi:W →R stand for the(expected)utility function of individualirepresenting her preference over the setW,i∈N.We say that a social preferenceof the group satisfies Rawls’maximin criterion if,for anyω,ω′∈W,

    LetI(ω)=Then Formula(1)can also be represented as

    In fact,I(ω)can be interpreted as the group(or collective,or social welfare)utility of the outcomeω.In the literature,I(ω)is often called the degree of ideality of the outcomeω(with Rawls’maximin criterion).([9])

    To illustrate Rawls’ maximin criterion,let us consider the following example.Suppose that the set of outcomesW={ω1,ω2},the set of decision makersN={1,2,3},and the utilities of the decision makers are as follows:

    Then,we haveI(ω1)=U1(ω1)=1,andI(ω2)=U1(ω2)=2.By Definition 1,the social preference of the group isω1?ω2.

    Definition 2(Rawls group rationality)A group is Rawls group rational if the social preference of the group satisfies Rawls’maximin criterion.

    An individual of a group is not a self-interested agent when making decision with Rawls group rationality([8,5]).Instead,she will maximaize the degree of ideality if the group is Rawls group rational.

    2.2 Game Model

    This subsection provides strategic games based on the concept of Rawls group rationality.

    Definition 3(Strategic games with Rawls group rationality)A strategic game with Rawls group rationality is a tupleG=〈N,(Ai)i∈N,(Ui)i∈N,I〉,where:

    ·N={1,...,n}is a finite set of players;

    ·for everyi∈N,Aiis playeri’s finite set of actions(pure strategies);

    ·for everyi∈N,Uiis the expected utility function of playerirepresenting her preference over(mixed)strategy profiles1As usual, a mixed strategy of a player, denoted as a Greek alphabet, is defined as a probability distribution over her set of actions.;

    ·Iis a function mapping every strategy profile to a real number measuring the degree of ideality of the strategy profile.

    It can be seen that a strategic game with Rawls group rationality is established by adding the functionIthat represents the social preference of the group of the players in this game to a traditional strategic game.

    Before presenting the solution concept for a strategic game with Rawls group rationality,let us recall some notions first and provide a formula for determining the degree of ideality to a mixed strategy profile.We writeσi(ai)to stand for the probability assigned by playeri’s mixed strategyσito her actionai.Given a strategic gameG=〈N,(Ai)i∈N,(Ui)i∈N,I〉,a mixed strategy profileσ=(σi,σ-i).Then,the expected utility of playerito a strategy profileσis a weighted average of her expected utilities to all actions when other players use the mixed strategy profileσ-i.Hence,we have

    Definition 4(Rawls’maximin strategy)Given a strategic game with Rawls group rationalityG=〈N,(Ai)i∈N,(Ui)i∈N,I〉,a mixed strategy is the Rawls’ maximin strategy of playeriif it solves the problemwhere Σiis the strategic space of playeri.

    There are two measurements in a strategic game with Rawls group rationality.One is the utility functions representing the preferences of players in the game,while another is the function of the degree of ideality(i.e.,the group utility function)representing the social preference of the group of players.Without the latter one,we shall obtain a traditional strategic game.As usual,we can obtain Nash equilibria as solutions for the game.If each player in a strategic game employs Rawls’maximin criterion as the decision rule in the game,then we shall obtain social welfare equilibria as solutions for such a game.

    Definition 5(Social welfare equilibrium)Given a strategic game with Rawls group rationalitya strategy profileis a social welfare equilibrium of the game if for any strategyσiof playeri,

    Given a strategic game with Rawls group rationality

    Proposition 6Any strategic game with Rawls group rationality has a social welfare equilibrium.

    ProofGiven a strategic game with Rawls group rationalityG,we can construct its traditional strategic formΓ.It follows from Definition 5 and the definition of Nash equilibrium in traditional game theory that a Nash equilibrium inΓis a social welfare equilibrium inG,and vise versa.Since any traditional strategic game in which each player has finite actions has a mixed strategy Nash equilibrium,any strategic game with Rawls group rationality also has a social welfare equilibrium. □

    Proposition 7The strategy chosen by each player in a social welfare equilibrium of a strategic game with Rawls group rationality is her Rawls’maximin strategy,and vise versa.

    ProofGiven a gameG=〈N,(Ai)i∈N,(Ui)i∈N,I〉,if the strategy profileσ*=is a social welfare equilibrium of this game,then for anyσi∈Σi,where Σiis playeri’s mixed strategy space,we haveHence,solves the problemwhich shows that the strategyis a Rawls’maximin strategy of playeri.

    On the other direction,suppose thatis a Rawls’maximin strategy of playeri.Then for anysolves the problemwhereHence,we haveBy Definition 5,the strategy profileis a social welfare equilibrium of the game. □

    To find social wefare equilibria in a game with Rawls group rationality,each player uses the functionIrather than the expected utilities to represent her preference over strategy profiles.With this function,we can define a best response of a player to other players’strategies as follow.

    Definition 8(Best response function)Given a strategic game with Rawls group rationality

    the playeri’s best response functionBiis identified as

    Following Definition 5 and Definition 8,we can verify the following proposition.

    Proposition 9Given a strategic game with Rawls group rationalityG,the mixed strategy profileis a social welfare equilibrium of gameGif and only if for each playeri,

    3 Analysis of Social Norms

    Social norms,the unplanned results of social interactions,are efficient means to achieve social welfare.([1,16])As a formal framework for modeling strategic interactions,game theory provides us a powerful tool to study social norms,which can help us understand some seemingly puzzling behaviors.

    Studying cooperation in social dilemmas is one of the main research topics in the area of social norms.In this section,we will use the strategic games we established in the previous section to analyze some social dilemmas.

    3.1 Prisoner’s Dilemma Game

    The prisoner’s dilemma is a well-known example for studying social cooperation.The payoff matrix of the prisoner’s dilemma is shown in Figure 1,whereCdenotes the action“cooperation”,andDdenotes the action“defection”.The“dilemma”faced by two prisoners of the game is that,whatever the other does,each is better off defecting than cooperating;That is,for each player,the cooperation action is strictly dominated by the defection action.Actually,there is a unique Nash equilibrium(D,D)in the prisoner’s dilemma by traditional game theory.However,the outcome yielded when both defect is worse for each than that they would have obtained when both cooperate.

    Let us now analyze this social dilemma with our model.In fact,we have the following proposition.

    Proposition 10The strategy profiles(D,D)and(C,C)are the social welfare equilibria in the strategic game with Rawls group rationality for the prisoner’s dilemma.

    ProofWe first construct a model with Rawls group rationality for the prisoner’s dilemma game

    where

    ·the set of playersN={1,2};

    ·the players’set of actionsA1=A2={C,D};

    ·under the payoff matrix shown in Figure 1,the players’ expected payoffsU1andU2to the strategy profileσ=(σ1,σ2),whereσ1=(p,1-p)andσ2=(q,1-q),are as follows

    ·the functionIis given by Formula(3)as follows

    We shall now find the social welfare equilibria in gameGPD.By Definition 8,we have

    Hence,by Proposition 9 there are four possible candidates for the social welfare equilibria in the gameGPD,i.e.,((0,1)(0,1)),((0,1)(1,0)),((1,0)(1,0)),and((1,0)(0,1)),in the case ofp=q.Under the conditionp=q,we shall obtain two strategy profiles((0,1)(0,1))and((1,0)(1,0)),i.e.,(D,D)and(C,C),are the social welfare equilibria in this game. □

    Both players’best response functions can be illustrated by Figure 2,where each intersection might correspond a social welfare equilibrium in the game.More specifically,the intersections of the first two figures in Figure 2 determine the social welfare equilibria(C,C)and(D,D),respectively,for the prisoner’s deilemma.By contrast,the intersections (D,C)and (C,D)in the latter two figures do not yield the social welfare equilibria because they are in contradiction with the conditionp=q.

    This proposition therefore establishes that

    (i)Rawls’ maximin criterion for the fairness norm can induce a cooperative behavior in the prisoner’s dilemma,in contrast to the result of reasoning with traditional concept of rationality;

    (ii)A strictly dominated action in traditional strategic games can be used with positive probability in the social welfare equilibria for the games under the concept of Rawls group rationality.

    3.2 Public Goods Games

    Another canonical example for studying the norms of human cooperation is a public goods game,which can be regarded as a version ofN-person prisoner’s dilemma.([13])

    A typical game situation of public goods games can be found in [2,4,7].We shall describe the situation briefly in the follows.A person provides ten dollars to each of ten players,and the players may put their money into a common pool.The person then triples the amount in this pool and divides it equally among these players regardless of the amount of the individual’s contribution.Hence,each player will receive 30 dollars for a maximal return if each player offers a contribution.But each player will be tempted as a free rider,who contributes nothing;that is,being a free rider is the dominating strategy for the players in this game.

    More generally,assume that there arenplayers in a group,where players can either contribute some fixed amountcor nothing at all.Suppose again that the return of the public good(i.e.,the payoff to each player of the group)depends on the number of cooperators among the public goods game,denoted asnc.Specifically,the net payoffs for cooperatorsPcand defectorsPdare given by

    where 0≤nc ≤n,andrdenotes the interest rate on the common pool.In particular,the parameterris usually assumed in the range 1<r <nin the literature of public goods games.([4])Clearly,C(cooperation)is strictly dominated byD(defection),and the individuals of this group are facing a social dilemma.

    Next we shall analyze the social dilemma in public goods games with our framework.The following proposition shows that players have an incentive to chooseCunder Rawls group rationality.

    Proposition 11The strategy profile(C,···,C)is the social welfare equilibrium in the strategic game with Rawls group rationality for the public goods game.

    ProofUsing our framework,we can construct a game model for modeling public goods gamesGPG=〈N,(Ai)i∈N,(Ui)i∈N,I〉,where

    ·the set of playersN={1,···,n};

    ·for each playeri∈N,the set of actionsAi={C,D};

    ·for each playeri∈N,the utility functionUiis given bywhereA-iis the action profile of players other than playeriandncis the number of cooperators,0≤nc ≤n;

    ·the degree of idealityI(σ)to a pure strategy profileσis determined by the utility functionsUi.

    Note that given a gameGPGand any pure strategy profileσincludingnccooperation actions,its degree of ideality is equal to the payoff of a player choosing the actionC.That is,

    We then can find the best response function for each player in the game.In fact,the best response action of any playerito the profile of the other players’actions is“cooperation”.To show this,let us assume that there arenccooperation actions in the profileA-i.If playeriselects actionCgiven the profileA-i,then we have

    Again,if playerichooses actionDto response the profileA-i,then we obtain

    Hence,we haveI(C,A-i)>I(D,A-i),which establishesBi(A-i)={C}.As a result,there is a unique social welfare equilibrium(C,···,C)in the public goods gamesGPG. □

    Note that the social welfare equilibrium (C,···,C)yields a maximal social welfarenrcand in turn offers a maximal payoff(r-1)cfor each player in the games.In view of this,there is an inspiration for each player to employ Rawls’ maximin criterion as a decision rule when making decisions.

    In the public goods games,players have an incentive to deviate from cooperation,by which they consume the public goods without paying any cost.Using Rawls maximin criterion as the decision rule for everyone in a group when facing such social dilemmas provides a valuable approach to solving these problems.A social norm for cooperation,yielding a maximal social welfare by offering contribution,is,after all,a desired one.

    4 Conclusion

    Traditional game theory assumes that players are self-interested agents who identify their preferences over strategy profiles by maximizing expected utilities.We might face a social dilemma,a conflict between individual and collective interest,when analyzing some games under this assumption.Based on the Rawls’maximin criterion,we have defined the concept of Rawls group rationlity,where we can measure group payoffs (welfare)for strategy profiles that represent the players’ preferences.We have developed a game model under the concept of Rawls group rationality.We have also argued the existence of social welfare equilibria in such games,and established that a strictly dominated action in a traditional strategic game can be used with positive probability in the social welfare equilibria.We have further analyzed two social dilemmas by our model,showing that we have provided an approach to understanding a variety of seemingly puzzling behaviors.

    Considering future work,one interesting project is to construct a logic language for capturing the concepts in the game theory established in this paper and exploring the cognitive conditions for social welfare equilibria.

    日日爽夜夜爽网站| 纵有疾风起免费观看全集完整版| 看非洲黑人一级黄片| 精品久久国产蜜桃| 午夜激情av网站| 亚洲av成人精品一区久久| 看十八女毛片水多多多| 人人妻人人澡人人看| 天堂8中文在线网| 亚洲精品成人av观看孕妇| 国产精品麻豆人妻色哟哟久久| 黄色配什么色好看| 视频区图区小说| 午夜免费鲁丝| 嘟嘟电影网在线观看| 久久久欧美国产精品| 夫妻性生交免费视频一级片| 日韩中字成人| 91在线精品国自产拍蜜月| 韩国av在线不卡| 青春草视频在线免费观看| 国产有黄有色有爽视频| av又黄又爽大尺度在线免费看| 美女内射精品一级片tv| 国产日韩欧美亚洲二区| 插逼视频在线观看| 亚洲av成人精品一二三区| 日韩成人av中文字幕在线观看| 久久精品国产亚洲网站| 久久av网站| 亚洲一区二区三区欧美精品| 国产片内射在线| 欧美 亚洲 国产 日韩一| 午夜精品国产一区二区电影| 亚洲经典国产精华液单| 日韩三级伦理在线观看| 久久久久精品性色| 亚洲精华国产精华液的使用体验| 久久久久久久久久久久大奶| 久久久久精品久久久久真实原创| 亚洲高清免费不卡视频| tube8黄色片| 99国产综合亚洲精品| 草草在线视频免费看| 亚洲欧美日韩卡通动漫| 亚洲精品一区蜜桃| 中文字幕人妻丝袜制服| 啦啦啦在线观看免费高清www| 最近手机中文字幕大全| 午夜福利视频在线观看免费| 边亲边吃奶的免费视频| 久久久精品94久久精品| 久久精品夜色国产| 色5月婷婷丁香| 最新的欧美精品一区二区| 欧美国产精品一级二级三级| 韩国高清视频一区二区三区| 黄色一级大片看看| 日韩中字成人| 人妻人人澡人人爽人人| 精品视频人人做人人爽| 2022亚洲国产成人精品| 久久99热这里只频精品6学生| 久热久热在线精品观看| 久久久久国产网址| 国产成人免费观看mmmm| 丝袜脚勾引网站| 免费人成在线观看视频色| 两个人的视频大全免费| 多毛熟女@视频| 国产亚洲精品第一综合不卡 | 一区在线观看完整版| 天美传媒精品一区二区| 久久久久久久大尺度免费视频| 久久鲁丝午夜福利片| 69精品国产乱码久久久| 日日爽夜夜爽网站| 国产一区有黄有色的免费视频| 中文字幕人妻丝袜制服| 久久久精品94久久精品| 女的被弄到高潮叫床怎么办| 99视频精品全部免费 在线| 97超视频在线观看视频| 久久久久网色| 欧美激情 高清一区二区三区| 18在线观看网站| 国产片内射在线| 日韩一区二区三区影片| 黄色一级大片看看| 亚州av有码| 国产亚洲精品久久久com| 天天影视国产精品| 18在线观看网站| 亚洲情色 制服丝袜| 欧美丝袜亚洲另类| 国产高清不卡午夜福利| 少妇的逼好多水| 午夜激情福利司机影院| 日韩,欧美,国产一区二区三区| 精品久久久久久久久亚洲| 啦啦啦视频在线资源免费观看| 中文字幕亚洲精品专区| 亚洲第一区二区三区不卡| 国产成人精品婷婷| 狂野欧美激情性bbbbbb| 99国产精品免费福利视频| 成人黄色视频免费在线看| 日日摸夜夜添夜夜爱| 国产深夜福利视频在线观看| 免费高清在线观看日韩| 亚洲欧洲日产国产| 人人妻人人澡人人看| 亚洲无线观看免费| 高清黄色对白视频在线免费看| 久久久久视频综合| 日韩 亚洲 欧美在线| 人妻 亚洲 视频| 伊人亚洲综合成人网| 欧美少妇被猛烈插入视频| 狂野欧美激情性bbbbbb| 少妇高潮的动态图| 精品久久蜜臀av无| 人妻系列 视频| 99re6热这里在线精品视频| 欧美日韩在线观看h| 亚洲欧美日韩卡通动漫| 男人添女人高潮全过程视频| 男女边摸边吃奶| 美女xxoo啪啪120秒动态图| 免费看av在线观看网站| 欧美日韩一区二区视频在线观看视频在线| 午夜激情久久久久久久| 亚洲精品中文字幕在线视频| 人体艺术视频欧美日本| 搡老乐熟女国产| 亚洲av综合色区一区| 国产欧美亚洲国产| 中文精品一卡2卡3卡4更新| 亚洲欧美中文字幕日韩二区| 久久鲁丝午夜福利片| 99热网站在线观看| 亚洲精品成人av观看孕妇| 一个人看视频在线观看www免费| 少妇人妻 视频| 午夜老司机福利剧场| 老女人水多毛片| 人成视频在线观看免费观看| 最近中文字幕高清免费大全6| 久久精品国产a三级三级三级| 夜夜看夜夜爽夜夜摸| 色哟哟·www| 天堂俺去俺来也www色官网| 国产精品一区二区三区四区免费观看| 日日撸夜夜添| 99热这里只有是精品在线观看| 欧美激情极品国产一区二区三区 | av卡一久久| 久久久国产欧美日韩av| 2022亚洲国产成人精品| av电影中文网址| 久久这里有精品视频免费| 一区二区三区精品91| 精品少妇久久久久久888优播| 免费黄网站久久成人精品| 中文字幕人妻丝袜制服| 午夜久久久在线观看| 国产亚洲一区二区精品| 国产精品国产av在线观看| 美女脱内裤让男人舔精品视频| 日韩中文字幕视频在线看片| 18禁在线无遮挡免费观看视频| 亚洲图色成人| 亚洲一区二区三区欧美精品| 在线观看免费高清a一片| 国产一区有黄有色的免费视频| freevideosex欧美| 春色校园在线视频观看| 国产精品99久久久久久久久| 在线观看三级黄色| 国产亚洲一区二区精品| 寂寞人妻少妇视频99o| 日韩强制内射视频| 18禁观看日本| 亚洲精品自拍成人| 性色avwww在线观看| 赤兔流量卡办理| 日韩中字成人| 五月天丁香电影| 亚洲,欧美,日韩| 99热网站在线观看| 亚洲精品中文字幕在线视频| 欧美三级亚洲精品| 天美传媒精品一区二区| 亚洲精品久久成人aⅴ小说 | 性色av一级| 黑丝袜美女国产一区| 黑人猛操日本美女一级片| 久久久久久久大尺度免费视频| 肉色欧美久久久久久久蜜桃| xxxhd国产人妻xxx| 中文字幕久久专区| 色婷婷av一区二区三区视频| 国产精品国产三级国产专区5o| 久久女婷五月综合色啪小说| 国产高清国产精品国产三级| 又黄又爽又刺激的免费视频.| 国产极品天堂在线| 99久久精品国产国产毛片| 蜜桃在线观看..| 少妇人妻 视频| 51国产日韩欧美| 大香蕉久久网| 久久午夜综合久久蜜桃| 国产日韩欧美在线精品| 国产av国产精品国产| av黄色大香蕉| 欧美日韩视频精品一区| av女优亚洲男人天堂| 免费看光身美女| xxx大片免费视频| 亚洲精品456在线播放app| 中文字幕人妻丝袜制服| 久久韩国三级中文字幕| 熟女av电影| www.色视频.com| 久久精品夜色国产| 亚洲第一区二区三区不卡| xxxhd国产人妻xxx| av专区在线播放| 成人国产麻豆网| a 毛片基地| 九草在线视频观看| 国产日韩一区二区三区精品不卡 | 观看av在线不卡| a级毛片黄视频| 女性生殖器流出的白浆| 精品久久国产蜜桃| 一个人免费看片子| 又大又黄又爽视频免费| a级毛色黄片| 全区人妻精品视频| 国产精品久久久久久av不卡| 国产伦理片在线播放av一区| 久久人人爽人人爽人人片va| 精品亚洲成a人片在线观看| 欧美日韩成人在线一区二区| 久久久久精品性色| 日本免费在线观看一区| 久久国产亚洲av麻豆专区| 久久这里有精品视频免费| 国产精品秋霞免费鲁丝片| 狂野欧美白嫩少妇大欣赏| 亚洲成人av在线免费| 亚洲情色 制服丝袜| 欧美一级a爱片免费观看看| 婷婷色综合大香蕉| 秋霞在线观看毛片| 亚洲av欧美aⅴ国产| 嫩草影院入口| 欧美激情 高清一区二区三区| 一本色道久久久久久精品综合| 性色av一级| 国产女主播在线喷水免费视频网站| 卡戴珊不雅视频在线播放| 国产又色又爽无遮挡免| 久久人人爽人人爽人人片va| 国产一区有黄有色的免费视频| 精品久久久久久久久亚洲| 97精品久久久久久久久久精品| 夫妻性生交免费视频一级片| 中文字幕av电影在线播放| 久久久精品免费免费高清| videosex国产| 日本av手机在线免费观看| tube8黄色片| 精品久久久久久久久亚洲| 亚洲精品第二区| 久久人妻熟女aⅴ| 亚洲,一卡二卡三卡| 成人午夜精彩视频在线观看| 有码 亚洲区| 国产日韩欧美亚洲二区| 一区二区av电影网| 亚洲国产成人一精品久久久| 久久99精品国语久久久| 99热6这里只有精品| 欧美三级亚洲精品| 最近手机中文字幕大全| 久久久久久久久久人人人人人人| 久久韩国三级中文字幕| 国产成人精品福利久久| 午夜免费鲁丝| 伦精品一区二区三区| 国产精品欧美亚洲77777| 日本91视频免费播放| 91aial.com中文字幕在线观看| 曰老女人黄片| 99视频精品全部免费 在线| 青青草视频在线视频观看| 国产在线一区二区三区精| 天天躁夜夜躁狠狠久久av| 久久青草综合色| 日韩亚洲欧美综合| 婷婷色av中文字幕| 亚洲成色77777| 精品久久久久久久久av| 欧美成人精品欧美一级黄| 日本-黄色视频高清免费观看| 亚洲精品av麻豆狂野| 久久久久久久亚洲中文字幕| 这个男人来自地球电影免费观看 | 99久久综合免费| 男女无遮挡免费网站观看| 欧美精品一区二区免费开放| 精品少妇内射三级| 精品久久久噜噜| av在线观看视频网站免费| 日日摸夜夜添夜夜爱| 黄色欧美视频在线观看| 国产精品成人在线| 亚洲婷婷狠狠爱综合网| 精品视频人人做人人爽| 成人黄色视频免费在线看| 亚洲综合精品二区| 国产午夜精品一二区理论片| 国产一区二区在线观看日韩| 亚洲四区av| 亚洲,欧美,日韩| 97超视频在线观看视频| 欧美3d第一页| 国产精品久久久久久久电影| 亚洲欧洲精品一区二区精品久久久 | 国产深夜福利视频在线观看| av福利片在线| 欧美 日韩 精品 国产| 国产极品天堂在线| 性色av一级| 久久久午夜欧美精品| av女优亚洲男人天堂| 欧美xxⅹ黑人| 国产片特级美女逼逼视频| 成年美女黄网站色视频大全免费 | 久久久午夜欧美精品| 丝袜脚勾引网站| 大话2 男鬼变身卡| 免费日韩欧美在线观看| 高清黄色对白视频在线免费看| 免费观看的影片在线观看| .国产精品久久| 日日爽夜夜爽网站| 国产精品.久久久| 精品一区在线观看国产| 亚洲不卡免费看| av网站免费在线观看视频| 青青草视频在线视频观看| 国产一区有黄有色的免费视频| 久久精品国产自在天天线| 一本久久精品| kizo精华| 成人国产av品久久久| 国产精品99久久99久久久不卡 | 91aial.com中文字幕在线观看| 精品少妇内射三级| 免费人成在线观看视频色| 久久97久久精品| 亚洲精品一区蜜桃| 男女啪啪激烈高潮av片| 美女福利国产在线| 男人添女人高潮全过程视频| 成人黄色视频免费在线看| 女性被躁到高潮视频| 亚洲精品美女久久av网站| av又黄又爽大尺度在线免费看| 久久精品国产亚洲网站| 波野结衣二区三区在线| 亚洲欧洲精品一区二区精品久久久 | 777米奇影视久久| 免费看av在线观看网站| 亚洲av日韩在线播放| 国产av国产精品国产| 欧美老熟妇乱子伦牲交| 国产成人精品婷婷| 涩涩av久久男人的天堂| 欧美日韩成人在线一区二区| 夜夜骑夜夜射夜夜干| 精品人妻熟女毛片av久久网站| 亚州av有码| 亚洲精品中文字幕在线视频| 在线看a的网站| 久久久久久久精品精品| 少妇精品久久久久久久| 国产精品成人在线| 国产精品熟女久久久久浪| 欧美激情国产日韩精品一区| 各种免费的搞黄视频| 在线观看www视频免费| 夜夜看夜夜爽夜夜摸| 人人澡人人妻人| 成年女人在线观看亚洲视频| 人人妻人人澡人人看| 久久久精品区二区三区| 两个人的视频大全免费| 久久精品夜色国产| 日本av免费视频播放| 飞空精品影院首页| 菩萨蛮人人尽说江南好唐韦庄| 极品少妇高潮喷水抽搐| 国产一区亚洲一区在线观看| 美女中出高潮动态图| 色哟哟·www| 热99久久久久精品小说推荐| 国产黄片视频在线免费观看| 免费看光身美女| 国产免费视频播放在线视频| 日本免费在线观看一区| 人妻少妇偷人精品九色| 亚洲精品,欧美精品| 丝袜在线中文字幕| 日韩伦理黄色片| 亚洲国产欧美日韩在线播放| 日韩不卡一区二区三区视频在线| 又黄又爽又刺激的免费视频.| 五月玫瑰六月丁香| 国产精品国产av在线观看| 久久综合国产亚洲精品| 成人免费观看视频高清| 欧美日韩国产mv在线观看视频| av.在线天堂| 精品一区二区三区视频在线| 亚洲av国产av综合av卡| 婷婷成人精品国产| 极品人妻少妇av视频| 又黄又爽又刺激的免费视频.| 国产亚洲欧美精品永久| 97超碰精品成人国产| 黑人欧美特级aaaaaa片| 看十八女毛片水多多多| 大香蕉97超碰在线| 精品人妻偷拍中文字幕| 国产亚洲一区二区精品| 日本wwww免费看| 国产高清三级在线| 男女边吃奶边做爰视频| 国产精品99久久久久久久久| 亚洲婷婷狠狠爱综合网| 交换朋友夫妻互换小说| 妹子高潮喷水视频| 精品一区二区免费观看| 精品一区二区三卡| 久久影院123| 91精品三级在线观看| 免费观看无遮挡的男女| 国产av精品麻豆| 成年人午夜在线观看视频| 男女啪啪激烈高潮av片| 国产精品久久久久久久久免| 日本wwww免费看| 亚洲国产毛片av蜜桃av| 亚洲欧洲精品一区二区精品久久久 | 91久久精品电影网| 少妇人妻精品综合一区二区| 最黄视频免费看| 高清在线视频一区二区三区| 大片电影免费在线观看免费| a级片在线免费高清观看视频| 日韩强制内射视频| 欧美激情极品国产一区二区三区 | 乱码一卡2卡4卡精品| 亚洲内射少妇av| 熟女av电影| 一二三四中文在线观看免费高清| 亚洲经典国产精华液单| 亚洲av免费高清在线观看| 男女边摸边吃奶| 国产一级毛片在线| 国产一区二区在线观看av| 夜夜爽夜夜爽视频| 9色porny在线观看| 看十八女毛片水多多多| 色婷婷久久久亚洲欧美| 日产精品乱码卡一卡2卡三| 如日韩欧美国产精品一区二区三区 | 久久精品久久精品一区二区三区| 久久精品国产亚洲av涩爱| 日本爱情动作片www.在线观看| 在线播放无遮挡| 成人18禁高潮啪啪吃奶动态图 | 91国产中文字幕| 下体分泌物呈黄色| 人成视频在线观看免费观看| 免费日韩欧美在线观看| 久久人妻熟女aⅴ| 日韩免费高清中文字幕av| 99国产综合亚洲精品| 久久午夜福利片| 亚洲经典国产精华液单| 免费观看无遮挡的男女| 伊人久久精品亚洲午夜| 久久久久久久精品精品| 欧美+日韩+精品| 亚洲国产精品一区三区| 亚洲精品一二三| 日韩强制内射视频| 国产精品人妻久久久久久| 久久ye,这里只有精品| 久久毛片免费看一区二区三区| 男女高潮啪啪啪动态图| 午夜视频国产福利| 国国产精品蜜臀av免费| 在线观看免费视频网站a站| 国产亚洲午夜精品一区二区久久| 亚洲三级黄色毛片| 午夜激情久久久久久久| 大又大粗又爽又黄少妇毛片口| 一本色道久久久久久精品综合| 老女人水多毛片| 大片电影免费在线观看免费| 99久久精品一区二区三区| 欧美少妇被猛烈插入视频| 久热这里只有精品99| 欧美精品国产亚洲| h视频一区二区三区| 搡老乐熟女国产| 看免费成人av毛片| 少妇猛男粗大的猛烈进出视频| 亚洲人成77777在线视频| 永久网站在线| 成人无遮挡网站| 国产精品久久久久久久电影| 免费日韩欧美在线观看| 国产精品 国内视频| 亚洲欧美日韩另类电影网站| 2022亚洲国产成人精品| 秋霞在线观看毛片| 人妻系列 视频| 欧美三级亚洲精品| 免费日韩欧美在线观看| 交换朋友夫妻互换小说| 曰老女人黄片| 亚洲av日韩在线播放| 热99国产精品久久久久久7| 免费高清在线观看日韩| 精品少妇内射三级| 国产精品一区二区三区四区免费观看| 大片电影免费在线观看免费| 亚洲人成网站在线播| 男人操女人黄网站| 特大巨黑吊av在线直播| 亚洲精品自拍成人| 最近手机中文字幕大全| 人人妻人人澡人人爽人人夜夜| 久久韩国三级中文字幕| 国产熟女欧美一区二区| 热99国产精品久久久久久7| 欧美精品人与动牲交sv欧美| 高清欧美精品videossex| 国产日韩欧美视频二区| 一区二区三区精品91| 日本黄色片子视频| 亚洲av中文av极速乱| 精品一区二区三区视频在线| 国产女主播在线喷水免费视频网站| 韩国av在线不卡| 成人黄色视频免费在线看| 中文字幕亚洲精品专区| 久久99蜜桃精品久久| 黑人巨大精品欧美一区二区蜜桃 | 亚洲美女视频黄频| 一个人免费看片子| 亚洲欧洲日产国产| 久久久久久久久久成人| av国产久精品久网站免费入址| 我的老师免费观看完整版| 久久人人爽人人片av| 男人操女人黄网站| 国产亚洲av片在线观看秒播厂| 久久久久久久久大av| 丝瓜视频免费看黄片| 一本—道久久a久久精品蜜桃钙片| 又黄又爽又刺激的免费视频.| 久久久国产一区二区| 一区二区日韩欧美中文字幕 | 日本wwww免费看| 免费少妇av软件| 中国国产av一级| 国产免费现黄频在线看| 我要看黄色一级片免费的| av网站免费在线观看视频| 国产精品久久久久久精品古装| 精品国产一区二区久久| 国产免费又黄又爽又色| 中文字幕最新亚洲高清| 不卡视频在线观看欧美| 丝袜美足系列| 男女免费视频国产| 久久人人爽人人片av| 日本色播在线视频| 国产在线一区二区三区精| 国产欧美另类精品又又久久亚洲欧美| 亚洲丝袜综合中文字幕| 亚洲精品国产色婷婷电影| 欧美人与善性xxx| 午夜老司机福利剧场| 男女啪啪激烈高潮av片| 欧美 日韩 精品 国产| 久久久久视频综合| 午夜免费观看性视频| 免费av中文字幕在线| 国产成人freesex在线| 99九九在线精品视频| 肉色欧美久久久久久久蜜桃| 午夜激情av网站| 成人手机av| 亚洲国产成人一精品久久久| 爱豆传媒免费全集在线观看|