• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Modal Logic for Social Welfare Functions*

    2020-01-03 06:33:38HuLiu
    邏輯學(xué)研究 2019年6期

    Hu Liu

    Abstract.The focus of social choice theory is on frameworks of aggregating individuals’preferences into a group preference.We present in this paper a modal logic for preference aggregation.The logic is a direct and easily readable formalization of social welfare functions.A standard n-ary modal box is used to characterize n-ary functions on the set of linear orders over alternatives.We show that all possible properties of social welfare functions can be expressed by this simple modal language.We give a complete deductive system for the logic.We present a syntactic proof of Arrow’s impossibility theorem of social welfare functions.

    1 Introduction

    Social choice theory is a theoretical framework originated in welfare economics and voting theory for analysis of collective decision making.It deals with the problem of combining individual preferences into a decision of a group.The study of social choice theory has been a multi-disciplinary research area.The main part of social choice theory is in Welfare Economics,where several social choice scholars have been awarded the Nobel Prize in Economics(Arrow in 1972,Sen in 1998,Maskin in 2007,Sharpley in 2012).Social choice theory has also been an influential methodology in studying voting and election in Politics,collective decision and multi-criteria decision in Management Science,multi-agent systems in Artificial Intelligence,and distributed systems in Computer Science.

    The core of social choice theory is the study of the so-called social welfare functions,which is a function takes as input a set of linear orders over a given set of alternatives,one of each representing a voter’s opinion towards these alternatives,and returns a linear order over the set of alternatives,representing the group preference.Much attention in social choice theory has been on a general approach to this preference aggregation function,which was introduced by K.Arrow in 1951([2]).

    Though the root of social choice theory can be traced back to the thirteenth century,it is generally acknowledged that the modern social choice theory was started by Arrow’s seminal monograph“Social Choice and Individual Values”([2]).In his book Arrow introduced an axiomatic method to discuss properties of social welfare functions.He identified certain axioms that are seemingly plausible properties of social welfare functions.His famous impossibility theorem stated that,surprisingly,if there are three or more alternatives,then no social welfare function can satisfy all of these“good”axioms.

    Though Arrow and other scholars made use of axiomatic method and logical terms such as“axiom”and“consistency”,frameworks of social choice theory had not been formalized by a logical language until a few years ago.Recently there has been a growing interest in the cross-disciplinary study of logic and social choice theory.Researchers in this new area have either extended methodologies of social choice theory to logical frameworks([7,9,14,18,19,20,27]),or studied problems of social choice theory by logical methods and automated reasoning techniques([1,4,5,8,12,15,17,21,22,25,26,28]).The current paper is on the second approach.We will review some work of this approach in Section 4.

    Much attention in this approach has been on modelling the Arrovian framework of social welfare functions into a logical formalism.In [15],Arrow’s theorem was reduced to the problem of verifying that a certain set of first-order formulas does not have a finite model.In[25],by replacing quantifiers with conjunction or disjunction,Arrow’s theorem was represented in propositional logic,and an instance of the theorem(with two individuals and three alternatives)was verified by a SAT solver.Higherorder logic was used in[28]and[21],where proofs of Arrow’s theorem were coded and verified by interactive theorem provers.

    Modelling aggregation functions in the general framework of modal logic is another promising direction in this area,where tailor-made modal logics were designed to represent properties of aggregation functions.Pauly in [22]and [23]gave an axiomatization of majority voting with a simple modal logic.In [1],?gotnes et al.defined an expressive modal language that can represent Arrow’s theorem,Condorcet’s paradox,and so on.Troquard et al.in[26]introduced a logic specifically designed to reason about the strategy-proofness of social choice functions.By using a fragment of the modal logic in[26],Cinà and Endriss presented a syntactic proof of a variant of Arrow’s theorem for social choice functions in [5,6].Jiang et al.in [17]presented a modal logic for representing and reasoning about reason-based social choice.It should be noted that most of these logics were designed for judgment aggregation([19]),which is a more general framework than preference aggregation.Since judgment aggregation subsumes preference aggregation in a natural way,these logics can be easily adapted for representing Arrow’s theorem and other traditional problems in the area.

    For an introduction to social choice theory,[10]is a widely used introductory text.A nice review of logic methods in social choice theory can be found in[8].

    This paper defines a simple modal logic for speaking about social welfare functions.The logic is a standard polyadic normal modal logic with ann-ary modality directly encodinging ann-ary social welfare function.The domain of a model is the set of all possible preferences over alternatives (all linear orders over alternatives),in which ann-ary social welfare function is directly represented by an (n+1)-ary relation.Then-ary modal box to characterize the(n+1)-ary relation,and therefore characterize then-ary social welfare function.The logic is therefore more intuitive than the existing ones.Also,by using then-ary modality we avoid having to mention explicitly individuals in the formal language.We show that the logic is expressive enough to represent all possible properties of social welfare functions.We give a complete deductive system for the logic.Therefore,in principle all impossibility theorems can be coded and syntactically proved in the logic.We present a syntactical proof of Arrow’s theorem in the paper.There has been such a proof for a variant of Arrow’s theorem for social choice functions ([5,6]).?gotnes et al.in [1]gave a syntactic proof of the so-called“Strict Neutrality Lemma”,which is an important step of a proof of Arrow’s theorem([11]).

    The rest of the paper is structured as follows.We define the logic’s syntax and semantics in the next section.Also in the next section we present the logic’s expressiveness and axiomatization.A syntactic proof of Arrow’s theorem is given in Section 3.Related work is discussed in Section 4.Section 5 is the conclusion of the paper.

    2 Aggregation Logic

    2.1 Social Welfare Functions

    Social choice theory deals with the problem of aggregating individuals’opinions into a single collective view of a group.It is not only a central problem of certain research areas(Welfare Economics,for example),but also a familiar scenario in our everyday life (a group making a decision on which restaurant to go,for example).In social choice theory,the problem is usually represented by a setNof individuals,each with a preference over a setXof alternatives,making a decision on a group preference overX.A preference is usually a linear order(strict or not strict)overX.We will take the standard view of a strict linear order.

    Unless otherwise stated,in this paper we fix a finite nonempty setN={1,...,n}of individuals(voters),and a finite nonempty setX={x1,...,xm}of alternatives(candidates).We letx,y,zrange overX.Let?stand for alinear order(an irreflexive,transitive and trichotomy binary relation)onX.A statementx ?ymeans“rankingxabove y”.The set of all linear orders onXis denoted byL(X).We sometimes write a subscript to indicate it being an individual’s preference.For an individuali∈N,?i∈L(X)represents individuali’s preference over alternatives(herballot).Aprofileis ann-tuple(?1,...,?n)∈(L(X))n,one ballot for each individual.Asocial welfare function(SWF)is functionF:(L(X))n →L(X)that maps each profile to a single linear order over alternatives,representing the group’s preference.

    Finding the best aggregation rule(the best SWF)has been an old problem that can be traced back to Condorcet’s and Borda’s work in seventeenth century.Such earlier work focused on finding and justifying specific aggregation rules.It was K.Arrow’s work in 1951 ([2])that first provided a systematical method to study aggregation rules,and founded the modern social choice theory.Arrow focused on certain general properties of SWFs and the relationship among these properties.He identified three plausible properties:Non-Dictatorship,Pareto Optimality,and Independence of Irrelevant Alternatives.LetFbe a social welfare function:

    ·Non-Dictatorship(ND):Fsatisfies(ND),if there is no individualisuch that for all profiles(?1,...,?n),we haveF(?1,...,?n)=?i.

    ·Pareto Optimality(PO):Fsatisfies(PO),if for any profile(?1,...,?n)and any alternativesxandy,x ?i yfor alli∈Nimplies thatx ?y,where?=F(?1,...,?n).

    ·Independence of Irrelevant Alternatives(IIA):Fsatisfies (IIA),if given two alternativesxandyand two profilesandif for all individualsi,thenx ?1yiffx ?2y,where

    Arrow’s impossibility theorem states that the three properties are inconsistent together if there are three or more alternatives.

    Theorem 2.1.If there are three or more alternatives,no SWF satisfies ND,PO and IIA.

    2.2 Aggregation Logic:Syntax and Semantics

    We define an aggregation logic(AL)in this paper.The logic is built on a given set of individualsN={1,...,n}and a given set of alternativesX={x1,...,xm}.Throughout the paper,we letl(possibly with subscripts)range overL(X).

    Anatomis a statement in the formx ?y,wherex,y∈X.LetAt={x ?y|x,y∈X}denote the set of all atoms.The set of formulas is defined by the following grammar:Wherepranges over atoms,

    Thus,it is a standard modal language built on specific atoms.We will writeleither semantically for a linear order inL(X),or syntactically for a set of atoms(or a conjunction of atoms)that defines the linear order.For example,lcan stand either for a linear orderx ?y ?zor for a set of atoms{x ?y,y ?z,x ?z}.Its meaning should be clear by context.

    Definition 2.2.Given a SWFF,themodelofFis a pair MF=(L(X),R),whereRis an(n+1)-ary relation onL(X)such thatR(l,l1,...,ln)if and only ifF(l1,...,ln)=l.Eachl∈L(X)is called a state of the model.

    From now on,a model always means a model for a social welfare function.We will only consider models for social welfare functions in this paper.A model ofFis nothing butFitself.We may simply write M for MFif the subscript is irrelevant.We can further rewrite a model in the form of a standard Kripke model:Given a model M=(L(X),R),let N=(W,Q,V),whereWis a set of states with|W|=|L(X)|,Qis an+1-ary relation onWsuch thatQww1...wnif and only ifRf(w)f(w1)...f(wn)withfbeing any given one-one mapping fromWtoL(X),andVis a valuation function such thatx ?y∈V(w)iffx ?yis true in the linear orderf(w).The two forms of models are semantically equivalent.

    Definition 2.3.Given a model M=(L(X),R),a statelin the model,and a formulaφ,M,l|=φis read as thatφis satisfied(or true)atlin M,and is defined as follows:

    M,l|=x ?yiffx ?yis a true statement in the linear orderl.

    M,l|=?φiff M.

    M,l|=φ∧ψiff M,l|=φand M,l|=ψ.

    M,l|=Aφiff M,l′|=φfor alll′∈L(X).

    M,l|=□(φ1,...,φn)iff for alll1,...,lnwithR(l,l1,...,ln),there exists ani∈Nsuch that M,li|=φi.

    Formulaφis true in model M,denoted by M|=φ,if M,l|=φfor every statelin M.Formulaφis valid,denoted by|=φ,if M|=φfor every model M.

    Other Boolean connectives are defined as usual.LetEφ=df ?A?φ.Thenary operator□is a standardn-ary modal box.The diamond is defined as usual:◇(φ1,...,φn)=df ?□(?φ1,...,?φn).Thus,

    ·M,l|=◇(φ1,...,φn)iff there existl1,...,lnsuch thatR(l,l1,...,ln)and M,li|=φifor alli∈N.

    The intuitive meaning of□is not clear.◇,however,has a clear meaning.An aggregation procedure can be naturally coded by a formula◇(l1,...,ln)∧l,meaning that individuals’preferencesl1,...,lnare aggregated into a group preferencel.We shall use◇more often than□.The polyadic modality as defined is a normaln-ary modal box.

    OperatorAis an universal modality whose truth condition depends on all states of a model.Some modal logicians tend to avoid using the operator.For one reason,a modal language with an universal operator does not have the locality property,which is one of the basic characteristics of modal logic.For another reason,adding an universal operator in many cases will increase computational complexity ([16]).There is,however,also support for the usefulness of universal operators([13]).The current framework,as well as the general task of modelling SWFs by modal logic,is a good example where universal operators is a natural and helpful tool,because typical properties of SWFs contain quantification over all alternatives,all ballots or all profiles.

    2.3 Expressiveness

    The current framework is designed to represent and reason about properties of aggregation functions.To what extent can a logic express such properties? Can a logical language express all possible properties of social functions? Can a logical language characterize every social function,or equivalently,can a logical language distinguish every pair of different social functions? These questions are about the expressive power of a logical language,one of the most important features of a logical framework.

    Definition 2.4.Suppose thatLis a logic for social functions,and the notation MF|=L φis proper defined in the logic,where MFis the model built for a social functionF.We say that the logicLisexpressively completeif for any social functionF′,there is a formulaφinLsuch that MF|=L φif and only ifF=F′.In this case,φis called thecharacterizing formulaforF′.

    Thus,a logicLis expressively complete if it can characterize any given social function,or in another words,there is a characterizing formula for each social function that can distinguish it from other social functions.Since a domain of discourse in this context is always finite,expressive completeness means that a logic is able to express all possible properties of social functions.This is certainly an important feature for a logic of social functions.It will be particularly useful if we use a logic not only for coding known theorems of social functions or verifying existing proofs of theorems,but also for finding new theorems and proofs.Expressive completeness will guarantee a thorough searching procedure.

    Existing logical frameworks of social functions showed the expressive power of their logics by examples.Usually,they showed that certain important properties of social functions can be expressed in their logics.The notion of expressive completeness has not been discussed in literature.

    The following theorem shows that the current logic is expressively complete.

    Theorem 2.5.LetMF stand for the model built for a social welfare function F.Let φF be a formula of AL defined as that

    Then φF is the characterizing formula of F:For any SWF F′,

    ProofThe theorem is easy to check and is omitted. □

    Though a characterizing formula defined in Theorem 2.5 seems obvious and its representation is not succinct,it shows that in principle our logic is able to express all possible properties of social welfare functions:Every property can be represented by a conjunction of characterizing formulas of SWFs that satisfy the property.

    2.4 Axiomatization

    The deductive system ofAL(with parametersNandX)consists of the following axioms and rules:

    Axioms (IR),(Tran)and (L)guarantee that?is a strict total order.Axioms (K□),(KA),and rule(Nec)guarantee thatAand□are normal modal operators.Note that the necessity rule for□,namelyis not included because it can be derived by(Nec)and(Incl).Axioms(T),(4)and(B)guarantee thatAcorresponds to an equivalent relation of a model.Theaxiom of inclusion(Incl)deals with the relationship betweenAand□.

    The rest axioms are axiom schemes wherelranges overL(X).Theaxiom of occurrence(Occu)states that each linear order inL(X)occurs in a model as a state at least once.Theaxiom of universal domain(UD)says,for any givenl1,...,ln,there exists a state,sayl,such thatRll1,...,ln.That is,F(l1,...,ln)=l.(UD)guarantees that a SWF is defined on all possible profiles.Theaxiom of partial function(PF)says,if a state labelled bylis such that there arel1,...,lnwithRll1,...,ln,then any state that is related withl1,...,lnin the same way must also be labelled byl.By(PF),the output of a SWF is always unique on any input profile,and therefore a SWF is a partial function.Axioms(UD)and(PF)guarantee that a SWF is indeed a function.The condition that each linear order inL(X)can occur only once in a model cannot be guaranteed by an axiom.Instead,we have theaxiom of uniformity(Unif)that states a weaker condition.(Unif)says,if a state labelled bylis such that there arel1,...,lnwithRll1,...,ln,then any state labelled bylmust be related withl1,...,lnin the same way.The axiom (Unif)guarantees,if a linear orderloccurs more than once,all occurrences oflshould have similar behavior in the model,in the sense that as an output of a SWF,they share the same input profiles.

    Notions of a proof(?φ)and a deduction(Γ?φ)are defined as usual.A set of formulas Γ is consistent if Γ?φ∧?φfor noφ.A formulaφis consistent if{φ}is.A set of formulas Γ is a maximal consistent set(MCS)if Γ is consistent and any super-set of Γ is not.

    Theorem 2.6(Soundness).For any formula φ,if ?φ then|=φ.

    ProofBecause a model inclues every linear order overX,axiom(Occu)is valid.Axioms(UD)and(PF)hold because then+1-ary relationRof a model is a function.Axiom (Unif)holds because each linear order occurs only once in a model.Other axioms and rules are rountine. □

    The rest of this subsection is for a completeness proof of the system.The canonical model of the deductive system is a tupledefined as usual:Wcis the set of all MCSs;is an (n+1)-ary relation onWcsuch thatiff for all formulas□(φ1,...,φn)∈w,there is anisuch thatφi∈vi,or equivalently,iff ifφi∈vifori∈Nthen◇(φ1,...,φn)∈w;is a binary relation onWcsuch thatiff for all formulasAφ∈w,φ∈v;V cis a function that assigns to each atom a set of MCSs such that for each atomx ?y,w∈V c(x ?y)iff(x ?y)∈w.

    Both□andAare normal modalities:we have their K-axioms and necessity rules in the system.Therefore,a truth lemma can be proved by standard techniques:

    Lemma 2.7.(i)(Existence Lemma)For any w∈Wc,if ◇(l1,...,ln)∈w,thenthere are v1...vn such thatand l1∈v1,...,ln∈vn.

    (ii)(Truth Lemma)For any w∈Wc and any formula φ,Mc,w|=φ iff φ∈w.

    ProofThe existence lemma and the truth lemma are verified by a standard proof and are omitted. □

    The canonical model Mchas the following properties:

    Lemma 2.8.(i)For each w∈Wc,At∩w∈L(X),i.e.the set of atoms in each state defines a linear order.

    (iii)Ifthenwvi for every i∈N.

    (iv)For any l∈L(X),there is a v∈Wc such that l∈v.(The first l is a linear order,and the second l is a set of atoms.)

    (v)For any l1,...,ln∈L(X),there is a v∈Wc such that for some v1,...,vnwith l1∈v1,...,ln∈vn we have

    (vi)Ifandthen l∈w implies l∈w′.

    (vii)Ifand l∈w,l∈w′,l1∈v1,...,ln∈vn,then therearesuch thatand

    ProofIt is straightforward that(i)holds by axioms(IR),(Tran)and(L).(ii)is direct by axioms(T),(4)and(B).(iii)holds by axiom(Incl).

    For(iv),letlbe any linear order inL(X).Then by axiom(Occu),El∈wfor any MCSw.Then by definition,there is avsuch thatandl∈v.

    For (v),letl1,...,ln∈L(X).By axiom (UD),E◇(l1,...,ln)∈wfor any statew.Then there is avwithand◇(l1,...,ln)∈v.Then by definition,there arev1,...,vnsuch thatandl1∈v1,...,ln∈vn.

    For (vi),suppose its premise holds andl∈w.Byl1∈v1,...,ln∈vnandBy axiom(PF),A(◇(l1,...,ln)→l)∈w.ByByand◇(l1,...,ln)∈w′.Thus,l∈w′.

    For(vii),suppose its premise holds.Similarly,we have◇(l1,...,ln)∈w.Then by axiom(Unif),A(l →◇(l1,...,ln))∈w.Then by(l →◇(l1,...,ln))∈w′.Then◇(l1,...,ln)∈w′.By the existence lemma (Lemma 2.7-(i)),there aresuch thatand

    Lemma 2.8-(v)states that each profile is aggregated into a state(a linear order that stands for the state)at somewhere in the model.Note that,because anl∈L(X)may occur more than once inWc,(vi)does not guaranteeis a partial function.

    The canonical model Mcis not a legitimate model.There are two defects:(1)is not an universal relation;(2)A linear order may occur more than once in Mc.As a consequence,is not a function onWc.

    For anyu∈Wc,let Mu=(W,R□,RA,V)be the submodel of Mcgenerated byuusing the binary relationBy Lemma 2.8-(iii),Muis also a generated model of Mcwith respect toStandard techniques can be adapted to show the truth maintenance of generated models.Therefore a truth lemma also holds for Mu:

    Lemma 2.9.For any w∈W and any formula φ,Mu,w|=φ iff φ∈w.

    ProofOmitted. □

    It is easy to check that Muhas the corresponding properties of Lemma 2.8:

    Lemma 2.10.(i’)For each w∈W,At∩w∈L(X).

    (ii’)RA is an universal relation,i.e.RA=W ×W.

    (iii’)If R□wv1...vn then RAwvi for every i∈N.

    (iv’)For any l∈L(X),there is a v∈W such that l∈v.

    (v’)For any l1,...,ln∈L(X),there is a v∈W such that for some v1,...,vn with l1∈v1,...,ln∈vn we have R□vv1...vn.

    (vi’)Ifandthen l∈w implies l∈w′.

    (vii’)If R□wv1...vn and l∈w,l∈w′,l1∈v1,...,ln∈vn,then there aresuch thatand

    ProofOmitted. □

    Muis also not a legitimate model because a linear order may occur more than once in Mu.However,according to the next lemma,Muis semantically equivalent to a legitimate model.

    Let M=(L,R)be obtained from Muby lettingL={l|l∈w,w∈W},andRll1...lniff for somew,v1,...,vnwithR□wv1...vn,l1∈v1,...,ln∈vnandl∈w.

    Lemma 2.11.(i)Mis a model.

    (ii)For any w∈W,any l∈L(X),and any formula φ,Mu,w|=φ iffM,l|=φ,wherel∈w.

    ProofFor (i),by 2.10(iv’),L=L(X).By the definition of M and 2.10-(vi’),Rll1...lnandRl′l1...lnimplies thatl=l′.By 2.10(v’),for anyl1...ln∈Lthere is alwithRll1...ln.ThenRas defined is a function onL.Thus,M is a model.

    We prove(ii)by induction on the structure ofφ.We only show the case whenφ□(φ1,...,φn).Suppose that Mu,w □(φ1,...,φn).That is,Mu,w ◇(?φ1,...,?φn).Then there existv1,...,vnsuch thatR□wv1...vnand Mu,vi ?φifor all 1≤i ≤n.Letl1∈v1,...,ln∈vn.By inductive hypothesis,M,li ?φifor all 1≤i ≤n.By the definition ofR,Rll1...ln.Thus,M(φ1,...,φn).

    For the other direction,suppose that M(φ1,...,φn).Then there existl1...lnsuch thatRll1...lnand M,li ?φifor all 1≤i ≤n.By the definition ofR,there existw′,v′1,...,v′nsuch thatR□w′v′1...v′n,l∈w′,andBy 2.10(vii’)andl∈w,there existv1,...,vnsuch thatR□wv1...vnandl1∈v1,...,ln∈vn.By inductive hypothesis,Mu,vi ?φifor all 1≤i ≤n.Then Mu,w □(φ1,...,φn). □

    Theorem 2.12(Completeness).For any formula φ,ifφ then ?φ.

    ProofIt suffices to show that any consistent formulaφis satisfiable in a model.Letube a maximal consistent set such thatφ∈u.By Lemma 2.7,Mc,uφ.Then by Lemma 2.9,Mu,u|φ.Then by Lemma 2.11,M is a model and M,wherel∈u. □

    3 Arrow’s Theorem

    3.1 Representations of Social Choice Properties

    Because the usage of◇in the language resembles a SWF,properties of SWFs can be represented in the logic,as expected,in a direct,easily readable way.Let?df p∨?p.The three properties in Arrow’s theorem can be respectively expressed byALformulasND,PO,andIIAas follows:

    ·NDE(x ?y∧◇(?,...,y ?x,...,?)),wherey ?xoccurs in thei-th argument place of◇,and?occurs in all other argument places of◇.

    ·POA(◇(x ?y,...,x ?y)→(x ?y)),wherex ?yoccurs in all argument places of◇.

    ·IIA(E(◇(φ1,...,φn)∧φ)→A(◇(φ1,...,φn)→φ)),whereφ1,...,φnandφare in the formx ?yory ?x.

    Theorem 3.1.Let a modelM(L(X),R)be built from a SWF F.Then

    (i)M

    (ii)M

    (iii)M

    ProofFor(i),NDsays,for each individuali,there is a pair of alternativesxandysuch that the formulax ?y∧◇(?,...,y ?x,...,?)is true at some point,sayl.M,l|=◇(?,...,y ?x,...,?)means that there arel1...lnsuch thatRll1...lnand M,li|=y ?x.Because we have also M,l|=x ?y.Thus,individualiis not a dictator:y ?xis her preference in the profile(l1...ln),but not in the aggregation preferencel.

    The proof of(ii)is straightforward.

    For(iii),Suppose thatFhas the IIA property.Suppose M|=E(◇(φ1,...,φn)∧φ).Then there is al∈L(X)such that M,l|=◇(φ1,...,φn)∧φ.Then M,l|=φand there arel1,...,lnsuch thatRll1...lnand M,l1|=φ1,...,M,ln|=φn.Letl′be any linear order inL(X)with M,l′|=◇(φ1,...,φn).We show that M,l′|=φ.By M,l′|=◇(φ1,...,φn),there aresuch thatand MThen by IIA property,φ∈liffφ∈l′.Then,M,l′|=φ.We have M,l′|=◇(φ1,...,φn)→φ.Becausel′is an arbitrary state,M|=A(◇(φ1,...,φn)→φ).For the other direction of (iii),the proof is similar. □

    As shown in Section 2.3,all properties of social welfare functions can be coded by the current language.Therefore,all impossibility theorems can be coded and syntactically proved.We give a syntactic proof of Arrow’s theorem in the next subsection as an example.

    3.2 A Syntactic Proof of Arrow’s Theorem

    Arrow’s impossibility theorem with fixedNandXcan be expressed inALby a formula:PO∧IIA →?ND.Arrow’s original proof can be seen as a semantic proof of the theorem.By Theorem 3.1 and the completeness of the deductive system,there must have a syntactic proof of the theorem,i.e.we have?Pare∧IIA →?ND.We show such a proof in this subsection.The proof itself is a tedious exercise.It,however,shows the naturalness of the current language.The syntactic proof is easily readable in the sense that it resembles the idea and the structure of a well-known proof of Arrow’s theorem by Sen([24]).

    The rule and the formulas in the following lemma are all derivable in the deductive system.We will use these facts in the syntactic proof.

    Lemma 3.2.(i)From ?φ→ψ to infer ?◇(φ1,...,φ,...,φn)→◇(φ1,...,ψ,...,φn).

    (ii)From ?φ →ψ and ?Eφ to infer ?Eψ.

    (iii)?A(φ →ψ)∧Eφ →Eψ.

    (iv)?◇(...,?,...,)→(◇(...,φ,...)∨◇(...,?φ,...),where φ and ?φ are in the same argument place of ?.

    (v)?Eφ →E(φ∧ψ)∨E(φ∧?ψ).

    ProofOmitted. □

    We resemble Sen’s informal proof of Arrow’s theorem([24]).We first formalize the notion of decisiveness,the key notion in Sen’s proof.For a nonempty coalitionG ?N,let◇(G(φ),φi1,...,φi|NG|)stand for◇(φ1,...,φn),whereφj=φfor eachj∈G,andφk∈{φi1,...,φi|NG|},one for eachk∈NG.Note that,the order ofG(φ),φi1,...,φi|NG|in◇(G(φ),φi1,...,φi|NG|)may not be their real order in the well-formed formula◇(φ1,...,φn)represented by◇(G(φ),φi1,...,φim).It only means,for allj∈G,φtakes thej-th argument place of◇,and other argument places are taken byφi1,...,φi|NG|.Similarly,let◇(G(φ),G′(ψ),φi1,...,φi|N(G∪G′)|),where bothGandG′are nonempty coalitions andG∩G′=?,stand for◇(φ1,...,φn),in whichφj=φfor allj∈G,φh=ψfor allh∈G′,andφk∈{φi1,...,φi|N(G∪G′)|},one for eachk∈N(G ∪G′).

    Definition 3.3.Let

    Theorem 3.4(Arrow’s Theorem).If AL is built on a SWF with three or more alternatives,then ?IIA∧Pare →?ND.

    A full syntactic proof will be lengthy and unnecessary.We shall omit certain obvious steps.

    Letx,y,x′,y′be any distinct alternatives.(The other cases,for example wherex=x′,are similar and are omitted.)

    By axiom(UD),

    4 Related Work

    The interdisciplinary study of logic and social choice theory can be roughly divided into two directions.On the one hand,concepts and methodologies in social choice theory have motivated many logical researches,includingjudgmentaggregation and binary aggregation([19,20,14]),the study of aggregating members’individual judgments (represented by logical formulas)into a collective judgment,graph aggregation([9]),the study of aggregating general relations rather than linear orders,belief merging([18]),a logical framework that aggregates possibly contradictory belief bases into group beliefs,reason-based aggregation([7]),in which,instead of preferences,reasons leading to individuals’preferences are given as primary,logic aggregation([27]),the aggregation of different logics,and so on.These logical frameworks enriched the study of logic,and in return extended the boundary of social choice theory.

    On the other hand,logic has been taken as a helpful tool in investigating traditional problems of social choice theory.One approach in this direction is by using classical predicate or propositional logic.This approach was identified in [8]as“embedding social choice theory into exciting logical frameworks”.The focus of this approach is on(automatically)verifying existing proofs of social choice theorems or on searching for new theorems and new proofs for social functions,with the help of certain logical theorem provers([15,25,28,21]).

    Another approach in this direction,which is the approach taken by the current paper,is by using the framework of modal logic.This approach was identified in[8]as“designing logics for modelling social choice”.Most logics in this approach is designed for the more general framework of judgment aggregation ([19]),and therefore can be naturally restricted to preference aggregation.Our logic in this paper is for preference aggregation.However,it can be adapted for a logic of judgment aggregation.We leave this issue due to length restriction.

    Pauly presented in[22]a simple modal logic that can axiomatize specific voting rules,where majority voting,consensus voting,and dictatorship were axiomatized as examples.Pauly’s framework is quite different from the others.The other formalisms were designed for general social functions,instead of for specific functions.Troquard et al.in [26]introduced a logic specifically designed to reason about the strategyproofness of social choice functions,which is a variant of social welfare functions whose output is a winning alternative or a set of winning alternatives.Jiang et al.studied in [17]a logic reason-based social choice.Cinà and Endriss’s logic in [5,6]is a fragment of the logic in [26],and therefore is also a logic for social choice functions.The most related framework to the current one is ?gotnes et al.’s judgment aggregation logic(JAL)presented in[1].

    We shall compare our logicALwith ?gotnes et al’sJALin some detail.The two logics have the same motivation of providing a modal language for representing properties of social welfare functions(or judgment aggregation rules).We shall only considerJALin the context of preference aggregation.

    A model ofJALis defined by a given social welfare functionF,whose domain consists of the Cartesian product of the set of all profiles and the set of pairs of alternatives.That is,each state in the domain is in the form((l1,...,ln),(x ?y)),where(l1,...,ln)is a profile andx,y∈X.JALhas three types of atomic formulas:ifori∈N,which is true at state ((l1,...,ln),(x ?y))where (x ?y)∈li;hx?yforx,y∈X,which is true at state((l1,...,ln),(x′ ?y′))wherex=x′andy=y′;a special propositionσ,which is true at state((l1,...,ln),(x ?y))where(x ?y)∈F(l1,...,ln).There are two modalities□and ■.□φis true at a state((l1,...,ln),(x ?y))if for all profiles (l′1,...,l′n),(l′1,...,l′n),(x ?y)|=φ.■φis true at a state((l1,...,ln),(x ?y))if for all atomsx′ ?y′,((l1,...,ln),(x′ ?y′))|=φ.

    Comparing withAL,the syntax ofJALare more complicated,and its model and semantics are less intuitive.It is not easy to catch an intuitive meaning of a state.A state in anJALmodel does not have a fixed meaning.It depends on formulas to be evaluated at the state.A state((l1,...,ln),(x ?y))means thatx ?yis individuali’s preference,ifiis the formula to be evaluated.It means thatx ?yis a group preference given profile(l1,...,ln),ifσis the formula to be evaluated.It means thatx ?yis the preference to be considered,ifhx?yis the formula to be evaluated.As a consequence,meanings of these formulas by themselves are not clear.Only by a mixed usage of these formulas can we have a clear reading.For example,hx?y∧i∧σmeans thatx ?yis ani’s preference and also a group’s preference.ALhas a simple model and a simple language with specific meanings.x ?ymeans that it is a group preference.◇(x1?y1∧...∧xn ?yn)means thatx1?y1,...,xn ?ynare individuals’ preferences.Universal modalities are used in bothJALandAL.(The semantics ofJAL’s□and ■ does not involve all states.They reflect all profiles and all pairs of alternatives.)

    As for the expressiveness,it seems hard to build a characterizing formula inJALfor any given social welfare function.JALseems not being able to express a specific vote that aggregatesl1,...,lnintol.As shown in Theorem 2.5,ALhas the full expressive power for social welfare functions.Therefore,ALis at least as expressive asJAL.Whether or notALis strictly expressive thanJALis unknown to us.

    Our logic is built on a fixed number of individuals and a fixed number of alternatives.The alphabet of the language depends on the two parameters:Given a setNof individuals and a setXof alternatives,we will have a set{x ?y|x,y∈X}with|X|2atoms,and an|N|-ary modality.The problem of whether we can have a logic without the restriction of fixedNandXwas identified in[8].This is a natural question,considering we usually prefer a logic to be as general as possible.However,as far as we know,this restriction was presented in all existing modal logic for social functions with enough expressive power of coding Arrow’s theorem[1,26,5],including the logic in this paper.As argued in[5],with which we agree,it may be not a serious restriction.The logical frameworks for differentNandXresemble to each other.In most cases,we can safely leaveNandXas parameters of the logics.

    5 Conclusion

    We present in this paper a simple modal logic for talking about social welfare functions.The logic shows how concepts of preference aggregation can be directly formalized in a logical framework.A model is a direct reading of a social welfare function.A syntactic atom of the logic is an atomic preference in the formx ?y.Ann-ary social welfare function is directly formalized by ann-ary modality of the language,and by an(n+1)-ary relation in the model.As a consequence,properties of preference aggregation are formalized by easily readable formulas,and proofs of impossibility results of social choice theory are easily coded in the logic.We give a complete deductive system for the logic,as well as show that the logic is expressively complete.Therefore,all properties of preference aggregation can be expressed by formulas of the logic,and in general all impossibility theorems can be syntactically proved.

    The complexity of our logic is not discussed in this paper.A standard bottom-up algorithm can show that the model checking problem ofALis decidable in polynomial time.(See Section 4.1 in [3]for such an algorithm for basic modal language.)But this result is hardly helpful,as indicated in[1],because it does not take the number of individuals and the number of alternatives as input parameters.In[1],JAL’s model checking problem was proved to beWe shall not expect an easier result forAL.We leave the complexity issue for future work.

    There have been quite a few modal theorem provers available.(See the webpage http://www.cs.man.ac.uk/~schmidt/tools/ for an incomplete list.)It would be interesting to see whether a similar tool can be implemented for our logic.With such an automated reasoning tool in hand,we can investigate the possibility of finding new impossibility theorems and new proofs.These problems are more interesting than coding the existing proofs of existing impossibility theorems.

    男女边吃奶边做爰视频| 天堂动漫精品| 精品久久久噜噜| 别揉我奶头~嗯~啊~动态视频| 一本一本综合久久| 一本久久中文字幕| 亚洲最大成人手机在线| 老司机影院成人| 一进一出抽搐动态| 国产日本99.免费观看| 99热全是精品| 亚洲av不卡在线观看| 久久久久久久久久久丰满| 特大巨黑吊av在线直播| 日韩大尺度精品在线看网址| 大香蕉久久网| 日韩精品有码人妻一区| 日日摸夜夜添夜夜爱| 夜夜夜夜夜久久久久| 真人做人爱边吃奶动态| 午夜福利在线在线| 最近中文字幕高清免费大全6| aaaaa片日本免费| 国产欧美日韩精品一区二区| 久久欧美精品欧美久久欧美| 欧美性猛交╳xxx乱大交人| 最近的中文字幕免费完整| 人妻丰满熟妇av一区二区三区| 女同久久另类99精品国产91| 婷婷六月久久综合丁香| 精品久久久久久久末码| 尤物成人国产欧美一区二区三区| 欧美三级亚洲精品| 国产精品人妻久久久影院| 亚洲精品久久国产高清桃花| 日本一本二区三区精品| 国产极品精品免费视频能看的| 日日撸夜夜添| 亚洲最大成人手机在线| 成人美女网站在线观看视频| 22中文网久久字幕| 中国国产av一级| 三级毛片av免费| 日日摸夜夜添夜夜添小说| 91久久精品电影网| 日韩强制内射视频| 一级av片app| 欧美激情国产日韩精品一区| 欧美bdsm另类| 日本爱情动作片www.在线观看 | 色5月婷婷丁香| 日韩一本色道免费dvd| 有码 亚洲区| 简卡轻食公司| 久久亚洲国产成人精品v| 波多野结衣高清无吗| 免费高清视频大片| 久久99热6这里只有精品| 在线播放无遮挡| 亚洲精品在线观看二区| 久久久久性生活片| 欧美成人一区二区免费高清观看| 欧美性感艳星| 麻豆国产97在线/欧美| 激情 狠狠 欧美| 91久久精品国产一区二区成人| 日韩高清综合在线| 亚洲av免费高清在线观看| 少妇人妻精品综合一区二区 | 男女做爰动态图高潮gif福利片| 99久久精品热视频| 国产亚洲91精品色在线| 久久亚洲精品不卡| 午夜福利18| 九九在线视频观看精品| 久久亚洲国产成人精品v| 亚洲无线观看免费| 人人妻人人澡人人爽人人夜夜 | 国产视频一区二区在线看| 在线观看av片永久免费下载| 亚洲成人中文字幕在线播放| 国产精品人妻久久久影院| 少妇裸体淫交视频免费看高清| 男人的好看免费观看在线视频| 欧美3d第一页| 看免费成人av毛片| 久久这里只有精品中国| 天天躁日日操中文字幕| 十八禁国产超污无遮挡网站| 日韩精品青青久久久久久| 狂野欧美激情性xxxx在线观看| 欧美色欧美亚洲另类二区| 国产午夜精品论理片| 色在线成人网| 成人午夜高清在线视频| 久久久久精品国产欧美久久久| 国产av不卡久久| 给我免费播放毛片高清在线观看| 亚洲欧美日韩高清在线视频| av在线观看视频网站免费| 久久精品综合一区二区三区| 久久精品国产99精品国产亚洲性色| 内射极品少妇av片p| 免费看a级黄色片| 日韩成人av中文字幕在线观看 | 久久精品久久久久久噜噜老黄 | а√天堂www在线а√下载| 晚上一个人看的免费电影| 久久久久国产网址| 久久久久久久久久黄片| 国产中年淑女户外野战色| 97超碰精品成人国产| 久久人人精品亚洲av| 搡老妇女老女人老熟妇| 成人亚洲精品av一区二区| 亚洲经典国产精华液单| 亚洲熟妇熟女久久| 欧美中文日本在线观看视频| 国产精品亚洲一级av第二区| 女生性感内裤真人,穿戴方法视频| 韩国av在线不卡| 亚洲欧美日韩东京热| 男女做爰动态图高潮gif福利片| 俺也久久电影网| 成人美女网站在线观看视频| 欧美日韩在线观看h| 日日摸夜夜添夜夜爱| 午夜久久久久精精品| 国产午夜福利久久久久久| 变态另类丝袜制服| 成熟少妇高潮喷水视频| 欧美日韩一区二区视频在线观看视频在线 | 久久精品人妻少妇| 91久久精品国产一区二区成人| 国产精品久久电影中文字幕| 麻豆久久精品国产亚洲av| 国产不卡一卡二| 两个人视频免费观看高清| 欧美国产日韩亚洲一区| ponron亚洲| 免费看美女性在线毛片视频| 国产综合懂色| 午夜福利18| 美女内射精品一级片tv| 少妇的逼水好多| 精华霜和精华液先用哪个| 97热精品久久久久久| 成人综合一区亚洲| 五月伊人婷婷丁香| 插阴视频在线观看视频| 欧美日本视频| 色综合亚洲欧美另类图片| 国产淫片久久久久久久久| 中文资源天堂在线| 日本精品一区二区三区蜜桃| 久久精品国产亚洲网站| av.在线天堂| 欧美性猛交黑人性爽| 一级黄片播放器| 黄色欧美视频在线观看| 内地一区二区视频在线| av在线播放精品| 亚洲欧美精品综合久久99| 免费看光身美女| 人人妻人人澡欧美一区二区| 国产成人福利小说| 成人性生交大片免费视频hd| 精品久久久久久久久久免费视频| 少妇高潮的动态图| 亚洲久久久久久中文字幕| 色视频www国产| 免费av观看视频| 亚洲真实伦在线观看| 长腿黑丝高跟| 日本欧美国产在线视频| 老女人水多毛片| 日本黄色视频三级网站网址| 久久久久久久久大av| 禁无遮挡网站| 大又大粗又爽又黄少妇毛片口| 我的老师免费观看完整版| 久久久久久大精品| 午夜激情福利司机影院| 赤兔流量卡办理| 亚洲欧美精品自产自拍| 国产精品一区二区三区四区久久| 亚洲精品影视一区二区三区av| 久久精品国产亚洲网站| 精品少妇黑人巨大在线播放 | 最近2019中文字幕mv第一页| 级片在线观看| 国产白丝娇喘喷水9色精品| 色综合亚洲欧美另类图片| 春色校园在线视频观看| 国产在线精品亚洲第一网站| 两个人的视频大全免费| 国产精品国产三级国产av玫瑰| 乱人视频在线观看| 最近的中文字幕免费完整| 99精品在免费线老司机午夜| 亚洲最大成人中文| 国产av在哪里看| 综合色av麻豆| 久久久久九九精品影院| 99热这里只有精品一区| 亚洲欧美成人精品一区二区| 老熟妇仑乱视频hdxx| 久久久久久久久久黄片| 国产成人a∨麻豆精品| 91精品国产九色| 日韩欧美在线乱码| 99久久久亚洲精品蜜臀av| 91麻豆精品激情在线观看国产| 国产高清有码在线观看视频| 国产精品久久电影中文字幕| 亚洲中文字幕日韩| 欧美zozozo另类| 99久久精品一区二区三区| 少妇丰满av| 别揉我奶头~嗯~啊~动态视频| 日韩精品中文字幕看吧| 亚洲性夜色夜夜综合| 99久久成人亚洲精品观看| 亚洲精品亚洲一区二区| 日本欧美国产在线视频| 国产成人freesex在线 | 日韩三级伦理在线观看| 人妻久久中文字幕网| 成人av一区二区三区在线看| 男女视频在线观看网站免费| 国产午夜精品论理片| 亚洲av免费在线观看| 日韩 亚洲 欧美在线| 最近最新中文字幕大全电影3| 久久久国产成人精品二区| 国产精品电影一区二区三区| 色哟哟哟哟哟哟| 99热网站在线观看| 嫩草影院入口| 亚洲国产精品国产精品| 欧美区成人在线视频| 国产精品国产三级国产av玫瑰| 俺也久久电影网| av在线老鸭窝| 亚洲一区二区三区色噜噜| 亚洲精品色激情综合| 日韩亚洲欧美综合| 赤兔流量卡办理| av中文乱码字幕在线| 18禁在线播放成人免费| 麻豆乱淫一区二区| 国产精品亚洲美女久久久| 美女免费视频网站| 亚洲人与动物交配视频| 九九在线视频观看精品| 男女视频在线观看网站免费| 少妇熟女aⅴ在线视频| 欧美一区二区国产精品久久精品| 亚洲在线自拍视频| 久久精品国产清高在天天线| 高清毛片免费看| 国产男靠女视频免费网站| 春色校园在线视频观看| 欧美日韩综合久久久久久| 日本免费a在线| 青春草视频在线免费观看| 草草在线视频免费看| 久久精品国产亚洲网站| 寂寞人妻少妇视频99o| 久久6这里有精品| 亚洲精品乱码久久久v下载方式| 日本熟妇午夜| 精品欧美国产一区二区三| 日韩在线高清观看一区二区三区| 亚洲精品成人久久久久久| 99国产精品一区二区蜜桃av| 校园春色视频在线观看| 亚洲人成网站在线播放欧美日韩| 亚洲精品粉嫩美女一区| 成人鲁丝片一二三区免费| 日韩在线高清观看一区二区三区| 欧美日本亚洲视频在线播放| 女生性感内裤真人,穿戴方法视频| av女优亚洲男人天堂| 联通29元200g的流量卡| 亚洲精品在线观看二区| av卡一久久| 91精品国产九色| 97热精品久久久久久| 中出人妻视频一区二区| 日韩精品中文字幕看吧| 日本色播在线视频| 国产精品无大码| 看片在线看免费视频| 夜夜看夜夜爽夜夜摸| 亚州av有码| 18禁裸乳无遮挡免费网站照片| 日本一本二区三区精品| 少妇熟女欧美另类| 最新在线观看一区二区三区| 黄色日韩在线| 激情 狠狠 欧美| 国产69精品久久久久777片| 国产探花极品一区二区| 一a级毛片在线观看| 免费看美女性在线毛片视频| 欧美国产日韩亚洲一区| 变态另类成人亚洲欧美熟女| 精华霜和精华液先用哪个| 嫩草影院入口| 亚洲三级黄色毛片| 久久精品人妻少妇| 亚洲av一区综合| 亚洲国产精品久久男人天堂| 永久网站在线| 最近视频中文字幕2019在线8| 最新在线观看一区二区三区| 免费无遮挡裸体视频| 亚洲国产欧洲综合997久久,| 非洲黑人性xxxx精品又粗又长| 婷婷亚洲欧美| 亚洲国产欧洲综合997久久,| 最新在线观看一区二区三区| 亚洲成人av在线免费| 最近中文字幕高清免费大全6| 国产亚洲精品av在线| 亚洲国产欧美人成| 中文字幕av在线有码专区| 国产av不卡久久| 又黄又爽又刺激的免费视频.| 亚洲美女视频黄频| 欧美高清性xxxxhd video| 97人妻精品一区二区三区麻豆| 国产日本99.免费观看| 日韩一本色道免费dvd| 亚洲国产色片| 男女啪啪激烈高潮av片| 51国产日韩欧美| 国内精品美女久久久久久| 午夜老司机福利剧场| 国产精品国产高清国产av| 综合色丁香网| 久久久久国产网址| 免费搜索国产男女视频| 看免费成人av毛片| 夜夜爽天天搞| av福利片在线观看| 一本久久中文字幕| 日本黄大片高清| 99riav亚洲国产免费| h日本视频在线播放| av在线播放精品| 久久精品国产亚洲av涩爱 | 毛片一级片免费看久久久久| 波野结衣二区三区在线| 插阴视频在线观看视频| 亚洲第一区二区三区不卡| 春色校园在线视频观看| 国产精品一区二区性色av| 免费观看的影片在线观看| 在线观看66精品国产| 少妇猛男粗大的猛烈进出视频 | 搡女人真爽免费视频火全软件 | 久久人人精品亚洲av| 97超级碰碰碰精品色视频在线观看| 国产精品久久久久久亚洲av鲁大| 色视频www国产| 村上凉子中文字幕在线| 99久国产av精品| 午夜影院日韩av| 欧美色欧美亚洲另类二区| av天堂在线播放| 热99re8久久精品国产| 老熟妇仑乱视频hdxx| 精品人妻熟女av久视频| 人人妻,人人澡人人爽秒播| 三级毛片av免费| 日韩精品青青久久久久久| 国产男人的电影天堂91| 国产 一区 欧美 日韩| 久久久久久久久大av| av黄色大香蕉| 男女下面进入的视频免费午夜| 韩国av在线不卡| 搞女人的毛片| 精品少妇黑人巨大在线播放 | 久久精品国产亚洲av天美| 亚洲成人精品中文字幕电影| 中出人妻视频一区二区| 国产伦精品一区二区三区视频9| 欧美国产日韩亚洲一区| 日韩三级伦理在线观看| 美女被艹到高潮喷水动态| 国产精品日韩av在线免费观看| 可以在线观看毛片的网站| 欧美一区二区国产精品久久精品| 91狼人影院| 我要搜黄色片| 婷婷亚洲欧美| 亚洲欧美清纯卡通| 91久久精品电影网| 秋霞在线观看毛片| 亚洲精品成人久久久久久| 国产精品久久电影中文字幕| 国产精品免费一区二区三区在线| 日韩大尺度精品在线看网址| 国产精品爽爽va在线观看网站| 97超碰精品成人国产| 亚洲av一区综合| 黄色配什么色好看| 一边摸一边抽搐一进一小说| 人妻夜夜爽99麻豆av| 日韩 亚洲 欧美在线| 国产精品久久久久久亚洲av鲁大| 中出人妻视频一区二区| 99热网站在线观看| 99精品在免费线老司机午夜| av在线天堂中文字幕| 伊人久久精品亚洲午夜| videossex国产| 精品一区二区三区视频在线观看免费| 亚洲人与动物交配视频| 少妇人妻一区二区三区视频| 蜜桃久久精品国产亚洲av| 91麻豆精品激情在线观看国产| 亚洲在线自拍视频| 露出奶头的视频| 伊人久久精品亚洲午夜| 欧美成人一区二区免费高清观看| 亚洲成人久久性| 一级黄片播放器| 美女大奶头视频| 国产精品久久电影中文字幕| 日本精品一区二区三区蜜桃| 日韩欧美在线乱码| 69av精品久久久久久| 国产精品1区2区在线观看.| 午夜福利视频1000在线观看| 国内少妇人妻偷人精品xxx网站| 日本撒尿小便嘘嘘汇集6| 成人三级黄色视频| 中文在线观看免费www的网站| 国产一区亚洲一区在线观看| 精品久久久久久久人妻蜜臀av| 一级毛片久久久久久久久女| 人妻制服诱惑在线中文字幕| 最近手机中文字幕大全| 欧美+亚洲+日韩+国产| 一级av片app| 久久婷婷人人爽人人干人人爱| 国产高清三级在线| 久久久精品94久久精品| 欧美绝顶高潮抽搐喷水| 国产成人影院久久av| 91久久精品电影网| 男人狂女人下面高潮的视频| 久久精品国产清高在天天线| 久久99热这里只有精品18| 亚洲国产精品久久男人天堂| 久久精品影院6| 国产亚洲精品综合一区在线观看| 卡戴珊不雅视频在线播放| 久久精品91蜜桃| 热99re8久久精品国产| 美女大奶头视频| 精品久久久久久久久久久久久| 哪里可以看免费的av片| 亚洲性久久影院| 亚洲五月天丁香| 身体一侧抽搐| 成人鲁丝片一二三区免费| 99久久精品热视频| 国产精品野战在线观看| 一区二区三区四区激情视频 | 99热网站在线观看| 天堂av国产一区二区熟女人妻| 一个人免费在线观看电影| 亚洲专区国产一区二区| 成人av在线播放网站| 欧美日本亚洲视频在线播放| 国产乱人偷精品视频| 国产精品人妻久久久影院| 97超碰精品成人国产| 久久韩国三级中文字幕| 12—13女人毛片做爰片一| 欧美3d第一页| 国产精品免费一区二区三区在线| 免费av观看视频| 色播亚洲综合网| 麻豆久久精品国产亚洲av| 最新在线观看一区二区三区| 国产私拍福利视频在线观看| 日韩欧美在线乱码| 精品久久久久久久末码| 22中文网久久字幕| 国产91av在线免费观看| 国产成人福利小说| 黄色一级大片看看| 国产欧美日韩一区二区精品| 97人妻精品一区二区三区麻豆| 国产 一区 欧美 日韩| 淫秽高清视频在线观看| 免费av不卡在线播放| 日韩 亚洲 欧美在线| 色噜噜av男人的天堂激情| 亚洲欧美日韩高清在线视频| 搡老妇女老女人老熟妇| 国产一级毛片七仙女欲春2| 麻豆乱淫一区二区| 免费av毛片视频| 国产在线男女| 99久久无色码亚洲精品果冻| 日本免费一区二区三区高清不卡| 精品99又大又爽又粗少妇毛片| 久久人人爽人人爽人人片va| 不卡视频在线观看欧美| 久久九九热精品免费| 2021天堂中文幕一二区在线观| 亚洲图色成人| 国产精品日韩av在线免费观看| 婷婷亚洲欧美| 国产成人aa在线观看| 日韩中字成人| 日韩大尺度精品在线看网址| 成人午夜高清在线视频| 日韩欧美 国产精品| 女的被弄到高潮叫床怎么办| 少妇的逼好多水| 天天一区二区日本电影三级| 精品一区二区三区视频在线| 国产不卡一卡二| 亚洲丝袜综合中文字幕| 免费搜索国产男女视频| 男女啪啪激烈高潮av片| 直男gayav资源| 国产一区二区亚洲精品在线观看| 老熟妇乱子伦视频在线观看| 日韩 亚洲 欧美在线| 搡女人真爽免费视频火全软件 | 波多野结衣高清作品| 两性午夜刺激爽爽歪歪视频在线观看| 久久久色成人| 欧美bdsm另类| 真人做人爱边吃奶动态| 久久天躁狠狠躁夜夜2o2o| 此物有八面人人有两片| 又爽又黄a免费视频| 亚洲精品国产成人久久av| 变态另类成人亚洲欧美熟女| 久久久久性生活片| 97超视频在线观看视频| 久久久久久久久久成人| 久久国内精品自在自线图片| 美女免费视频网站| 国产精品野战在线观看| videossex国产| 最好的美女福利视频网| 精品一区二区三区av网在线观看| av视频在线观看入口| 国产爱豆传媒在线观看| 在线播放国产精品三级| 嫩草影院精品99| 亚洲电影在线观看av| 蜜桃亚洲精品一区二区三区| 亚洲内射少妇av| 国产白丝娇喘喷水9色精品| 午夜激情福利司机影院| av免费在线看不卡| 精品少妇黑人巨大在线播放 | 美女cb高潮喷水在线观看| 国产三级在线视频| 国产在线精品亚洲第一网站| 一区二区三区四区激情视频 | 激情 狠狠 欧美| 你懂的网址亚洲精品在线观看 | 夜夜夜夜夜久久久久| 日本精品一区二区三区蜜桃| 又黄又爽又免费观看的视频| 久久精品夜色国产| 色综合亚洲欧美另类图片| 国产午夜精品论理片| 欧美色视频一区免费| 亚洲欧美成人综合另类久久久 | 啦啦啦韩国在线观看视频| 99国产精品一区二区蜜桃av| 男人舔奶头视频| 国产又黄又爽又无遮挡在线| 69人妻影院| 欧美+亚洲+日韩+国产| 观看免费一级毛片| 日本爱情动作片www.在线观看 | 99热这里只有精品一区| 99久久无色码亚洲精品果冻| 日本五十路高清| 亚洲人成网站高清观看| 日韩av在线大香蕉| 国产av在哪里看| 中文字幕久久专区| 国产成人a∨麻豆精品| 不卡一级毛片| 99热这里只有是精品在线观看| 黄片wwwwww| 丝袜喷水一区| 色综合站精品国产| 久久亚洲国产成人精品v| 日本a在线网址| 国产精品一区二区三区四区免费观看 | 三级毛片av免费| 搡老岳熟女国产| 真实男女啪啪啪动态图| 日韩强制内射视频| 网址你懂的国产日韩在线| 99久国产av精品国产电影| 国产av在哪里看| 亚洲第一电影网av|