薛劍英
(江蘇省海門經(jīng)濟技術(shù)開發(fā)區(qū)小學,江蘇海門 226100)
問題是數(shù)學課堂不可或缺的,而學生的學習過程不應(yīng)停留在分析問題和解決問題上,否則將會失去探索的動力和創(chuàng)新思維,所以學生的學習應(yīng)從發(fā)現(xiàn)問題和提出問題開始,而發(fā)現(xiàn)問題能力的培養(yǎng)應(yīng)著力于學生問題意識的培養(yǎng)[1]。學生只有在好奇心和數(shù)學眼光的驅(qū)使下,才能敏感地捕捉問題、發(fā)現(xiàn)問題。實際教學中,教師可以從以下幾方面入手來發(fā)展學生的問題意識。
好奇是學生的天性,由好奇引起問題是學生提出問題的原動力,在數(shù)學教學中,教師不需要從一開始就提出問題,引導學生的思考和探索,而應(yīng)為學生營造特定的環(huán)境或創(chuàng)設(shè)有效的情境,讓學生經(jīng)歷觀察、思考等活動,激發(fā)好奇心,由好奇產(chǎn)生問題,并組織語言,表述自己的思路,這也是學生學習主體性的體現(xiàn)。
例如,在“能被2、3、5整除的數(shù)的特征”的教學中,筆者在上課伊始就提出與學生進行一場對抗賽,師生互相出一組題,學生可以分組完成,教師單獨應(yīng)戰(zhàn),看看哪一方的速度更快、正確率更高。在對戰(zhàn)中,學生的興趣高漲,盡管分成幾個小組來計算和判斷,學生的速度仍比教師慢。在驗證師生的答案是否正確后,有不少學生質(zhì)疑教師肯定不是每一題都是通過除法計算來判斷的,他們指出“其中一定有什么規(guī)律”。筆者引導學生提出探索2、3、5的倍數(shù)的特征的問題,并引導學生通過列舉、觀察等手段嘗試尋找規(guī)律,學生的學習由此展開。
在這一案例中,游戲是推動學生產(chǎn)生疑問的基礎(chǔ),因為學生分組完成任務(wù),教師單槍匹馬,按照常理,教師獲勝的概率很低,但對抗過程中教師的勝出讓學生產(chǎn)生了疑問,他們發(fā)現(xiàn)判斷一個數(shù)是不是2、3、5的倍數(shù)一定有巧妙的方法。在這一基礎(chǔ)上學生的探究欲望更加強烈,他們自然而然地提出問題。
情境是激發(fā)學生學習欲望的重要手段,也是推動學生產(chǎn)生問題的重要場所,在恰當?shù)那榫持?,學生能夠激活生活經(jīng)驗和已有知識,與現(xiàn)實相聯(lián)系,從而發(fā)現(xiàn)問題[2]。因此,在實際教學中我們要從學生的角度出發(fā),創(chuàng)設(shè)有效的情境,強化學生的體驗,推動學生的發(fā)現(xiàn),讓學生在情境中自然產(chǎn)生數(shù)學問題。
例如,在“認識分數(shù)”的教學中,筆者創(chuàng)設(shè)了這樣的情境。大頭兒子上學去了,走之前在桌子上給爸爸留言:昨晚媽媽做的比薩餅我已經(jīng)吃掉了( ),剩下的留給你們作早餐。在留言字條上,大頭兒子吃掉的部分被水漬弄模糊了,但是情境中比薩的形狀清晰可見。于是在觀察情境圖后,不少學生的第一反應(yīng)就是“大頭兒子怎么表示吃掉的餅”,問題由此產(chǎn)生。在思考中,學生用不同的方式來表示大頭兒子吃掉的部分,有的說“將餅平均分成3份,吃掉其中1份”,有的畫圖表示,還有的直接用分數(shù)表示,也有的學生自創(chuàng)了表示方法。在引導學生表達自己的表示方法時,學生不但認識了分數(shù),而且初步體會到分數(shù)的含義。
這個問題由情境而起,情境給了學生很好的認識分數(shù)的背景,學生在情境中產(chǎn)生了自己的想法,這驅(qū)動他們從自己的角度表示自己的想法,以此構(gòu)成了本課教學的基礎(chǔ)。水漬的出現(xiàn)激發(fā)了學生的求知欲,讓學生可以有空間來思考,也讓學生在好奇的驅(qū)動下自然地提出問題,并展開對問題的思考和交流。
數(shù)學課堂上教師要關(guān)注學生的獨立思考,在教學過程中確保學生的獨立空間,讓每位學生獨立面對問題,產(chǎn)生自己的想法,并能表達自己的想法,這樣才能促進問題的多元化,才能提升學生數(shù)學學習的層次。如果學生在數(shù)學學習中總是跟隨大流,習慣于等待別人的答案,或人云亦云,那么他們的學習難免落入機械的接受和模仿中。提出問題的過程也是如此,如果全班學生想問題的角度總是一樣的,便會產(chǎn)生不良影響。實際教學中,教師要為學生營造寬松平等的氛圍,促使學生從不同角度思考問題,推動學生善于思考、善于發(fā)問,讓學生養(yǎng)成勤于質(zhì)疑和善于提問的好習慣。
例如,在“用數(shù)對確定位置”的教學中,筆者為學生提供了教材中的情境圖,并確定一個位置讓學生用自己的方法表述這個位置。在獨立思考的基礎(chǔ)上,大部分學生從不同的角度來定位,用不同方法表示出了這個位置。交流過程中,學生展示出來的定位方式很多,而且學生能夠解釋清楚自己的方法。面對這樣的情況,學生產(chǎn)生了問題,有的學生提出:這些不同的表示方法有一定的矛盾,有的是從自己的角度看的,有的是從前面反方向來看的,應(yīng)該統(tǒng)一起來。有的學生提出:需要有統(tǒng)一的規(guī)定避免產(chǎn)生混亂。在這樣想法的推動下,教師引導學生統(tǒng)一尺度:從觀測者角度來定位,按照先列后行的順序來確定位置。這樣學生就能準確地定位了,在之后的學習中,筆者再引導學生用簡單的方法來表示確定的位置,數(shù)對逐步成型。
在這個案例中,學生先從不同的角度出發(fā)思考問題,形成發(fā)散思維,但經(jīng)歷了無序和無規(guī)定后,學生體驗到統(tǒng)一定位方式的需求。在這一過程中,學生清楚地了解確定位置的方法和順序,這也為他們之后“創(chuàng)造”出數(shù)對的方法埋下伏筆。如果學生只滿足于解釋定位方式,沒有質(zhì)疑多種方法的矛盾和混亂,他們就無法提出統(tǒng)一方法的要求,從這里可以看出學生已初步具備質(zhì)疑的習慣,這是推動學生提出高質(zhì)量問題的基礎(chǔ)。
問題的來源很多,有源于好奇的,有源于方向思維的,也有源于對比的,在實際教學中,我們要讓學生多經(jīng)歷、多體驗,讓學生在學習中積累學習方法,這也是推動學生發(fā)現(xiàn)問題和提出問題的有效途徑之一。
例如,在“認識百分數(shù)”的教學中,筆者從生活中的百分數(shù)入手,引導學生體會百分數(shù)的含義,并引導學生比較百分數(shù)和分數(shù)的異同。學生在學習中根據(jù)份數(shù)認識了百分數(shù),但在小結(jié)環(huán)節(jié)中,學生提出了問題:既然分數(shù)能夠表示具體的數(shù)量,也能夠表示分率,而百分數(shù)只能表示分率,為什么在生活中我們見到的大都是百分數(shù),而分數(shù)很少呢?對于這樣的問題,筆者引導學生交流,學生結(jié)合實例發(fā)現(xiàn)百分數(shù)相對于普通的分數(shù)更便于比較,人們能很快感知到百分數(shù)的大小等優(yōu)點,而且他們發(fā)現(xiàn)生活中需要用分數(shù)來表示具體數(shù)量的時候不多。一些學生還將一些生活情境中的百分數(shù)換算成分數(shù),在對比中學生發(fā)現(xiàn)用分數(shù)確實不及百分數(shù)方便。
總之,在培養(yǎng)學生問題意識的過程中,教師要激發(fā)學生的主體性,為學生營造良好的問題氛圍,推動學生從多角度出發(fā)提出問題,并在豐富的學習過程中促進問題質(zhì)量的提升,這樣在數(shù)學課堂上才能出現(xiàn)大量有效問題,引領(lǐng)學生更好地進行數(shù)學學習,提升學生的問題能力,培養(yǎng)學生的核心素養(yǎng)。