• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于機(jī)器學(xué)習(xí)方法的丙型肝炎病毒非結(jié)構(gòu)蛋白5B聚合酶抑制劑活性預(yù)測(cè)

    2011-12-11 09:09:54
    物理化學(xué)學(xué)報(bào) 2011年6期
    關(guān)鍵詞:四川大學(xué)丙型肝炎抑制劑

    呂 巍 薛 英

    (1山東農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院,作物生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,山東泰安271018;2四川大學(xué)化學(xué)學(xué)院,教育部綠色化學(xué)與技術(shù)重點(diǎn)實(shí)驗(yàn)室,成都610064;3四川大學(xué)生物治療國(guó)家重點(diǎn)實(shí)驗(yàn)室,成都610041)

    基于機(jī)器學(xué)習(xí)方法的丙型肝炎病毒非結(jié)構(gòu)蛋白5B聚合酶抑制劑活性預(yù)測(cè)

    呂 巍1薛 英2,3,*

    (1山東農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院,作物生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,山東泰安271018;2四川大學(xué)化學(xué)學(xué)院,教育部綠色化學(xué)與技術(shù)重點(diǎn)實(shí)驗(yàn)室,成都610064;3四川大學(xué)生物治療國(guó)家重點(diǎn)實(shí)驗(yàn)室,成都610041)

    在丙型肝炎病毒(HCV)的基因復(fù)制和蛋白質(zhì)成熟的過程中,非結(jié)構(gòu)蛋白5B(NS5B)作為RNA依賴的RNA聚合酶起到了重要的作用.抑制NS5B聚合酶可以阻止丙型肝炎病毒的RNA復(fù)制,因此成為一種治療丙型肝炎的有效方法.通過計(jì)算機(jī)方法進(jìn)行虛擬篩選和預(yù)測(cè)NS5B聚合酶抑制劑已經(jīng)變得越來越重要.本文主要采用機(jī)器學(xué)習(xí)方法(支持向量機(jī)(SVM)、k-最近相鄰法(k-NN)和C4.5決策樹(C4.5 DT))對(duì)已知的丙型肝炎病毒NS5B蛋白酶抑制劑與非抑制劑建立分類預(yù)測(cè)模型.1248個(gè)結(jié)構(gòu)多樣性化合物(552個(gè)NS5B抑制劑與696個(gè)非NS5B抑制劑)被用于測(cè)試分類預(yù)測(cè)系統(tǒng),并用遞歸變量消除法選擇與NS5B抑制劑相關(guān)的性質(zhì)描述符以提高預(yù)測(cè)精度.獨(dú)立驗(yàn)證集的總預(yù)測(cè)精度為84.1%-85.0%,NS5B抑制劑的預(yù)測(cè)精度為81.4%-91.7%,非NS5B抑制劑的預(yù)測(cè)精度為78.2%-87.2%.其中支持向量機(jī)給出最好的NS5B抑制劑預(yù)測(cè)精度(91.7%);C4.5決策樹給出最好的非NS5B抑制劑預(yù)測(cè)精度(87.2%);k-最近相鄰法給出最好的總預(yù)測(cè)精度(85.0%).研究表明機(jī)器學(xué)習(xí)方法可以有效預(yù)測(cè)未知數(shù)據(jù)集中潛在的NS5B抑制劑,并有助于發(fā)現(xiàn)與其相關(guān)的分子描述符.

    機(jī)器學(xué)習(xí)方法;分子描述符;遞歸變量消除法; 支持向量機(jī);丙型肝炎病毒

    1 Introduction

    Hepatitis C virus(HCV)is a positive strand RNA virus of the Flaviviridae family.1The capsid and envelope are composed of four structural proteins and there are five non-structural proteins which play important roles in protein maturation and gene replication.HCV is responsible for a variety of clinical conditions ranging from acute viral hepatitis to chronic liver disease and cirrhosis.2It is the major cause of liver cancer and about two thirds of all liver transplants are a result of HCV infection.Since the HCV cDNA was cloned successfully by Choo et al.in 1989,3there have been many researches about the genome,function of protein,and biological function of HCV.In 2000,according to the World Health Organization survey,there are estimated 170 million people worldwide chronically infected by the HCV and an estimated 3-4 million new infections annually.4Currently,there is no effective vaccine to prevent hepatitis.Therefore,drug development for the treatment of HCV has become a hot spot for many scientists.The current standard of care for HCV,which is based on a combination of Interferon(IFN)and Ribavarin,can cure HCV infections,but is often inadequate.5In addition,there will be serious side effects and a low success rate in the main viral genotype. The need for improved therapies is pressing because although the incidence of new HCV infections is declining,mortality is expected to increase into the middle of the next decade.6

    The lack of a highly effective and safe treatment option for the HCV highlights the necessity of developing more efficient means of combating and curing this viral disease ultimately.A primary focus is currently on finding new inhibitors of the NS5B polymerase.As we all know,NS5B polymerase has been identified as an RNA dependent RNA polymerase,which can be essential for replication since it both affects the synthesis of a(-)-stranded HCV RNA template and regenerates the (+)-stranded genomic RNA.7Inhibiting NS5B polymerase will prevent the RNA replication,so it has a significant effect on the treatment of HCV.In recent years,some X-ray crystallographic structures of NS5B have been determined and their resolutions are more accurate too,such as the structures(PDB ID: 3mwv,3mww,3gyn,etc.).8,9The modulation of NS5B inhibitors has become more explicit10and more databases of commercially available compounds were generated.In this situation, the area of NS5B inhibitor predicted by the non-structurebased computational methods has developed too.

    The machine learning(ML)methods are very important computational methods and efficacious tools in the virtual screening and the computer-aided drug design.They have been applied in drug pharmacodynamics,pharmacokinetics,and toxicology,11-13with much achievement.Recursive feature elimination(RFE)method,14,15which has been extensively used in the feature selecting,is employed in this research for selecting the most relevant molecular descriptors to NS5B inhibitory liability.To assess the prediction accuracy of the models in this research,two different evaluation methods have been employed which are valid for estimating drug prediction models.One is five-fold cross validation16and the other is evaluation by an independent validation set.

    In this paper,we use ML methods,such as support vector machines(SVM),k-nearest neighbor(k-NN),and C4.5 decision tree(C4.5 DT),to study NS5BIs and non-NS5BIs for developing a fast and cost-efficient tool for facilitating NS5BIs prediction and design,and we employ the RFE method to select the descriptors which are most relative to the discrimination of NS5BIs and non-NS5BIs for improving the accuracy of the prediction models.

    2 Methodology

    2.1 Selection of NS5BIs and non-NS5BIs

    Atotal of 1313 compounds about NS5B with known IC50values were selected from a number of published papers9,17-70(See Supporting Information:Table S1).Based on the tested experimental data in prevenient researches,35when the IC50value is lower than 300 nmol·L-1,the molecule has good activity.And in the other papers,24,56it was indicated that when the IC50value is between 400 and 600 nmol·L-1,the molecule has inhibitory potential too,but not strong.For example,the compounds(07-1-20 and 07-1-21)have the activity of inhibiting NS5B and their IC50values are 200 and 300 nmol·L-1,respectively.35The compound(08-9-4c)with IC50value of 440 nmol·L-1can inhibit NS5B activity,however,methylation of the R3 sulfonamide moiety present in 08-9-4b(27 nmol·L-1)resulted in significant loss of NS5B inhibition properties.56The phenyl ethyl amide compounds(05-3-43 and 05-3-44)with substituents at R3 with Cl and F are little potential at inhibiting NS5B and the IC50values are 500 and 600 nmol·L-1,respectively.24The compound (09-15-11f)with the IC50value of 685 nmol·L-1is a weaker NS5B inhibitor.61For compounds(09-12-4n and 09-12-4s) with the IC50values of 780 and 730 nmol·L-1,respectively,the inhibiting activity for NS5B is very weak because of an αbranched in the R1 moiety.58In this work,based on experimental data mentioned above,one method was applied to assign compounds as NS5BIs and non-NS5BIs.71In all molecules collected,we can divide them into three sets based on the IC50values of these molecules.One set includes 552 inhibitors(IC50≤400 nmol·L-1),the second set includes 696 non-inhibitors (IC50≥600 nmol·L-1).The last set includes 65 molecules(400 nmol·L-1<IC50<600 nmol·L-1)which are ambiguous between inhibitors and non-inhibitors.In these three sets,we only choose the first two sets to test.

    The two-dimensional(2D)structure of each of the compounds was generated by using ChemDraw72and was subsequently converted into three-dimensional(3D)structure by using Corina73for calculating the quantum chemical properties. The 3D structure of each compound was manually inspected to ensure that the chirality of each chiral agent is properly generated.All the generated geometrics have been fully optimized without symmetry restrictions.

    Firstly,all compounds were divided into training set,testing set,and independent validation set according to their distributions in the chemical space defined by their structural and chemical features.74Compounds of similar structural and chemical features were evenly assigned into separate sets.For those compounds without enough structurally and chemically similar counterparts,they were assigned,in order of priority,to the training set and then the testing set,respectively.The ID of compound in every subset is supplied in Table S2 in Supporting Information.The training set was used by SVM to develop a statistical model.The testing set was used by SVM to optimize the parameters of SVM classification algorithm,and the independent validation set was used for assessing the classification accuracy of the model.Then,all compounds in training set and testing set were randomly divided into five subsets of approximately equal size.After training the SVM with a collection of four subsets,the performance of the SVM was tested against the fifth subset.This process was repeated five times, so that every subset was once used as the test data.

    2.2 Molecular descriptors

    Molecular descriptors were used to routinely represent quantitatively structural and physicochemical properties of molecules,which have been extensively applied in the structureactivity relationship(SAR),14quantitative structure-activity relationship(QSAR),75and other computational researches of pharmaceutical agents.76,77In this work,a total of 198 molecular descriptors listed in Table S3 in Supporting Information were used,which were selected from more than 1000 descriptors described in the literature by eliminating those descriptors that are obviously redundant.78The resulting 198 molecular descriptors include 18 descriptors in the class of simple molecular properties,27 descriptors in the class of molecular connectivity and shape,97 descriptors in the class of electro-topological state,31 descriptors in the class of quantum chemical properties,and 25 descriptors in the class of geometrical properties. They were computed from the 3D structure of each compound by using the molecular descriptor computing program.79The irrelevant and redundant descriptors to NS5BIs and non-NS5BIs were further eliminated by using feature selection method.11,80

    2.3 Feature selection method

    In a dataset with a fixed number of samples,excessive descriptors may cause a predicting model to be over-fitted to affect its precision.Therefore,feature selection methods have become increasingly prevalent.It is good at enhancing the performance of ML methods by eliminating the molecular descriptors which are redundant and irrelevant to the discrimination of different datasets.12Recursive feature elimination(RFE),one of the feature selection methods,has been widely acknowledged because of its high efficacy manifested in discovering informative feature molecular descriptors most relevant to the cancer classification,13prediction of P-glycoprotein substrates,81prediction of tetrahymena pyriformis toxicity chemicals,12and the drug activity analysis.11RFE with SVM is used to reduce the other redundant and unrelated descriptors.For a fixed parameter σ,in the first step,the SVM builds a model with the complete set of descriptors.In the second step,the contribution of the descriptors is ranked in the datasets based on a criterion score which is calculated by a scoring function.In the third step,the m ranked lowest descriptors are washed out.Finally, the SVM classifier is retrained by using the remaining descriptors,and the corresponding prediction accuracy is computed by means of five-fold cross validation.All the four steps are then repeated for other σ until all descriptors have been removed. After the completion of these procedures,the set of descriptors and parameter σ which give the best prediction accuracy are selected.

    The choice of the parameter m affects the performance of SVM as well as the speed of feature selection.To control the size of the selected descriptors,we only consider the number of descriptors smaller than one-fifth of the whole descriptors.78Our earlier studies suggested that the performance of a SVM system with m=5 is only reduced by a few percentages smaller than that with m=1,which is consistent with the findings from other studies.15In this work,m=5 is used for the sake of computational efficiency.

    2.4 Machine learning methods

    There are a number of downloadable ML methods software packages.For example,PHAKISO(http://www.phakiso.com/ index.htm)and WEKA(http://www.cs.waikato.ae.nz/~ml/weka)for a collection of ML methods software,82NeuNet(http:// www.cormactech.com/neunet/index.html)for neural network, SVM-Light(http://svmlight.joachims.org)for SVM software were used in many researches.We used our in-house program to build SVM model83for predicting the compounds from NS5BIs and non-NS5BIs.And we also use the other ML methods to predict them,for example,k-NN84and C4.5.85Then the results calculated by these ML methods are compared.

    2.5 Performance evaluation

    As in the case of all discriminative methods,86the performance of ML methods can be measured by the quantity of true positives(TP),true negatives(TN),false positives(FP),and false negatives(FN),which are the number of NS5BIs predicted as NS5BIs,non-NS5BIs predicted as non-NS5BIs,non-NS5BIs predicted as NS5BIs,NS5BIs predicted as non-NS5BIs,respectively.There are several accuracy functions for measuring prediction performance,which include sensitivity SE=(TP/(TP+FN))×100%(prediction accuracy for NS5BIs), specificity SP=(TN/(TP+FN))×100%(prediction accuracy for non-NS5BIs),the overall prediction accuracy(Q),and Matthews correlation coefficient(C)are given by Eq.(1)and Eq.(2),respectively.

    3 Results and discussion

    3.1 Overall prediction accuracies and merit of the machine learning methods

    SVM prediction of NS5BIs is evaluated by the method of 5-fold cross validation.Through comparing the accuracies of SVM,which used 5-fold cross validation with and without theuse of RFE of feature selection method,we find that the feature selection method plays an important role in the performance of SVM for the prediction of NS5BIs and non-NS5BIs. The results are listed in Table 1.Through this method,we find 24 descriptors which are critical for SVM model.The 24 descriptors are listed in Table 2.The accuracies of SVM with RFE are 81.8%for NS5BIs and 81.8%for non-NS5BIs;and the accuracies of SVM without RFE are 90.2%for NS5BIs and 53.1%for non-NS5BIs.The average accuracies with and without RFE are 82.0%and 69.8%,respectively.It obviously indicates that the method with RFE is substantially better than that derived from SVM without RFE,especially for NS5BIs.This suggests that RFE is useful in selecting the proper set of molecular descriptors for the prediction of NS5BIs.The results show that the selection of appropriate molecular descriptors is important for the improvement of average prediction accuracy,but more important for implying which pharmacological features are more propitious to distinguish NS5BIs and non-NS5BIs.

    Table 1 Accuracies of NS5BIs and non-NS5BIs derived from SVM without and with the use of the RFE method (SVM+RFE)by using five-fold cross validation

    Table 2 The 24 molecular descriptors selected from the RFE method for the classification of NS5BIs and non-NS5BIs

    Table 3 gives the prediction accuracies of NS5BIs and non-NS5BIs derived from other two machine learning methods(k-NN and C4.5 DT)by using the RFE selected descriptors and five-fold cross validation method.For comparison,those results from SVM are also labeled in Table 3.By comparing the prediction accuracies from the three methods,we have obtained several results.For NS5BIs,the accuracies of these methods are in the range of 81.4%-91.7%with SVM givingthe best accuracy at 91.7%.For non-NS5BIs,the accuracies are in the range of 78.2%-87.2%with C4.5 DT giving the best accuracy at 87.2%.Lastly,for both NS5BIs and non-NS5BIs, the average accuracies are in the range of 84.1%-85.0%with k-NN giving the best accuracy at 85.0%,C4.5 DT giving the second best accuracy at 84.7%and SVM giving the worst accuracy at 84.1%.

    Table 3 Comparison of the prediction accuracies of NS5BIs and non-NS5BIs derived from different machine learning methods by using independent validation sets

    A frequently used method for checking whether a prediction system is over-fitting is to compare the prediction accuracies determined by using cross validation methods and independent validation sets.Since descriptor selection is performed by using the cross validation method as the modeling testing sets,an over-fitted classification system is expected to have much higher prediction accuracy for the cross validation sets than that for the independent validation sets.As shown in Table 1 and Table 3,the predication accuracies of the SVM systems based on the five-fold cross validation method and those based on independent validation sets are similar.This shows that the SVM classi-fication systems in this work are unlikely over-fitted.

    Fig.1 Structures of the part of misclassified NS5BIs

    Fig.2 Structures of the part of misclassified non-NS5BIs

    Overall,our study suggests that ML methods are useful for facilitating the prediction of novel NS5BIs from compounds with diverse structures.Another advantage of the SVM studied in this work is that they do not require the knowledge about the molecular mechanism or structure-activity relationship of a particular drug property.

    3.2 Molecular descriptors associated with the diversity between NS5BIs and non-NS5BIs

    Selecting molecular descriptors which are most relevant to the prediction of NS5BIs is important for optimizing the prediction models and for elucidating the molecular factors contributing to NS5BIs.Commonly,QSAR models particularly design a group of specific descriptors to represent the studied NS5BIs which have similar structural groups or structural alerts.34In this research,a total of 24 molecular descriptors are selected by RFE.These descriptors,given in Table 2,represent the structural and physicochemical properties associated with the diversity between NS5BIs and non-NS5BIs.All of them are found to match or partially match those descriptors used in the published NS5BIs QSAR models.34The physicochemical properties,such as steric,electrostatic,hydrophobic,hydrogen bond acceptor,and hydrogen bond donor,are incorporated in the comparative molecular similarity indices analysis(CoMSIA)and comparative molecular field analysis(CoMFA)methods for the studies of NS5B polymerase inhibitors.34In our work,the descriptors selected by RFE method are the same as the results in other researches.34For example,topological state descriptors including S(1),S(5),S(8),S(13),S(25),S(28), S(76)and Tbmdd are selected which are related with steric property;χen(electronegativity index),QH,Max(most positive charge on H atoms),QC,Max(most positive charge on C atoms), QN,SS(sum of squares of charges on N atoms),QO,SS(sum of squares of charges on O atoms),Rpc(relative positive charge), Rnc(relative negative charge),Svpc(sum of van der Waals surface areas of positively charged atoms)and Svpcw(sum of charge weighted van der Waals surface areas of positively charged atoms)are related to electrostatic;and the descriptors of Shpb(hydrophobic region)and Hiwpb(hydrophobic integy moment)are selected to descript the hydrophobic property in our work.In addition,Srivastava et al.87constructed the QSAR model of NS5BIs with several molecular descriptors including electronegativity(χeq)which is selected as χen(electronegativity index)in our work.

    3.3 Misclassified compounds in the independent validation set

    There are 53 molecules incorrectly classified by our SVM system with the independent validation set method.The predic-tion accuracy is 91.7%for NS5BIs,78.2%for non-NS5BIs, and 84.1%for all of them.And for NS5BIs set,which is comprised of 145 molecules,there are 12 molecules which are predicted to non-NS5BIs,on the other hand,for non-NS5BIs set, which is comprised of 188 molecules,there are 41 molecules which are predicted to NS5BIs.All of these misclassified molecules are shown in Fig.1,Fig.2 and Fig.S1 in Supporting Information.From these figures,we can see that the misclassified agents are mainly the compounds with multiple and dense rings.It suggests that using current molecular descriptors may not be sufficient to properly show the molecular features.So it implies that further improvement and refinement of our molecular descriptors may be needed.

    4 Conclusions

    This study shows that machine learning methods,especially SVM,are useful for facilitating the prediction of NS5BIs without the knowledge of mechanisms but only with the choice of specific molecular descriptors.However,the current ML methods are limited in their ability to facilitate the study of the mechanism of predicted properties.Nevertheless,we believe in the near future,this weakness may be partially overcome by the development of regression-based ML methods.In addition, our study indicates that prediction accuracy of this model is affected by the molecular descriptors selected by RFE which can further help to optimally select molecular descriptors.To conclude,the availability of more extensive information about various NS5BIs and associated mechanisms will facilitate the development of machine learning methods into practical tools for the prediction of different types of NS5BIs in the early stage of drug development.

    Supporting Information Available:The information of the investigated dataset is provided in Tables S1,S2,S3 and Fig.S1. This information is available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Bréchot,C.Digest.Dis.Sci.1996,41,6S.

    (2) Hoofnagle,J.H.Hepatology 1997,26,15S.

    (3) Choo,Q.L.;Kuo,G.;Weiner,A.J.;Overby,L.R.;Bradley,D. W.;Houghton,M.Science 1989,244,359.

    (4)World Health Organization(WHO)Hepatitis C Fact Sheet No. 164,Rev,October,2000.

    (5)Cornberg,M.;Wedemeyer,H.;Manns,M.P.Curr. Gastroenterol.Rep.2002,4,23.

    (6) Garber,K.;Arbor,A.Nat.Biotechnol.2007,25,1379.

    (7) Appel,N.;Schaller,T.;Penin,F.;Bartenschlager,R.J.Biol. Chem.2006,281,9833.

    (8) Laplante,S.R.;Gillard,J.R.;Jakalian,A.;Aubry,N.; Coulombe,R.;Brochu,C.;Tsantrizos,Y.S.;Poirier,M.; Kukolj,G.;Beaulieu,P.L.J.Am.Chem.Soc.2010,132,15204.

    (9) Ellis,D.A.;Blazel,J.K.;Tran,C.V.;Ruebsam,F.;Murphy,D. E.;Li,L.S.;Zhao,J.;Zhou,Y.;McGuire,H.M.;Xiang,A.X.; Webber,S.E.;Zhao,Q.;Han,Q.;Kissinger,C.R.;Lardy,M.; Gobbi,A.;Showalter,R.E.;Shah,A.M.;Tsan,M.;Patel,R.A.; LeBrun,L.A.;Kamran,R.;Bartkowski,D.M.;Nolan,T.G.; Norris,D.A.;Sergeeva,M.V.;Kirkovsky,L.Bioorg.Med. Chem.Lett.2009,19,6047.

    (10)Biswal,B.K.;Wang,M.;Cherney,M.M.;Chan,L.; Yannopoulos,C.G.;Bilimoria,D.;Bedard,J.;James,M.N.G. J.Mol.Biol.2006,361,33.

    (11) Xue,Y.;Li,Z.R.;Yap,C.W.;Sun,L.Z.;Chen,X.;Chen,Y.Z. J.Chem.Inf.Comput.Sci.2004,44,1630.

    (12)Xue,Y.;Li,H.;Ung,C.Y.;Yap,C.W.;Chen,Y.Z.Chem.Res. Toxicol.2006,19,1030.

    (13)Lin,H.H.;Han,L.Y.;Yap,C.W.;Xue,Y.;Liu,X.H.;Zhu,F.; Chen,Y.Z.J.Mol.Graph.Model.2007,26,505.

    (14)Yu,H.;Yang,J.;Wang,W.;Han,J.Proc.IEEE Comput.Soc. Bioinformatics Conf.2003,220.

    (15) Furlanello,C.;Serafini,M.;Merler,S.;Jurman,G.Neural Networks 2003,16,641.

    (16) Trotter,M.W.B.;Holden,S.QSAR Comb.Sci.2003,22,533.

    (17) Pace,P.;Nizi,E.;Pacini,B.;Pesci,S.;Matassa,V.;De-Francesco R.;Altamura S.;Summa V.Bioorg.Med.Chem.Lett.2004,14, 3257.

    (18) Gopalsamy,A.;Lim,K.;Ellingboe,J.W.;Krishnamurthy,G.; Orlowski,M.;Feld,B.;van Zeijlb,M.;Howe,A.Y.M.Bioorg. Med.Chem.Lett.2004,14,4221.

    (19) Stansfield,I.;Avolio,S.;Colarusso,S.;Gennari,N.;Narjes,F.; Pacini,B.;Ponzi,S.;Harper,S.Bioorg.Med.Chem.Lett.2004, 14,5085.

    (20) Chan,L.;Pereira,O.;Reddy,T.G.;Das,S.K.;Poisson,C.; Courchesne,M.;Proulx,M.L.;Siddiqui,A.;Yannopoulos,C. G.;Nguyen-Ba,N.;Roy,C.;Nasturica,D.;Moinet,C.;Bethell, R.;Hamel,M.;Heureux,L.L.;David,M.;Nicolas,O.; Courtemanche-Asselin,P.;Brunette,S.;Bilimoria,D.;Bédard, J.Bioorg.Med.Chem.Lett.2004,14,797.

    (21) Chan,L.;Das,S.K.;Reddy,T.G.;Poisson,C.;Proulx,M.L.; Pereira,O.;Courchesne,M.;Roy,C.;Wang,W.Y.;Siddiqui,A.; Yannopoulos,C.G.;Nguyen-Ba,N.;Labrecque,D.;Bethell,R.; Hamel,M.;Courtemanche-Asselin,P.;Heureux,L.L.;David, M.;Nicolas,O.;Brunette,S.;Bilimoria,D.;Bédard,J.Bioorg. Med.Chem.Lett.2004,14,793.

    (22) Pfefferkorn,J.A.;Greene,M.L.;Nugent,R.A.;Gross,R.G.; Mitchell,M.A.;Finzel,B.C.;Harris,M.S.;Wells,P.A.; Shelly,G.A.;Anstadt,R.A.;Kilkuskie,B.E.;Koptab,L.A.; Schwendea,F.J.Bioorg.Med.Chem.Lett.2005,15,2481.

    (23) Pratt,J.K.;Donner,P.;McDaniel,K.F.;Maring,C.J.;Kati,W. M.;Mo,H.M.;Middleton,T.;Liu,Y.Y.;Ng,T.;Xie,Q.H.; Zhang,R.;Montgomery,D.;Molla,A.;Kempf,D.J.; Kohlbrenner,W.Bioorg.Med.Chem.Lett.2005,15,1577.

    (24) Pfefferkorn,J.A.;Nugent,R.;Gross,R.J.;Greene,M.; Mitchell,M.A.;Reding,M.T.;Funk,L.A.;Anderson,R.; Wells,P.A.;Shelly,J.A.;Anstadt,R.;Finzel,B.C.;Harris,M. S.;Kilkuskie,R.E.;Koptab,L.A.;Schwendea,F.J.Bioorg. Med.Chem.Lett.2005,15,2812.

    (25)Shipps,G.W.;Deng,Y.Q.;Wang,T.;Popovici-Muller,J.; Curran,P.J.;Rosner,K.E.;Cooper,A.B.;Girijavallabhan,V.; Butkiewiczb,N.;Cableb,M.Bioorg.Med.Chem.Lett.2005, 15,115.

    (26) LaPorte,M.G.;Lessen,T.A.;Leister,L.;Cebzanov,D.; Amparo,E.;Faust,C.;Ortlip,D.;Bailey,T.R.;Nitz,T.J.; Chunduru,S.K.;Young,D.C.;Burns,J.C.Bioorg.Med. Chem.Lett.2006,16,100.

    (27) Gopalsamy,A.;Aplasca,A.;Ciszewski,G.;Park,K.;Ellingboe, J.W.;Orlowski,M.;Feldb,B.;Howeb,A.Y.M.Bioorg.Med. Chem.Lett.2006,16,457.

    (28) Beaulieu,P.L.;Gillard,J.;Bykowski,D.;Brochu,C.; Dansereau,N.;Duceppe,J.S.;Haché,B.;Jakalian,A.;Lagacé, L.;LaPlante,S.;McKercher,G.;Moreau,E.;Perreault,S.P.; Stammers,T.;Thauvette,L.;Warrington,J.;Kukolj,G.Bioorg. Med.Chem.Lett.2006,16,4987.

    (29)Krueger,A.C.;Madigan,D.L.;Jiang,W.W.;Kati,W.M.;Liu, D.C.;Liu,Y.Y.;Maring,C.J.;Masse,S.;McDaniel,K.F.; Middleton,T.;Mo,H.M.;Molla,A.;Montgomery,D.;Pratt,J. K.;Rockway,T.W.;Zhang,R.;Kempf,D.J.Bioorg.Med. Chem.Lett.2006,16,3367.

    (30) Rockway,T.W.;Zhang,R.;Liu,D.C.;Betebenner,D.A.; McDaniel,K.F.;Pratt,J.K.;Beno,D.;Montgomery,D.;Jiang, W.W.;Masse,S.;Kati,W.M.;Middleton,T.;Molla,A.; Maring,C.J.;Kempf,D.J.Bioorg.Med.Chem.Lett.2006,16, 3833.

    (31) Gopalsamy,A.;Shi,M.X.;Ciszewski,G.;Park,K.;Ellingboe, J.W.;Orlowski,M.;Feldb,B.;Howeb,A.Y.M.Bioorg.Med. Chem.Lett.2006,16,2532.

    (32) Ontoria,J.M.;Hernando,J.I.M.;Malancona,S.;Attenni,B.; Stansfield,I.;Conte,I.;Ercolani,C.;Habermann,J.;Ponzi,S.; Filippo,M.D.;Koch,U.;Rowley,M.;Narjes,F.Bioorg.Med. Chem.Lett.2006,16,4026.

    (33) Ishida,T.;Suzuki,T.;Hirashima,S.;Mizutani,K.;Yoshida,A.; Ando,J.;Ikeda,S.;Adachic,T.;Hashimotoa,H.Bioorg.Med. Chem.Lett.2006,16,1859.

    (34) Li,H.;Tatlock,J.;Linton,A.;Gonzalez,J.;Borchardt,A.; Dragovich,P.;Jewell,T.;Prins,T.;Zhou,R.;Blazel,J.;Parge, H.;Love,R.;Hickey,M.;Doan,C.;Shi,S.;Duggal,R.;Lewisc, C.;Fuhrmana,S.Bioorg.Med.Chem.Lett.2006,16,4834.

    (35)Yan,S.Q.;Appleby,T.;Gunic,E.;Shim,J.H.;Tasu,T.;Kim, H.;Rong,F.;Chen,N.H.;Hamatake,R.;Wu,J.Z.;Hong,Z.; Yao,N.H.Bioorg.Med.Chem.Lett.2007,17,28.

    (36)Yan,S.Q.;Larson,G.;Wu,J.Z.;Appleby,T.;Ding,Y.L.; Hamatake,R.;Hong,Z.;Yao,N.H.Bioorg.Med.Chem.Lett. 2007,17,63.

    (37)Yan,S.Q.;Appleby,T.;Larson,G.;Wu,J.Z.;Hamatake,R.K.; Hong,Z.;Yao,N.H.Bioorg.Med.Chem.Lett.2007,17,1991.

    (38) Burton,G.;Ku,T.W.;Carr,T.G.;Kiesow,T.;Sarisky,R.T.; Lin-Goerke,J.L.;Hofmann,G.A.;Slater,M.G.;Haigh,D.; Dhanak,D.;Johnson,V.K.;Parryb,N.R.;Thommesb,P. Bioorg.Med.Chem.Lett.2007,17,1930.

    (39) Krueger,A.C.;Madigan,D.L.;Green,B.E.;Hutchinson,D. K.;Jiang,W.W.;Kati,W.M.;Liu,Y.Y.;Maring,C.J.;Masse, S.V.;McDaniel,K.F.;Middleton,T.R.;Mo,H.M.;Molla,A.; Montgomery,D.A.;Ng,T.I.;Kempf,D.J.Bioorg.Med.Chem. Lett.2007,17,2289.

    (40)Rong,F.;Chow,S.;Yan,S.Q.;Larson,G.;Hong,Z.;Wu,J. Bioorg.Med.Chem.Lett.2007,17,1663.

    (41) Ding,Y.L.;Smith,K.L.;Varaprasad,C.V.N.S.;Chang,E.; Alexander,J.;Yao,N.H.Bioorg.Med.Chem.Lett.2007,17, 841.

    (42) Dragovich,P.S.;Blazel,J.K.;Ellis,D.A.;Han,Q.;Kamran, R.;Kissinger,C.R.;LeBrun,L.A.;Li,L.S.;Murphy,D.E.; Noble,M.;Patel,R.A.;Ruebsam,F.;Sergeeva,M.V.;Shah,A. M.;Showalter,R.E.;Tran,C.V.;Tsan,M.;Webber,S.E.; Kirkovsky,L.;Zhou,Y.F.Bioorg.Med.Chem.Lett.2008,18, 5635.

    (43) Hutchinson,D.K.;Rosenberg,T.;Klein,L.L.;Bosse,T.D.; Larson,D.P.;He,W.P.;Jiang,W.W.;Kati,W.M.; Kohlbrenner,W.E.;Liu,Y.Y.;Masse,S.V.;Middleton,T.; Molla,A.;Montgomery,D.A.;Beno,D.W.A.;Stewart,K.D.; Stoll,V.S.;Kempf,D.J.Bioorg.Med.Chem.Lett.2008,18, 3887.

    (44) Rawal,R.K.;Katti,S.B.;Kaushik-Basu,N.;Arora,P.;Pan,Z. H.Bioorg.Med.Chem.Lett.2008,18,6110.

    (45)Kim,S.H.;Tran,M.T.;Ruebsam,F.;Xiang,A.X.;Ayida,B.; McGuire,H.;Ellis,D.;Blazel,J.;Tran,C.V.;Murphy,D.E.; Webber,S.E.;Zhou,Y.F.;Shah,A.M.;Tsan,M.;Showalter,R. E.;Patel,R.;Gobbi,A.;LeBrun,L.A.;Bartkowski,D.M.; Nolan,T.G.;Norris,D.A.;Sergeeva,M.V.;Kirkovsky,L.; Zhao,Q.;Han,Q.;Kissinger,C.R.Bioorg.Med.Chem.Lett. 2008,18,4181.

    (46) Evans,K.A.;Chai,D.P.;Graybill,T.L.;Burton,G.;Sarisky,R. T.;Lin-Goerke,J.;Johnstonb,V.K.;Riveroa,R.A.Bioorg. Med.Chem.Lett.2006,16,2205.

    (47) Bosse,T.D.;Larson,D.P.;Wagner,R.;Hutchinson,D.K.; Rockway,T.W.;Kati,W.M.;Liu,Y.Y.;Masse,S.;Middleton, T.;Mo,H.;Montgomery,D.;Jiang,W.;Koev,G.;Kempf,D.J.; Molla,A.Bioorg.Med.Chem.Lett.2008,18,568.

    (48) Donner,P.L.;Xie,Q.H.;Pratt,J.K.;Maring,C.J.;Kati,W.; Jiang,W.;Liu,Y.Y.;Koev,G.;Masse,S.;Montgomery,D.; Molla,A.;Kempf,D.J.Bioorg.Med.Chem.Lett.2008,18, 2735.

    (49) Liu,Y.Y.;Donner,P.L.;Pratt,J.K.;Jiang,W.W.;Ng,T.; Gracias,V.;Baumeister,S.;Wiedeman,P.E.;Traphagen,L.; Warrior,U.;Maring,C.;Kati,W.M.;Djuric,S.W.;Molla,A. Bioorg.Med.Chem.Lett.2008,18,3173.

    (50) Li,L.S.;Zhou,Y.F.;Murphy,D.E.;Stankovic,N.;Zhao,J.J.; Dragovich,P.S.;Bertolini,T.;Sun,Z.X.;Ayida,B.;Tran,C. V.;Ruebsam,F.;Webber,S.E.;Shah,A.M.;Tsan,M.; Showalter,R.E.;Patel,R.;LeBrun,L.A.;Bartkowski,D.M.; Nolan,T.G.;Norris,D.A.;Kamran,R.;Brooks,J.;Sergeeva, M.V.;Kirkovsky,L.;Zhao,Q.;Kissinger,C.R.Bioorg.Med. Chem.Lett.2008,18,3446.

    (51) Zhou,Y.F.;Webber,S.E.;Murphy,D.E.;Li,L.S.;Dragovich, P.S.;Tran,C.V.;Sun,Z.X.;Ruebsam,F.;Shah,A.M.;Tsan, M.;Showalter,R.E.;Patel,R.;Li,B.;Zhao,Q.;Han,Q.; Hermann,T.;Kissinger,C.R.;LeBrun,L.;Sergeeva,M.V.; Kirkovsky,L.Bioorg.Med.Chem.Lett.2008,18,1413.

    (52) Ruebsam,F.;Webber,S.E.;Tran,M.T.;Tran,C.V.;Murphy, D.E.;Zhao,J.J.;Dragovich,P.S.;Kim,S.H.;Li,L.S.;Zhou, Y.F.;Han,Q.;Kissinger,C.R.;Showalter,R.E.;Lardy,M.; Shah,A.M.;Tsan,M.;Patel,R.;LeBrun,L.A.;Kamran,R.; Sergeeva,M.V.;Bartkowski,D.M.;Nolan,T.G.;Norris,D. A.;Kirkovsky,L.Bioorg.Med.Chem.Lett.2008,18,3616.

    (53) Sergeeva,M.V.;Zhou,Y.F.;Bartkowski,D.M.;Nolan,T.G.; Norris,D.A.;Okamoto,E.;Kirkovsky,L.;Kamran,R.; LeBrun,L.A.;Tsan,M.;Patel,R.;Shah,A.M.;Lardy,M.; Gobbi,A.;Li,L.S.;Zhao,J.J.;Bertolini,T.;Stankovic,N.; Sun,Z.X.;Murphy,D.E.;Webber,S.E.;Dragovich,P.S. Bioorg.Med.Chem.Lett.2008,18,3421.

    (54) Zhou,Y.F.;Li,L.S.;Dragovich,P.S.;Murphy,D.E.;Tran,C. V.;Ruebsam,F.;Webber,S.E.;Shah,A.M.;Tsan,M.;Averill, A.;Showalter,R.E.;Patel,R.;Han,Q.;Zhao,Q.;Hermann,T.; Kissinger,C.R.;LeBrun,L.;Sergeeva,M.V.Bioorg.Med. Chem.Lett.2008,18,1419.

    (55) Ruebsam,F.;Sun,Z.X.;Ayida,B.K.;Webber,S.E.;Zhou,Y. F.;Zhao,Q.;Kissinger,C.R.;Showalter,R.E.;Shah,A.M.; Tsan,M.;Patel,R.;LeBrun,L.A.;Kamran,R.;Sergeeva,M. V.;Bartkowski,D.M.;Nolan,T.G.;Norris,D.A.;Kirkovsky, L.Bioorg.Med.Chem.Lett.2008,18,5002.

    (56) Ellis,D.A.;Blazel,J.K.;Webber,S.E.;Tran,C.V.;Dragovich, P.S.;Sun,Z.X.;Ruebsam,F.;McGuire,H.M.;Xiang,A.X.; Zhao,J.J.;Li,L.S.;Zhou,Y.F.;Han,Q.;Kissinger,C.R.; Showalter,R.E.;Lardy,M.;Shah,A.M.;Tsan,M.;Patel,R.; LeBrun,L.A.;Kamran,R.;Bartkowski,D.M.;Nolan,T.G.; Norris,D.A.;Sergeeva,M.V.;Kirkovsky,L.Bioorg.Med. Chem.Lett.2008,18,4628.

    (57) Hendricks,R.T.;Spencer,S.R.;Blake,J.F.;Fell,J.B.;Fischer, J.P.;Stengel,P.J.;Leveque,V.J.P.;LePogam,S.;Rajyaguru, S.;Najera,I.;Josey,J.A.;Swallow,S.Bioorg.Med.Chem.Lett. 2009,19,410.

    (58) Ruebsam,F.;Tran,C.V.;Li,L.S.;Kim,S.H.;Xiang,A.X.; Zhou,Y.F.;Blazel,J.K.;Sun,Z.X.;Dragovich,P.S.;Zhao,J. J.;McGuire,H.M.;Murphy,D.E.;Tran,M.T.;Stankovic,N.; Ellis,D.A.;Gobbi,A.;Showalter,R.E.;Webber,S.E.;Shah, A.M.;Tsan,M.;Patel,R.A.;LeBrun,L.A.;Hou,H.Y.J.; Kamran,R.;Sergeeva,M.V.;Bartkowski,D.M.;Nolan,T.G.; Norris,D.A.;Kirkovsky,L.Bioorg.Med.Chem.Lett.2009,19, 451.

    (59) deVicente,J.;Hendricks,R.T.;Smith,D.B.;Fell,J.B.;Fischer, J.;Spencer,S.R.;Stengel,P.J.;Mohr,P.;Robinson,J.E.; Blake,J.F.;Hilgenkamp,R.K.;Yee,C.;Zhao,J.P.;Elworthy, T.R.;Tracy,J.;Chin,E.;Li,J.;Lui,A.;Wang,B.;Oshiro,C.; Harris,S.F.;Ghate,M.;Leveque,V.J.P.;Najera,I.;Pogam,S. L.;Rajyaguru,S.;Ao-Ieong,G.;Alexandrova,L.;Fitch,B.; Brandl,M.;Masjedizadeh,M.;Wua,S.Y.;de Keczer,S.; Voronin,T.Bioorg.Med.Chem.Lett.2009,19,5648.

    (60) Pacini,B.;Avolio,S.;Ercolani,C.;Koch,U.;Migliaccio,G.; Narjes,F.;Pacini,L.;Tomei,L.;Harper,S.Bioorg.Med.Chem. Lett.2009,19,6245.

    (61) Shaw,A.N.;Tedesco,R.;Bambal,R.;Chai,D.P.;Concha,N. O.;Darcy,M.G.;Dhanak,D.;Duffy,K.J.;Fitch,D.M.;Gates, A.;Johnston,V.K.;Keenan,R.M.;Lin-Goerke,J.;Liu,N.; Sarisky,R.T.;Wiggall,K.J.;Zimmerman,M.N.Bioorg.Med. Chem.Lett.2009,19,4350.

    (62) Habermann,J.;Capitò,E.;Ferreira,M.R.R.;Koch,U.;Narjes, F.Bioorg.Med.Chem.Lett.2009,19,633.

    (63) Muller,J.P.;Shipps,G.W.,Jr.;Rosner,K.E.;Deng,Y.Q.; Wang,T.;Curran,P.J.;Brown,M.A.;Siddiqui,M.A.;Cooper, A.B.;Duca,J.;Cable,M.;Girijavallabhan,V.Bioorg.Med. Chem.Lett.2009,19,6331.

    (64) deVicente,J.;Hendricks,R.T.;Smith,D.B.;Fell,J.B.;Fischer, J.;Spencer,S.R.;Stengel,P.J.;Mohr,P.;Robinson,J.E.; Blake,J.F.;Hilgenkamp,R.K.;Yee,C.;Adjabeng,G.; Elworthy,T.R.;Li,J.;Wanga,B.;Bamberg,J.T.;Harris,S.F.; Wonga,A.;Leveque,V.J.P.;Najera,I.;Pogam,S.L.;Rajyaguru, S.;Ao-Ieong,G.;Alexandrova,L.;Larrabee,S.;Brandl,M.; Briggs,A.;Sukhtankar,S.;Farrell,R.Bioorg.Med.Chem.Lett. 2009,19,5652.

    (65) deVicente,J.;Hendricks,R.T.;Smith,D.B.;Fell,J.B.;Fischer, J.;Spencer,S.R.;Stengel,P.J.;Mohr,P.;Robinson,J.E.; Blake,J.F.;Hilgenkamp,R.K.;Yee,C.;Adjabeng,G.; Elworthy,T.R.;Tracy,J.;Chin,E.;Li,J.;Wanga,B.;Bamberg, J.T.;Stephenson,R.;Oshiro,C.;Harris,S.F.;Ghate,M.; Leveque,V.;Najera,I.;Pogam,S.L.;Rajyaguru,S.;Ao-Ieong, G.;Alexandrova,L.;Larrabee,S.;Brandl,M.;Briggs,A.; Sukhtankar,S.;Farrell,R.;Xu,B.Bioorg.Med.Chem.Lett. 2009,19,3642.

    (66)Wang,G.Y.;Lei,H.X.;Wang,X.F.;Das,D.;Hong,J.; Mackinnon,C.H.;Coulter,T.S.;Montalbetti,C.A.G.N.; Mears,R.;Gai,X.J.;Bailey,S.E.;Ruhrmund,D.;Hooi,L.; Misialek,S.;Rajagopalan,P.T.R.;Cheng,R.K.Y.;Barker,J. J.;Felicetti,B.;Sch?nfeld,D.L.;Stoycheva,A.;Buckman,B. O.;Kossen,K.;Seiwert,S.D.;Beigelman,L.Bioorg.Med. Chem.Lett.2009,19,4480.

    (67)Wanga,G.Y.;Zhang,L.G.;Wu,X.M.;Das,D.;Ruhrmund,D.; Hooi,L.;Misialek,S.;Rajagopalan,P.T.R.;Buckman,B.O.; Kossen,K.;Seiwert,S.D.;Beigelman,L.Bioorg.Med.Chem. Lett.2009,19,4484.

    (68)Wanga,G.Y.;He,Y.Z.;Sun,J.;Das,D.;Hu,M.G.;Huang,J. H.;Ruhrmund,D.;Hooi,L.;Misialek,S.;Rajagopalan,P.T.R.; Stoycheva,A.;Buckman,B.O.;Kossen,K.;Seiwert,S.D.; Beigelman,L.Bioorg.Med.Chem.Lett.2009,19,4476.

    (69)McGowan,D.;Nyanguile,O.;Cummings,M.D.;Vendeville, S.;Vandyck,K.;den Broeck,W.V.;Boutton,C.W.;Bondt,H. D.;Quirynen,L.;Amssoms,K.;Bonfanti,J.F.;Last,S.; Rombauts,K.;Tahri,A.;Hu,L.L.;Delouvroy,F.;Vermeiren, K.;Vandercruyssen,G.;Van der Helm,L.;Cleiren,E.; Mostmans,W.;Lory,P.;Pille,G.;Van Emelen,K.;Fanning,G.; Pauwels,F.;Lin,T.I.;Simmen,K.;Raboisson,P.Bioorg.Med. Chem.Lett.2009,19,2492.

    (70) Hendricks,R.T.;Fell,J.B.;Blake,J.F.;Fischer,J.P.; Robinson,J.E.;Spencer,S.R.;Stengel,P.J.;Bernacki,A.L.; Leveque,V.J.P.;Pogam,S.L.;Rajyaguru,S.;Najera,I.;Josey, J.A.;Harris,J.R.;Swallow,S.Bioorg.Med.Chem.Lett.2009, 19,3637.

    (71)Lv,W.;Xue,Y.Eur.J.Med.Chem.2010,45,1167.

    (72) ChemDraw,version 9.0;Cambridge Soft Corporation: Cambridge,USA,2004.

    (73)Corina,Version 3.4;Molecular Networks GmbH Computerchemie:Erlangen,Germany,2006.

    (74) Todeschini,R.;Consonni,V.Handbook of Molecular Descriptors;Wiley-VCH:New York,2000.

    (75) Hasegawa,K.J.Chem.Inf.Comput.Sci.1999,39,112.

    (76) Byvatov,E.;Fechner,U.;Sadowski,J.;Schneider,G.J.Chem. Inf.Comput.Sci.2003,43,1882.

    (77) He,L.;Jurs,P.C.;Custer,L.L.;Durham,S.K.;Pearl,G.M. Chem.Res.Toxicol.2003,16,1567.

    (78) Lü,W.;Xue,Y.Acta Phys.-Chim.Sin.2010,26,471. [呂 巍,薛 英.物理化學(xué)學(xué)報(bào),2010,26,471.]

    (79) Degroeve,S.;de Baets,B.;van de Peer,Y.;Rouze,P. Bioinformatics 2002,18,S75.

    (80)Xue,Y.;Yap,C.W.;Sun,L.Z.;Cao,Z.W.;Wang,J.F.;Chen, Y.Z.J.Chem.Inf.Comput.Sci.2004,44,1497.

    (81) Leach,A.R.;Gillet,V.J.An Introduction to Chemoinformatics; Springer:New York,2007.

    (82) Garner,S.R.Weka,version 3.4.12;University of Waikato:New Zealand,2005.

    (83) Vapnik,V.N.The Nature of Statistical Learning Theory; Springer-Verlag:New York,1995.

    (84) Johnson,R.A.;Wichern,D.W.Applied Multivariate Statistical Analysis;Prentice Hall:New York,1982.

    (85) Quinlan,J.R.C4.5,Programs for Machine Learning;Morgan Kaufmann:San Mateo,CA,1992.

    (86) Baldi,P.;Brunak,S.;Chauvin,Y.;Andersen,C.A.;Nielsen,H. Bioinformatics 2000,16,412.

    (87) Srivastava,A.K.;Pandey,A.;Srivastava,A.;Shukla,N.J.Sau. Chem.Soc.2011,15,25.

    March 2,2011;Revised:March 29,2011;Published on Web:April 21,2011.

    Prediction of Hepatitis C Virus Non-Structural Proteins 5B Polymerase Inhibitors Using Machine Learning Methods

    Lü Wei1XUE Ying2,3,*
    (1College of Life Sciences,State Key Laboratory of Crop Biology,Shandong Agricultural University,Tai′an 271018,Shandong Province,P.R.China;2College of Chemistry,Key Laboratory of Green Chemistry and Technology,Ministry of Education,Sichuan University,Chengdu 610064,P.R.China;3State Key Laboratory of Biotherapy,Sichuan University,Chengdu 610041,P.R.China)

    Non-structural proteins 5B(NS5B)play an important role in protein maturation and gene replication as an RNA dependent RNA polymerase in the hepatitis C virus(HCV).Inhibiting NS5B polymerase will prevent RNA replication and,therefore,it is significant for the treatment of HCV.It is becoming increasingly important to screen and predict molecules that have NS5B inhibitory activity by computational methods.This work explores several machine learning(ML)methods(support vector machine(SVM),k-nearest neighbor(k-NN),and C4.5 decision tree(C4.5 DT))for the prediction of NS5B inhibitors(NS5BIs).This prediction system was tested using 1248 compounds(552 NS5BIs and 696 non-NS5BIs),which are significantly more diverse in chemical structure than those used in other studies.A feature selection method was used to improve the prediction accuracy and the selection of molecular descriptors responsible for distinguishing between NS5BIs and non-NS5BIs.The prediction accuracies were 81.4%-91.7%for the NS5BIs,78.2%-87.2%for the non-NS5BIs,and 84.1%-85.0%overall based on the three kinds of machine learning methods.SVM gave the best accuracy of 91.7%for the NS5BIs, C4.5 gave the best accuracy of 87.2%for the non-NS5BIs,and k-NN gave the best overall accuracy of 85.0%for all the compounds.This work suggests that machine learning methods can facilitate the prediction of the NS5BIs potential for unknown sets of compounds and to determine the molecular descriptors associated with NS5BIs.

    Machine learning method;Molecular descriptor;Recursive feature elimination; Support vector machine;Hepatitis C virus

    *Corresponding author.Email:xue@scu.edu.cn;Tel:+86-28-85418330.

    The project was supported by the National Key Basic Research Program of China(2009CB118500)and Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,China(20071108-18-15).

    國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃項(xiàng)目(2009CB118500)和教育部留學(xué)歸國(guó)人員科研啟動(dòng)基金(20071108-18-15)

    O641

    猜你喜歡
    四川大學(xué)丙型肝炎抑制劑
    圍剿暗行者——丙型肝炎
    肝博士(2022年3期)2022-06-30 02:48:54
    四川大學(xué)西航港實(shí)驗(yàn)小學(xué)
    凋亡抑制劑Z-VAD-FMK在豬卵母細(xì)胞冷凍保存中的應(yīng)用
    百年精誠(chéng) 譽(yù)從信來——走進(jìn)四川大學(xué)華西眼視光之一
    四川大學(xué)華西醫(yī)院
    α-干擾素聯(lián)合利巴韋林治療慢性丙型肝炎
    丙型肝炎治療新藥 Simeprevir
    組蛋白去乙酰化酶抑制劑的研究進(jìn)展
    慢性丙型肝炎中醫(yī)治療進(jìn)展
    磷酸二酯酶及其抑制劑的研究進(jìn)展
    成人性生交大片免费视频hd| 永久免费av网站大全| 免费看a级黄色片| 国产亚洲91精品色在线| 在现免费观看毛片| 99热这里只有是精品50| 人人妻人人澡人人爽人人夜夜 | 国产av在哪里看| 久久人人爽人人爽人人片va| 美女cb高潮喷水在线观看| 国产91av在线免费观看| 欧美日韩国产亚洲二区| 神马国产精品三级电影在线观看| 亚洲精品国产成人久久av| 好男人在线观看高清免费视频| 久久久久久久久久久丰满| 亚洲无线观看免费| 亚洲自拍偷在线| av在线天堂中文字幕| 熟女人妻精品中文字幕| 波多野结衣巨乳人妻| 国产精品一区二区性色av| 99热网站在线观看| 美女cb高潮喷水在线观看| 天堂影院成人在线观看| 麻豆久久精品国产亚洲av| 亚洲av.av天堂| 日本av手机在线免费观看| 少妇熟女欧美另类| av在线亚洲专区| 男人舔奶头视频| 亚洲内射少妇av| 久久久国产成人免费| 男女那种视频在线观看| 精品一区二区三区人妻视频| 国产一区二区在线av高清观看| 亚洲最大成人手机在线| 老女人水多毛片| 夫妻性生交免费视频一级片| 婷婷六月久久综合丁香| 成人无遮挡网站| 欧美成人午夜免费资源| 成人高潮视频无遮挡免费网站| 亚洲精品,欧美精品| 丰满乱子伦码专区| 成人av在线播放网站| 久久久久久久亚洲中文字幕| 两个人的视频大全免费| 欧美一区二区国产精品久久精品| 一级黄片播放器| 天堂网av新在线| 高清午夜精品一区二区三区| 97超视频在线观看视频| 国产老妇伦熟女老妇高清| 中文字幕免费在线视频6| 亚洲在久久综合| 亚洲精品久久久久久婷婷小说 | 在线播放国产精品三级| av天堂中文字幕网| 黑人高潮一二区| 成人无遮挡网站| 蜜桃久久精品国产亚洲av| 亚洲最大成人中文| 国产亚洲5aaaaa淫片| 国产亚洲最大av| 精品人妻熟女av久视频| 在线播放无遮挡| 91午夜精品亚洲一区二区三区| 九色成人免费人妻av| 成人av在线播放网站| 美女被艹到高潮喷水动态| 日韩人妻高清精品专区| 一级毛片电影观看 | 波野结衣二区三区在线| 日韩欧美三级三区| 国产精品一区www在线观看| 中文字幕久久专区| 成人美女网站在线观看视频| 一级黄色大片毛片| 爱豆传媒免费全集在线观看| 免费黄色在线免费观看| 国产免费男女视频| 国产精品久久久久久精品电影| 亚洲高清免费不卡视频| 亚洲av成人精品一区久久| 国产熟女欧美一区二区| 99在线人妻在线中文字幕| 国产精品嫩草影院av在线观看| 99热这里只有是精品50| 国产极品天堂在线| 久久6这里有精品| 亚洲美女搞黄在线观看| 亚洲国产高清在线一区二区三| 亚洲一级一片aⅴ在线观看| 日韩高清综合在线| 又黄又爽又刺激的免费视频.| 国产精品久久久久久久电影| 国产私拍福利视频在线观看| 18禁裸乳无遮挡免费网站照片| 国产精品永久免费网站| 国产成人精品久久久久久| 国产一区亚洲一区在线观看| 精品欧美国产一区二区三| 亚洲av成人精品一区久久| 一区二区三区高清视频在线| 免费看美女性在线毛片视频| 国产久久久一区二区三区| 在线观看66精品国产| 亚洲伊人久久精品综合 | 日韩,欧美,国产一区二区三区 | 亚洲精品乱码久久久v下载方式| 看十八女毛片水多多多| 床上黄色一级片| 国产黄色视频一区二区在线观看 | 国产免费视频播放在线视频 | 国产毛片a区久久久久| 久久久久精品久久久久真实原创| av国产久精品久网站免费入址| 国产在线一区二区三区精 | 国产一区二区亚洲精品在线观看| 少妇裸体淫交视频免费看高清| 禁无遮挡网站| 国产在线一区二区三区精 | 国产私拍福利视频在线观看| 秋霞在线观看毛片| 欧美激情久久久久久爽电影| 日日撸夜夜添| 久久精品夜色国产| 亚洲av二区三区四区| 国产一区亚洲一区在线观看| 久久人人爽人人片av| 欧美日韩国产亚洲二区| 99久久中文字幕三级久久日本| 中文乱码字字幕精品一区二区三区 | 亚洲人成网站在线播| 免费av不卡在线播放| 国产精品人妻久久久影院| 最近2019中文字幕mv第一页| 99久久九九国产精品国产免费| av免费在线看不卡| 亚洲欧美中文字幕日韩二区| 黄色一级大片看看| 七月丁香在线播放| 非洲黑人性xxxx精品又粗又长| 一个人看视频在线观看www免费| 亚洲精品成人久久久久久| 国产成人a∨麻豆精品| 国产一区有黄有色的免费视频 | 国内少妇人妻偷人精品xxx网站| 我要看日韩黄色一级片| 国产亚洲av片在线观看秒播厂 | 自拍偷自拍亚洲精品老妇| 久久99热这里只频精品6学生 | 亚洲成人精品中文字幕电影| 午夜老司机福利剧场| 99热这里只有是精品50| 蜜臀久久99精品久久宅男| 视频中文字幕在线观看| 夜夜爽夜夜爽视频| 欧美日韩在线观看h| 69av精品久久久久久| 久久精品国产鲁丝片午夜精品| 国产精品一区二区性色av| 中文字幕熟女人妻在线| 国产在视频线在精品| 成人毛片60女人毛片免费| 久久精品综合一区二区三区| 久久精品夜色国产| 熟女电影av网| 国产一区二区在线av高清观看| 最近2019中文字幕mv第一页| 国产高清不卡午夜福利| 舔av片在线| 老司机福利观看| 人体艺术视频欧美日本| 亚洲内射少妇av| 一级av片app| 精品不卡国产一区二区三区| 国产国拍精品亚洲av在线观看| a级毛色黄片| 国产精品1区2区在线观看.| 变态另类丝袜制服| 国产在线一区二区三区精 | 卡戴珊不雅视频在线播放| 久久久精品大字幕| 成人国产麻豆网| 99在线视频只有这里精品首页| 麻豆成人av视频| 亚洲欧美成人综合另类久久久 | 国产真实伦视频高清在线观看| 97热精品久久久久久| 大又大粗又爽又黄少妇毛片口| 国产精品无大码| 久久久久九九精品影院| 91狼人影院| 国产精品国产三级国产av玫瑰| 国产成人aa在线观看| 九草在线视频观看| 狂野欧美激情性xxxx在线观看| 中文字幕亚洲精品专区| 久久热精品热| 一边摸一边抽搐一进一小说| 国产伦理片在线播放av一区| 长腿黑丝高跟| 又爽又黄a免费视频| 欧美又色又爽又黄视频| 国产精品嫩草影院av在线观看| 国产成人一区二区在线| 国产精品久久久久久精品电影| 国产麻豆成人av免费视频| 黄色配什么色好看| 久久久精品94久久精品| 在线播放国产精品三级| 亚洲最大成人av| 亚洲国产成人一精品久久久| 亚洲精品亚洲一区二区| 久久久色成人| 一个人看的www免费观看视频| 九色成人免费人妻av| 女的被弄到高潮叫床怎么办| 亚洲激情五月婷婷啪啪| 国产成人a∨麻豆精品| 小蜜桃在线观看免费完整版高清| 国产成年人精品一区二区| 色视频www国产| 天堂中文最新版在线下载 | 欧美日韩精品成人综合77777| 久久久久网色| 老司机影院毛片| 国产高清国产精品国产三级 | 嫩草影院精品99| 在线播放国产精品三级| 少妇被粗大猛烈的视频| 日本黄色片子视频| 永久网站在线| 欧美成人一区二区免费高清观看| 不卡视频在线观看欧美| 一边亲一边摸免费视频| 国产又黄又爽又无遮挡在线| 自拍偷自拍亚洲精品老妇| 2021少妇久久久久久久久久久| 国产伦理片在线播放av一区| 亚洲欧洲日产国产| 丝袜喷水一区| 国产一区二区在线观看日韩| 美女高潮的动态| 日本黄大片高清| 久久精品久久精品一区二区三区| 欧美潮喷喷水| 色综合亚洲欧美另类图片| 少妇熟女欧美另类| 亚洲中文字幕日韩| 亚洲精品影视一区二区三区av| 看片在线看免费视频| 国产伦精品一区二区三区视频9| 亚洲成人久久爱视频| 色网站视频免费| 国产视频首页在线观看| 啦啦啦韩国在线观看视频| 少妇人妻一区二区三区视频| 秋霞在线观看毛片| 天堂中文最新版在线下载 | 国产一区二区在线观看日韩| 秋霞在线观看毛片| 国产爱豆传媒在线观看| 欧美成人a在线观看| 中国美白少妇内射xxxbb| 国产一区亚洲一区在线观看| 久久久久久久久久久丰满| 亚洲欧美精品专区久久| 国产亚洲精品久久久com| 成人高潮视频无遮挡免费网站| 亚洲国产精品专区欧美| 色播亚洲综合网| 精品久久久久久久人妻蜜臀av| 午夜a级毛片| 国产黄色小视频在线观看| 韩国av在线不卡| 最近最新中文字幕大全电影3| 亚洲经典国产精华液单| 日韩一本色道免费dvd| 天堂√8在线中文| 一本一本综合久久| 人人妻人人看人人澡| 哪个播放器可以免费观看大片| 性插视频无遮挡在线免费观看| 99热精品在线国产| 国产三级中文精品| 成年女人永久免费观看视频| 欧美高清性xxxxhd video| 你懂的网址亚洲精品在线观看 | 别揉我奶头 嗯啊视频| 欧美三级亚洲精品| 综合色丁香网| 国产精品永久免费网站| 黄色一级大片看看| 国产精品国产三级国产av玫瑰| 99热这里只有是精品在线观看| 日本黄色视频三级网站网址| 国产亚洲最大av| 高清在线视频一区二区三区 | 久久久久久久午夜电影| 精品99又大又爽又粗少妇毛片| 精品一区二区三区人妻视频| 岛国在线免费视频观看| 日韩视频在线欧美| 国产精品国产三级专区第一集| 我要搜黄色片| 十八禁国产超污无遮挡网站| 成人毛片a级毛片在线播放| 免费观看人在逋| 国产探花在线观看一区二区| 国内揄拍国产精品人妻在线| 精品无人区乱码1区二区| 一级黄色大片毛片| 超碰av人人做人人爽久久| 高清在线视频一区二区三区 | 国内少妇人妻偷人精品xxx网站| 国产精品一区二区三区四区久久| 干丝袜人妻中文字幕| 亚洲欧美精品自产自拍| 日本av手机在线免费观看| 观看免费一级毛片| 久久热精品热| 成人漫画全彩无遮挡| 日本三级黄在线观看| 国产极品天堂在线| 一本一本综合久久| 亚洲欧美日韩东京热| 亚洲精品国产成人久久av| 又黄又爽又刺激的免费视频.| 久久精品久久久久久噜噜老黄 | 老司机影院毛片| av又黄又爽大尺度在线免费看 | 国产又色又爽无遮挡免| 亚洲成人精品中文字幕电影| 99在线视频只有这里精品首页| 中文字幕av在线有码专区| 3wmmmm亚洲av在线观看| 午夜亚洲福利在线播放| 成人鲁丝片一二三区免费| 亚洲成色77777| 亚洲av电影在线观看一区二区三区 | 国产免费男女视频| 亚洲精品乱久久久久久| 成年免费大片在线观看| www.av在线官网国产| 97在线视频观看| 国产 一区 欧美 日韩| 熟女人妻精品中文字幕| 国产亚洲精品av在线| 国产欧美另类精品又又久久亚洲欧美| 嘟嘟电影网在线观看| 天堂中文最新版在线下载 | 中文在线观看免费www的网站| 两个人的视频大全免费| 久久综合国产亚洲精品| 一卡2卡三卡四卡精品乱码亚洲| 成人高潮视频无遮挡免费网站| 国产国拍精品亚洲av在线观看| 久热久热在线精品观看| 国产精品综合久久久久久久免费| 好男人视频免费观看在线| 国产免费男女视频| 色哟哟·www| 尤物成人国产欧美一区二区三区| 日韩人妻高清精品专区| 在线观看美女被高潮喷水网站| 欧美高清性xxxxhd video| 久久99蜜桃精品久久| 插阴视频在线观看视频| 国产精品野战在线观看| 全区人妻精品视频| 亚洲国产欧洲综合997久久,| 韩国av在线不卡| 国产成人freesex在线| 菩萨蛮人人尽说江南好唐韦庄 | 啦啦啦韩国在线观看视频| 久久国产乱子免费精品| 能在线免费看毛片的网站| 日韩在线高清观看一区二区三区| 亚洲av男天堂| 少妇熟女欧美另类| 成人亚洲欧美一区二区av| a级毛片免费高清观看在线播放| 日本三级黄在线观看| 91午夜精品亚洲一区二区三区| 水蜜桃什么品种好| 欧美又色又爽又黄视频| 一级av片app| av国产免费在线观看| 男人狂女人下面高潮的视频| 久久精品国产自在天天线| 一卡2卡三卡四卡精品乱码亚洲| 美女大奶头视频| 国产视频内射| 日本五十路高清| 免费在线观看成人毛片| 深夜a级毛片| 99久国产av精品| 深夜a级毛片| 婷婷色av中文字幕| 久久99精品国语久久久| 蜜桃亚洲精品一区二区三区| 3wmmmm亚洲av在线观看| 免费黄网站久久成人精品| 亚洲欧美日韩无卡精品| 中文字幕亚洲精品专区| 99热网站在线观看| 久久久久久久亚洲中文字幕| 又粗又硬又长又爽又黄的视频| 国产精品电影一区二区三区| 久久久精品欧美日韩精品| 国产成人一区二区在线| 精品免费久久久久久久清纯| 欧美人与善性xxx| 免费观看性生交大片5| 看十八女毛片水多多多| 丰满少妇做爰视频| 人妻夜夜爽99麻豆av| 水蜜桃什么品种好| 亚洲欧美精品专区久久| 亚洲精品乱码久久久v下载方式| 亚洲国产精品专区欧美| 日韩视频在线欧美| 狂野欧美激情性xxxx在线观看| 在线播放无遮挡| 嫩草影院新地址| 伦理电影大哥的女人| 丰满少妇做爰视频| 国产极品精品免费视频能看的| 亚洲欧美中文字幕日韩二区| 纵有疾风起免费观看全集完整版 | 免费看av在线观看网站| 国产一区二区在线观看日韩| 成年av动漫网址| 99热网站在线观看| 大又大粗又爽又黄少妇毛片口| 少妇的逼好多水| 人人妻人人看人人澡| 亚洲av电影在线观看一区二区三区 | 欧美xxxx性猛交bbbb| 人人妻人人澡欧美一区二区| 亚洲欧美精品综合久久99| 久久婷婷人人爽人人干人人爱| 真实男女啪啪啪动态图| 亚洲国产欧美人成| 国产伦在线观看视频一区| 天美传媒精品一区二区| 国产精品国产高清国产av| 能在线免费看毛片的网站| 亚洲av日韩在线播放| 亚洲欧美一区二区三区国产| 欧美又色又爽又黄视频| 亚洲欧美精品综合久久99| 国产精品久久久久久精品电影| 国产成人精品一,二区| 九色成人免费人妻av| 国产精品不卡视频一区二区| 日韩成人av中文字幕在线观看| 少妇高潮的动态图| 免费观看的影片在线观看| 我的老师免费观看完整版| 99热6这里只有精品| 91aial.com中文字幕在线观看| 99热这里只有精品一区| 国产精品一区二区三区四区久久| av专区在线播放| 国产精品女同一区二区软件| 国产精品.久久久| 午夜免费激情av| 又粗又爽又猛毛片免费看| 一级av片app| 国产成人91sexporn| 一级爰片在线观看| 男女边吃奶边做爰视频| 欧美人与善性xxx| 嫩草影院入口| 国产一级毛片七仙女欲春2| 午夜激情欧美在线| 国产不卡一卡二| 男女那种视频在线观看| 97超视频在线观看视频| 午夜久久久久精精品| 你懂的网址亚洲精品在线观看 | 91久久精品国产一区二区三区| 国产在线一区二区三区精 | 视频中文字幕在线观看| 夜夜爽夜夜爽视频| 日韩大片免费观看网站 | 午夜免费男女啪啪视频观看| 国产精品人妻久久久影院| 国产av一区在线观看免费| 少妇被粗大猛烈的视频| 国产视频内射| 你懂的网址亚洲精品在线观看 | 久久这里有精品视频免费| 中文精品一卡2卡3卡4更新| 国产精品久久久久久久久免| 亚洲真实伦在线观看| 能在线免费看毛片的网站| .国产精品久久| 成人漫画全彩无遮挡| 国产免费又黄又爽又色| 国产精品,欧美在线| 久久精品国产鲁丝片午夜精品| 少妇被粗大猛烈的视频| 亚洲欧美精品综合久久99| 久久99蜜桃精品久久| 午夜激情欧美在线| 国产午夜精品久久久久久一区二区三区| 中文字幕免费在线视频6| 国产男人的电影天堂91| 熟妇人妻久久中文字幕3abv| videossex国产| 久久久久久九九精品二区国产| 日本黄色片子视频| 菩萨蛮人人尽说江南好唐韦庄 | 男女下面进入的视频免费午夜| 卡戴珊不雅视频在线播放| 亚洲电影在线观看av| 国产精品国产三级国产专区5o | 美女被艹到高潮喷水动态| 69人妻影院| 身体一侧抽搐| 久热久热在线精品观看| 亚洲av福利一区| 搞女人的毛片| 大香蕉97超碰在线| 国产 一区精品| 老师上课跳d突然被开到最大视频| 91久久精品国产一区二区三区| 白带黄色成豆腐渣| 国产黄色视频一区二区在线观看 | 精品久久久噜噜| 最近视频中文字幕2019在线8| 白带黄色成豆腐渣| 亚洲人与动物交配视频| 久久精品夜夜夜夜夜久久蜜豆| 成人欧美大片| 毛片一级片免费看久久久久| 国产女主播在线喷水免费视频网站 | 欧美丝袜亚洲另类| 国产伦精品一区二区三区视频9| 日韩一区二区视频免费看| 一二三四中文在线观看免费高清| 免费观看在线日韩| 嘟嘟电影网在线观看| 国产精品一区二区三区四区久久| 一个人看视频在线观看www免费| 日本欧美国产在线视频| 日本色播在线视频| 国产淫语在线视频| 国产免费视频播放在线视频 | 亚洲国产精品专区欧美| 可以在线观看毛片的网站| 免费观看性生交大片5| 两个人的视频大全免费| 精品99又大又爽又粗少妇毛片| 色哟哟·www| 国产精品1区2区在线观看.| 在线免费观看不下载黄p国产| 成人国产麻豆网| 国产午夜精品一二区理论片| 久久午夜福利片| 国产精品福利在线免费观看| 亚洲av成人精品一区久久| 日本免费a在线| 成人毛片60女人毛片免费| 欧美极品一区二区三区四区| 国产一区二区亚洲精品在线观看| 亚洲成色77777| 麻豆精品久久久久久蜜桃| 亚洲av男天堂| 特级一级黄色大片| 精品一区二区三区视频在线| 草草在线视频免费看| 97超碰精品成人国产| 亚洲欧美清纯卡通| 久久国产乱子免费精品| 国产欧美日韩精品一区二区| 久久午夜福利片| 2021天堂中文幕一二区在线观| 亚洲在线自拍视频| av视频在线观看入口| 日韩一本色道免费dvd| 久久久久久久久久久丰满| 偷拍熟女少妇极品色| 身体一侧抽搐| 亚洲美女搞黄在线观看| 激情 狠狠 欧美| 亚洲中文字幕一区二区三区有码在线看| 亚洲av不卡在线观看| 九九热线精品视视频播放| 国产熟女欧美一区二区| 晚上一个人看的免费电影| 国产精品日韩av在线免费观看| 成人亚洲欧美一区二区av| 久久精品国产99精品国产亚洲性色| 变态另类丝袜制服| av天堂中文字幕网| 亚洲一区高清亚洲精品| 长腿黑丝高跟| 夫妻性生交免费视频一级片| 成人鲁丝片一二三区免费| 精品久久久久久久久av| 在线观看66精品国产| 婷婷色av中文字幕| 亚洲欧洲日产国产| 精品国产露脸久久av麻豆 | 国产大屁股一区二区在线视频| 搡老妇女老女人老熟妇| 边亲边吃奶的免费视频| 级片在线观看| 国产高清有码在线观看视频|