• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhancing von Neumann entropy by chaos in spin–orbit entanglement*

    2019-11-06 00:43:34ChenRongLiu劉郴榮PeiYu喻佩XianZhangChen陳憲章HongYaXu徐洪亞LiangHuang黃亮andYingChengLai來穎誠(chéng)
    Chinese Physics B 2019年10期
    關(guān)鍵詞:憲章

    Chen-Rong Liu(劉郴榮), Pei Yu(喻佩), Xian-Zhang Chen(陳憲章),Hong-Ya Xu(徐洪亞), Liang Huang(黃亮),?,and Ying-Cheng Lai(來穎誠(chéng)),3

    1School of Physical Science and Technology,and Key Laboratory for Magnetism and Magnetic Materials of MOE,Lanzhou University,Lanzhou 730000,China

    2School of Electrical,Computer,and Energy Engineering,Arizona State University,Tempe,AZ 85287,USA

    3Department of Physics,Arizona State University,Tempe,AZ 85287,USA

    Keywords:spin–orbit entanglement,chaos,von Neumann entropy,spin decoherence

    1.Introduction

    Quantum entanglement,the intercorrelation among different subsystems or distinct degrees of freedom of a system,is foundational to quantum mechanics and fundamental to quantum information science and technology.[1]From the point of view of quantum–classical correspondence,entanglement has no classical counterpart. However,the nature of the classical dynamics can still have some impact on quantum entanglement.[2–16]While vast knowledge has been accumulated in the field of quantum chaos that studies the manifestations of classical chaos in the corresponding quantum system,[19–21]the interplay between chaos and quantum entanglement remains to be a fundamental and fascinating topic in contemporary physics.[2–16]Typically,entanglement is referred to the intercorrelation among different subsystems,e.g.,between two particles(electrons or photons)of an entangled pair.Meanwhile,the entanglement of distinct degrees of freedom of a single particle has also been discussed and demonstrated experimentally.[7,22–27]The purpose of this paper is to investigate the interplay between chaos and intraparticle quantum entanglement that can be characterized,e.g.,by the von Neumann entropy between the spin and the orbital degrees of freedom of a single electron. This problem is highly relevant to spintronics and spin-based quantum computing/communication technologies.Our finding is that chaos can enhance intra-particle quantum entanglement.

    Historically, the concept of quantum entanglement was originated from the Einstein–Podolsky–Rosen (EPR)paradox[28]and Schr?dinger’s cat.[29]The phenomenon of quantum entanglement is counterintuitive as it entails nonlocal properties of physical processes[8,11,30–33]and plays an important role in the foundation of quantum mechanics. Various aspects of quantum entanglement such as characterization,detection,and control have been actively investigated,[32]with significant applications in quantum teleportation,[34]quantum searching algorithms,[35]quantum communication[32,36,37]and computing.[32]

    Quantum entanglement is intimately related to the concept of quantum coherence based on the principle of superposition of quantum states.[11,31,38]When a state ψ is composed by two coherent states ψ1and ψ2:ψ=ψ1+ψ2,one haswhere the cross term characterizes the coherence and can be observed through interference.The presence of a detector of certain resolution[11,38]will degrade and even destroy the interference pattern and,consequently,coherence.Remarkably,the detector can generate entanglement between the detecting and the object systems,[8,11,30–32]leading to decoherence of the state of the object systems.[8,11,31,39–42]Indeed,the study of decoherence and entanglement constitutes an important branch of modern quantum mechanics.[8,11,30,33,43–45]

    There were some previous studies of the role of classical chaos in entanglement and decoherence.[2,5–8,10–13,17,18]For example, the issue of decoherence in classically chaotic systems was investigated in terms of the Lyapunov exponent,[5,6,10,12]where an implicit relation between the purity or coherence of the quantum state and the Lyapunov exponent was obtained in the semiclassical limit.[12]The exponent was shown[12]to be effectively the decay rate of the degree of coherence,i.e.,chaos is more effective at reducing coherence,suggesting that the nature of the classical dynamics plays a determining role in decoherence,regardless of the environment. The inter-relation between decoherence and entanglement then suggests that chaos might be able to enhance entanglement.[3,4,9,13]For a classically chaotic system,the simultaneous loss of coherence of certain degree of freedom and the gain of its entanglement with other degrees of freedom of the system were demonstrated.[11]In optomechanics,it was shown that complicated nonlinear dynamical behaviors can enhance quantum entanglement.[14]

    Our investigation of the interplay between chaos and spin–orbit entanglement was motivated by two considerations.Firstly,manipulating the spin degree of freedom is the base of spintronics(a major class of energy efficient electronics[46,47]),the development of which often relies on a good understanding of spin transport[46–48]in mesoscopic solid state devices such as quantum dots.[49]In the mesoscopic regime,both classical and quantum behaviors are relevant,and previous works showed that different types of classical dynamics can have characteristically different effects on the electronic transport phenomena such as conductance fluctuations.[50–62]Thus,while spin is a quantum variable with no classical counterpart,in mesoscopic systems the nature of classical dynamics would have effects on quantum behaviors that involve spin due to the spin–orbit interaction.[63]Secondly,while there were previous studies on the role of classical chaos in spin transport[63–67]and entanglement between the spin and orbital degrees of freedom,[23,25,31,32,68]the interplay between chaos and intraparticle entanglement has not been investigated.Addressing this issue may lead to insights into spin-based quantum computing or quantum information technologies.

    In this paper,we study spin–orbit entanglement in twodimensional mesoscopic systems with a focus on the role of classical chaos in intra-particle entanglement. For simplicity,we study entanglement between the spin and orbital degrees of freedom of an electron in quantum-dot systems that can be chaotic in the classical limit. The underlying physical mechanism for the spin–orbit entanglement is Rashba spin–orbit coupling.[68–75]The two-dimensional quantum dot is chosen to be a cosine cavity whose classical dynamical properties can be controlled by continuously varying its length parameter.[56]To be systematic,we study nine system configurations with various degrees of chaos as characterized by the phase space structure and the maximum Lyapunov exponent. The main finding is that,in the weakly Rashba spin–orbit coupling regime,chaos can significantly enhance the spin–orbit entanglement.Because of the potential role of such intra-particle entanglement in,e.g.,quantum teleportation and communication,[76,77]our result points at the advantage of exploiting classical chaos in these applications.[25,27]

    It is worth emphasizing the difference between the present work and our previous works on the role of chaos in spin transport.In particular,in Ref.[67],we studied graphene quantum dots subject to unpolarized injection and examined how chaos can induce spin polarization.In Ref.[63],we considered semiconductor two dimensional electron gas(2DEG)cavities with polarized injection and investigated the circumstances under which classical chaos would preserve or destroy spin polarization. In the present work,we address the role of chaos in spin–orbit entanglement,a kind of entanglement between the internal degrees of freedom of a single particle,which can be exploited to enhance the transmission bandwidth in quantum communication. This type of intraparticle entanglement has been studied but mostly in photonic systems.[7,22–27]In solid state systems,one relevant work[68]treated the interplay among time-reversal symmetry,entanglement,and weak-(anti)localization quantum correction to conductance.While the setting of this work is chaotic quantum dots,the issue of the effect of chaos on intra-particle entanglement is not touched.The results in our present work reveal that chaos is capable of distributing scattering electrons into different transmission channels(transverse modes),leading to an enhancement of the spin–orbit entanglement at the expense of spin polarization.To the best of our knowledge,our work has uncovered the beneficial role of chaos in enhancing intraparticle entanglement.

    2.Classical dynamics and Rashba Hamiltonian

    We consider two-dimensional mesoscopic quantum dot type of systems. An exemplary system consists of a central cavity(scattering region)and a number of electronic waveguides(or leads)connected to the cavity.To generate a wide range of classical dynamical behaviors,we choose the cavity to have a cosine shape,[56,58,78,79]in which the whole spectrum of classical dynamics from integrable to mixed dynamics and finally to fully developed chaos can be arisen through continuous tuning of a geometric parameter of the system.In particular,the cavity region D is defined by the boundaries x=0,x=L,y=0,and y=W+(M/2)[1?cos(2πx/L)]. To be concrete,we assume there are two leads attached to the cavity:one on the left and the other on the right side.The nature of the classical dynamics is determined by the values of the parameter ratios[56]M/L and W/L.For example,for M/L=0.11 and W/L=0.18,the classical phase space is mixed with the coexistence of Kolmogorov–Arnold–Moser(KAM)tori and chaotic regions. For M/L=0.22 and W/L=0.36,there is fully developed chaos without any stable periodic orbit.

    Fig.1.Lyapunov exponent of the chaotic component in the cosine cavity.The dashed curve is the maximal Lyapunov exponent λ1 versus the length L of the cavity.The insets are two representative Poincaré surfaces of section of the closed billiard system without leads attached to it:mixed dynamics for L=1.8μm(upper right)and chaotic dynamics for L=0.5μm(lower left).Altogether nine cases of different values of L are shown:L=0.5,0.55,0.6,0.67,0.8,1.0,1.33,1.5,1.8μm.Other parameters are M=0.15μm and W=0.24μm.

    In our simulations,we fix M=0.15μm,W=0.24μm(also the width of the leads),and vary L in the range from 0.5μm to 2.0μm so as to generate classical dynamics with different degrees of chaos.In particular,for a closed cosine billiard system,as the length L is altered,the degree of chaos in the classical dynamics can be modulated in a continuous fashion.There are two aspects in the evolution of chaos:the chaotic component in the phase space that can increase in size(accompanied by a simultaneous decrease in the regular KAM component)and the maximum Lyapunov exponent λ1that can be calculated conveniently in the Birkhoff coordinates.[80]Figure 1 shows λ1versus L and representative phase space structures revealed on the Poincaré surface of section.For the four cases with L ≤0.67,there is fully developed chaos without any stable periodic orbit in the phase space.For the five cases with L ≥0.67,the phase space is mixed.[56]

    To activate the Rashba spin–orbit interaction,we apply an electrical field perpendicular to the cavity plane.The Hamiltonian of the system is given by[81]

    where σ0is the 2×2 unit matrix,are the Pauli matrices,m*is the electron’s effective mass,and α is the strength of Rashba spin–orbit coupling.The confinement potential isandotherwise.

    3.Characterization of spin–orbit entanglement and role of classical chaos in enhancing entanglement

    For the open billiard system with leads attached to it,propagating or conducting channels will be activated when the electron Fermi energy εfis larger than the cut-off energy of the dispersion relation.[49]Consider the case of two symmetric leads,one on the left and the other on the right side of the scattering region,where the transport direction is from left to right.Suppose there are a number of channels in the left lead,each associated with spin-up states.The incoming orbital and spin states in the left lead are denoted asand,respectively.The outgoing states are in the right lead.In general,the incoming and outgoing states can be written as[82]

    where the square modulus of the expansion coefficientsgives the probability for a spin-up incoming channelfrom the left lead to scatter into a spin-σ′channelstate in the right lead.That is,for any incoming state as defined in Eq.(2),equation(3)gives the corresponding state after scattering.The resulting outgoing state in the right lead is a pure but nonseparable,entangled state.[8,11,30,32,33,41–43]Associated with the outgoing state,the quantum spin and orbital degrees of freedom are thus entangled.[32,41,42,76]

    When N channels are activated in the left lead,the incoming state vector can be written as the following superposition state:

    The corresponding state in the right channel after scattering is

    With the normalization conditionwe obtain the normalization coefficient as

    And the outgoing state can be written as

    The density matrix associated with the outgoing state is

    The reduced density matrix for the spin degree of freedom can be obtained by averaging out the total density matrix over the orbital subspace,leading to the spin density matrix that describes the spin subspace from which an observer can get the information about the system including entanglement.[11,30,32,33]Specifically,the spin density matrix is given by[8,81–84]

    Note that,the reduced spin density matrix no longer corresponds to a pure state,[8,31,83]with which the degree of mixture or reduction in coherence[11]of the remained spin state can be quantified by the puritya measure of the pureness of the state.The amount of spin–orbit entanglement can be quantified by the von Neumann entropy[8,11,30–33]

    where λi’s are the eigenvalues of the reduced density matrix.

    For a spin-1/2 particle,the spin density matrix can be expressed[31,81–83]in terms of the spin polarization vectorThe reduced density matrix in Eq.(8)can thus be expressed as

    We then have

    The spin density matrix in Eq.(9)is obtained by tracing over the orbital part of the composite spin-orbit stateBecause the spin density matrix possesses positive eigenvalues(due to the non-negativeness of probability),the positive determinant det[ρs]≥0 leads to the conditionSince the purity associated with Eq.(9)is information about the coherent motion of the spin state is encoded into the rotation ofand the decay of spin coherence will lead to<1.[82,83]This means thatmagnitudecan be effectively an indicator of the purity or the coherence of the spin state.In particular,indicates that this spin state is completely polarized and pure andis a vector on the Bloch sphere,the limit at the other endmeans that this spin state is totally unpolarized.While the intermediate caseindicates that this spin state is partially polarized and incompletely mixed.[11,31]Note that in generalcould be a better indicator of spin coherence as they correspond to the off-diagonal element of the reduced density matrix. While as illustrated in Ref.[82],for spin transport with multi-transmitting modes,the quantitywhich describes the spin polarization of the charge current,could serve the purpose better.Furthermore,we have calculatedthe results are consistent withThus from now on,we shall useas an indicator of spin coherence.

    That chaos can enhance spin–orbital entanglement can be argued,heuristically,as follows.The pair of eigenvalues of the spin density matrix can be obtained aswith which the van Neumann entropy can be expressed in terms of the magnitude ofas[86]

    The degree of spin–orbit entanglement as characterized by the van Neumann entropy S is thus directly connected withproviding an explicit relation between coherence and entanglement.The orbital degree of freedom is thus responsible for spin decoherence,providing a mechanism through which the spin polarization is reduced.

    4.Results

    We employ the tight-binding approximation and the recursive scattering matrix method[87–89]to calculate the spinresolved transmission matrixand the spin polarization vectorIn particular,we discretize the scattering region using a square lattice with the nearest hopping energywhere a is the side length of the unit cell.The Rashba spin–orbit interaction strength is tso=α/2a.For convenience,we setso that t0=1 and tsobecomes dimensionless.If the cavity is simply a ribbon,the spin polarization in the perpendicular z direction,denoted as Pz,exhibits periodic oscillations[90–92]with tso.The periodic behavior persists even for a ribbon cavity with rough edges in the regime of weak spin–orbit interaction,although the oscillatory behavior tends to deteriorate as the interaction strength becomes strong.[63]It is thus convenient to normalize tsoby,whereis the specific value of the spin–orbit interaction strength at which the phase of spin polarization ratio Pzchanges by π,e.g.,from spin up prior to entering the cavity to spin down after exiting it.

    Figure 2 shows the indicators of spin coherence and the entanglement degree versus the Fermi energy εfand spin–orbit coupling strength tso,where panels(a)and(c)are for a completely chaotic dot as marked byin Fig.1,while panels(b)and(d)display the corresponding results but for the case of mixed classical dynamics specified byin Fig.1.We see that for the fully chaotic cavity,there is a large decrease in coherence as characterized byand simultaneously a marked enhancement of the entanglement degree as quantified by the entropyas compared with the case with mixed dynamics.This suggests that,while both sub-band mixture and spin–orbit coupling reduce the coherence,[82]classical chaos can lead to a larger loss of coherence,as shown explicitly in Fig.2(e).And simultaneously,there is significant enhancement of spin–orbit entanglement by chaos,as shown in Fig.2(f).

    Fig.2.Dependence of the indicators of spin coherence and the degree of entanglement on Fermi energy and spin–orbit coupling strength.(a)and(c)Three-dimensional display of the magnitude of the spin polarization vectorand van Neumann entropy S versus the Fermi energy εf and the spin–orbit coupling strength tso for the cavity shape marked asin Fig.1,where the classical dynamics are fully chaotic.(b)and(d)Similar 3D plot but for the case marked as in Fig.1,where the classical dynamics are of the mixed type.(e)The value ofaveraged over a relatively large interval of the Fermi energy versus tso for case (solid curve)and case(dashed curve).(f)The corresponding average value of entropy S versus tso for the cases in(e).Both εf and tso are measured in units of t0,the hopping energy of any pair of nearest sites in the square lattice as a result of discretization of the two-dimensional Schr?dinger equation.

    Fig.3.Indicators of spin coherence and the degree of entanglement averaged over the Fermi energy versus the spin–orbit coupling strength.(a)–(d)Averaged magnitude of the polarization vectorand(e)–(h)averaged van Neumann entropy S versus the normalized value tso of spin–orbit interaction strength for four different intervals of energy averaging:[0.016,0.0624],[0.0632,0.140],[0.1408,0.2472],and[0.248,0.3816],corresponding to regimes with one to four transmission modes,respectively.In each panel,the five dot-dashed curves are for mixed dynamics while the four solid curves correspond to chaotic dynamics.

    To gain more insights into the phenomenon of enhancement of spin–orbit entanglement by classical chaos,we show in Figs.3(a)–3(d)the value ofaveraged over four different energy intervals,each corresponding to a distinct transport regime. The corresponding behaviors of the entropy S are shown in Figs.3(e)–3(h),respectively. In particular,in Figs.3(a)and 3(e),there is only one activated channel so we haveand S=0 because,in this case,the whole state in Eq.(6)is separable,

    where there is no entanglement between the spin and orbital degrees of freedom and consequently,no loss of coherence.In Figs.3(b)–3(d)and 3(f)–3(h),more than one channel are activated.As a result,the value ofis reduced from the unity value,indicating a loss of coherence of the spin state and a simultaneous increase in the entropy. Indeed,insofar as the weak coupling regimeis concerned,the patterns of decrease in coherence and increase in the entanglement degree withas a result of classical chaos persist.If the spin–orbit interaction is too strong,the phenomena of chaos enabled coherence reduction and entanglement enhancement may not hold and the corresponding patterns may even reverse,as in this case chaos can result in enhanced spin sub-band intermixing,but with even bigger fluctuations.[63]That chaos tends to reduce coherence and directly enhances spin–orbit entanglement is consistent with previous results.[8,11,40–42]From the measurement point of view,the loss of coherence is intimately related to entanglement.Actually,the entanglement between the spin and orbital degrees is the direct reason leading to the loss of coherence of the spin state for the class of systems studied here.

    5.Conclusion

    For a composite quantum bipartite system with subsystems or sub-degrees of freedom,[8,11,30–33]decoherence of a subsystem and entanglement between the subsystems are intimately related.[8,11,30,33]In general,coherence is an important measure characterizing a quantum state that is the superposition of other states.When a detector is present,the quantum properties may be destroyed and the system can approach a state describable by a classical probability distribution. Our work presents an explicit demonstration of this general principle underlying coherence and entanglement in terms of spin and orbital degrees of freedom in mesoscopic electronic/spin systems with distinct types of classical dynamics.In particular,scattering into different orbital subspace leads to a nonseparable state described by a spin density matrix and loss of coherence.The entanglement for this composite system can then be studied based on the coherence of the spin subspace.For this system,reduced coherence and enhanced entanglement are thus two coexisting aspects of the same composite system.

    Intuitively,classical chaos can reduce coherence in the spin polarized state through enhanced interaction between different degrees,especially through scattering into different orbital states. A question is then whether chaos can enhance entanglement.While there were previous efforts in this topic,[2,5–8,10–13]we focus on the spin–orbit entanglement,a kind of intra-particle entanglement. Using two-dimensional quantum dot systems with Rashba spin–orbit interactions as a prototypical setting,for which classical dynamics of different degrees of chaos can be readily generated,we calculate the measures of coherence and entanglement for a number of systematic cases and obtain the confirmation that,in the weakly coupling regime,chaos can significantly enhance the spin–orbit entanglement. Our result provides insights into the effect of chaos on orbital–spin hybrid entangled state,which may have potential advantages in enhancing the capacity of quantum communication based on intra-particle entanglement.[76,77,93,94]

    Acknowledgment

    YCL and HYX are supported by the Pentagon Vannevar Bush Faculty Fellowship program sponsored by the Basic Research Office of the Assistant Secretary of Defense for Research and Engineering and funded by the Office of Naval Research through Grant No.N00014-16-1-2828.

    猜你喜歡
    憲章
    “《大憲章》連續(xù)性神話”的知識(shí)考古
    舊題重溫《大憲章》
    德國(guó)少數(shù)民族語言保護(hù)政策及其特點(diǎn)
    《能源憲章條約》下國(guó)際投資仲裁案例研究
    仲裁研究(2019年1期)2019-09-25 07:40:56
    帶著老伴走天下
    新天地(2019年6期)2019-06-21 01:45:10
    《歐盟基本權(quán)利憲章》直接效力問題研究
    能源“憲章”或?qū)⑾w制霧霾
    英國(guó)為800歲《大憲章》策展
    鄭憲章:浪漫地記錄上海的“長(zhǎng)大”
    馮憲章教授治療蕁麻疹經(jīng)驗(yàn)
    videossex国产| 国产伦理片在线播放av一区| 内地一区二区视频在线| 天堂俺去俺来也www色官网| 久久国产亚洲av麻豆专区| 夜夜看夜夜爽夜夜摸| 99精国产麻豆久久婷婷| 国产成人freesex在线| av专区在线播放| 九九爱精品视频在线观看| 狂野欧美白嫩少妇大欣赏| 国产亚洲精品久久久com| 亚洲色图综合在线观看| 亚洲怡红院男人天堂| 91国产中文字幕| 熟女电影av网| 黄色配什么色好看| 精品少妇黑人巨大在线播放| 在线精品无人区一区二区三| 人人妻人人爽人人添夜夜欢视频| 人人妻人人爽人人添夜夜欢视频| 日本黄色日本黄色录像| 亚洲国产日韩一区二区| 高清视频免费观看一区二区| 国产亚洲av片在线观看秒播厂| tube8黄色片| 亚洲av成人精品一区久久| 亚洲精品久久成人aⅴ小说 | 波野结衣二区三区在线| 国产探花极品一区二区| 色5月婷婷丁香| 女人久久www免费人成看片| 成人免费观看视频高清| 老司机影院毛片| 久久久亚洲精品成人影院| 哪个播放器可以免费观看大片| 久久精品久久久久久噜噜老黄| 草草在线视频免费看| 日韩av免费高清视频| 一本色道久久久久久精品综合| 色哟哟·www| 日韩成人av中文字幕在线观看| 好男人视频免费观看在线| 能在线免费看毛片的网站| 一级黄片播放器| 国产淫语在线视频| 亚洲国产精品一区二区三区在线| 国产精品国产av在线观看| 九九在线视频观看精品| 免费人妻精品一区二区三区视频| 男女高潮啪啪啪动态图| 九色亚洲精品在线播放| 中国美白少妇内射xxxbb| 亚洲精品视频女| 亚洲欧洲日产国产| 简卡轻食公司| 国产精品蜜桃在线观看| 国产免费现黄频在线看| 日韩一本色道免费dvd| 一级毛片 在线播放| 国模一区二区三区四区视频| 亚洲少妇的诱惑av| 欧美激情极品国产一区二区三区 | 美女脱内裤让男人舔精品视频| 国产成人精品一,二区| 久久狼人影院| 伊人久久精品亚洲午夜| 国产成人精品久久久久久| 男的添女的下面高潮视频| 一级毛片 在线播放| 久久午夜福利片| 亚洲精品成人av观看孕妇| 国产日韩欧美亚洲二区| 日韩成人伦理影院| 亚洲精品亚洲一区二区| 爱豆传媒免费全集在线观看| 色视频在线一区二区三区| 狂野欧美激情性bbbbbb| 国产亚洲av片在线观看秒播厂| 看十八女毛片水多多多| 欧美亚洲 丝袜 人妻 在线| 亚洲av成人精品一二三区| 日本猛色少妇xxxxx猛交久久| 免费观看性生交大片5| 国产黄色视频一区二区在线观看| 欧美亚洲日本最大视频资源| 少妇被粗大的猛进出69影院 | 亚洲av.av天堂| 中国国产av一级| 嫩草影院入口| 久久久国产一区二区| 99九九线精品视频在线观看视频| 中文字幕av电影在线播放| 亚洲综合精品二区| 亚洲av免费高清在线观看| 国产日韩欧美视频二区| 亚洲精品国产av蜜桃| 国产日韩欧美亚洲二区| 考比视频在线观看| 免费日韩欧美在线观看| 熟女人妻精品中文字幕| 国产一级毛片在线| 丁香六月天网| 欧美激情 高清一区二区三区| 99国产综合亚洲精品| 汤姆久久久久久久影院中文字幕| 久久人人爽人人爽人人片va| 国产 精品1| 午夜免费观看性视频| 久久久亚洲精品成人影院| 久久午夜综合久久蜜桃| 久久精品国产鲁丝片午夜精品| 日韩熟女老妇一区二区性免费视频| 草草在线视频免费看| 亚洲欧美清纯卡通| 成年女人在线观看亚洲视频| 边亲边吃奶的免费视频| 国产亚洲最大av| 久久久久国产精品人妻一区二区| 成人午夜精彩视频在线观看| 91午夜精品亚洲一区二区三区| 99九九线精品视频在线观看视频| 韩国高清视频一区二区三区| 91精品三级在线观看| 午夜av观看不卡| av天堂久久9| 精品少妇内射三级| 人成视频在线观看免费观看| 少妇丰满av| 日本猛色少妇xxxxx猛交久久| 丰满少妇做爰视频| 久久久久久久国产电影| 97超碰精品成人国产| 一个人看视频在线观看www免费| 全区人妻精品视频| 五月伊人婷婷丁香| 有码 亚洲区| 国产免费视频播放在线视频| 欧美成人精品欧美一级黄| 久久久久网色| 又黄又爽又刺激的免费视频.| kizo精华| 国产av码专区亚洲av| 亚洲激情五月婷婷啪啪| 精品久久久久久久久亚洲| 色哟哟·www| 色婷婷久久久亚洲欧美| 亚洲少妇的诱惑av| 国产精品99久久久久久久久| 国产免费福利视频在线观看| 国产极品粉嫩免费观看在线 | 性色avwww在线观看| 婷婷成人精品国产| 少妇精品久久久久久久| 国产成人精品福利久久| 日韩一本色道免费dvd| 桃花免费在线播放| 国产av国产精品国产| 欧美成人精品欧美一级黄| 欧美激情 高清一区二区三区| 亚洲精品视频女| 2018国产大陆天天弄谢| 国产欧美日韩一区二区三区在线 | 午夜激情av网站| 午夜福利,免费看| 制服诱惑二区| 欧美日韩av久久| 不卡视频在线观看欧美| 午夜激情久久久久久久| 免费看av在线观看网站| 寂寞人妻少妇视频99o| 伦理电影免费视频| 国产精品久久久久久久久免| 国产成人精品在线电影| a级毛片免费高清观看在线播放| 国产精品一二三区在线看| 亚洲人成77777在线视频| 少妇人妻久久综合中文| 国产精品久久久久久精品古装| 欧美老熟妇乱子伦牲交| 777米奇影视久久| 成年人午夜在线观看视频| 伦精品一区二区三区| 日韩伦理黄色片| 成年人午夜在线观看视频| 久久久久久久久久成人| 一本—道久久a久久精品蜜桃钙片| 黄色视频在线播放观看不卡| 性高湖久久久久久久久免费观看| 大片电影免费在线观看免费| 亚洲精品456在线播放app| 欧美最新免费一区二区三区| 国产一区二区在线观看av| 欧美精品亚洲一区二区| 亚洲,欧美,日韩| 亚洲欧美成人综合另类久久久| 欧美 亚洲 国产 日韩一| 国产又色又爽无遮挡免| 美女国产视频在线观看| 亚洲国产欧美日韩在线播放| 精品熟女少妇av免费看| 黑人欧美特级aaaaaa片| av专区在线播放| 少妇丰满av| 精品人妻熟女av久视频| 老司机影院毛片| av天堂久久9| av在线app专区| 国产成人精品无人区| 国产亚洲最大av| 能在线免费看毛片的网站| 亚洲精品久久久久久婷婷小说| 精品国产一区二区久久| 国产免费视频播放在线视频| 亚洲国产成人一精品久久久| 国产欧美亚洲国产| 国产极品粉嫩免费观看在线 | 成人二区视频| 99国产综合亚洲精品| 久久久精品94久久精品| 91精品伊人久久大香线蕉| 极品少妇高潮喷水抽搐| 高清视频免费观看一区二区| 肉色欧美久久久久久久蜜桃| 国产男女内射视频| av国产精品久久久久影院| 亚洲精品成人av观看孕妇| 国产不卡av网站在线观看| 国产熟女午夜一区二区三区 | 国产日韩一区二区三区精品不卡 | 成人国语在线视频| 美女内射精品一级片tv| 51国产日韩欧美| av不卡在线播放| av国产久精品久网站免费入址| 亚洲精品第二区| 少妇的逼水好多| 久久久亚洲精品成人影院| 草草在线视频免费看| 久久ye,这里只有精品| 热99国产精品久久久久久7| 久久99热6这里只有精品| 欧美激情 高清一区二区三区| 日韩一本色道免费dvd| 免费不卡的大黄色大毛片视频在线观看| 久久韩国三级中文字幕| 嘟嘟电影网在线观看| 精品一区二区三卡| 亚洲av日韩在线播放| 最近最新中文字幕免费大全7| 嫩草影院入口| 极品少妇高潮喷水抽搐| 伦精品一区二区三区| 欧美日韩视频精品一区| 在线观看美女被高潮喷水网站| 亚洲精品国产av蜜桃| 人人妻人人澡人人爽人人夜夜| 精品国产乱码久久久久久小说| 啦啦啦视频在线资源免费观看| 久久久国产欧美日韩av| 亚洲美女视频黄频| 91精品国产九色| 91午夜精品亚洲一区二区三区| 一本久久精品| 欧美日韩综合久久久久久| 综合色丁香网| 中国美白少妇内射xxxbb| 亚洲国产欧美在线一区| 自线自在国产av| 久久99精品国语久久久| 韩国av在线不卡| 亚洲欧美一区二区三区黑人 | 日本vs欧美在线观看视频| 婷婷色av中文字幕| 免费高清在线观看视频在线观看| 亚洲国产精品成人久久小说| 99精国产麻豆久久婷婷| 亚洲婷婷狠狠爱综合网| 国产精品一区二区三区四区免费观看| 日韩成人av中文字幕在线观看| 一区二区日韩欧美中文字幕 | 久久午夜综合久久蜜桃| 久久毛片免费看一区二区三区| 久久久久视频综合| 久久久a久久爽久久v久久| 少妇被粗大猛烈的视频| 妹子高潮喷水视频| 午夜日本视频在线| 狂野欧美白嫩少妇大欣赏| 永久网站在线| 婷婷色综合www| 亚洲av二区三区四区| 校园人妻丝袜中文字幕| 欧美+日韩+精品| a级毛片免费高清观看在线播放| 国产日韩欧美在线精品| 爱豆传媒免费全集在线观看| 伊人久久国产一区二区| 少妇人妻久久综合中文| 高清在线视频一区二区三区| 最新中文字幕久久久久| 99热这里只有精品一区| 免费播放大片免费观看视频在线观看| 久热久热在线精品观看| 欧美日韩精品成人综合77777| 麻豆乱淫一区二区| 天天躁夜夜躁狠狠久久av| 日韩免费高清中文字幕av| 成人亚洲精品一区在线观看| 91精品伊人久久大香线蕉| 国产探花极品一区二区| 搡老乐熟女国产| 久久国产精品男人的天堂亚洲 | 美女cb高潮喷水在线观看| av有码第一页| 美女福利国产在线| 亚洲,欧美,日韩| 国产高清国产精品国产三级| 亚洲人成网站在线观看播放| 各种免费的搞黄视频| 日日啪夜夜爽| 99久久中文字幕三级久久日本| 免费黄网站久久成人精品| 婷婷色综合大香蕉| 久久久久久久大尺度免费视频| av在线观看视频网站免费| 97精品久久久久久久久久精品| 亚洲第一区二区三区不卡| 丰满少妇做爰视频| 高清午夜精品一区二区三区| 久久 成人 亚洲| 亚洲在久久综合| av天堂久久9| 国产午夜精品一二区理论片| 丰满乱子伦码专区| 草草在线视频免费看| 狠狠精品人妻久久久久久综合| 蜜臀久久99精品久久宅男| 少妇人妻精品综合一区二区| 国产免费一级a男人的天堂| 欧美 亚洲 国产 日韩一| 99国产综合亚洲精品| 国产免费一区二区三区四区乱码| 欧美日韩综合久久久久久| 亚洲婷婷狠狠爱综合网| 亚洲成人av在线免费| 午夜福利视频精品| .国产精品久久| 亚洲成人手机| 看十八女毛片水多多多| 精品国产国语对白av| 国产白丝娇喘喷水9色精品| 最近中文字幕高清免费大全6| 亚洲久久久国产精品| 久久影院123| 久久毛片免费看一区二区三区| 欧美国产精品一级二级三级| 国产精品国产av在线观看| 久久久精品94久久精品| 欧美激情 高清一区二区三区| 国产高清国产精品国产三级| 亚洲国产精品999| 青春草亚洲视频在线观看| 国产精品国产av在线观看| 91久久精品国产一区二区三区| 少妇的逼水好多| 激情五月婷婷亚洲| 人妻一区二区av| 亚洲欧洲精品一区二区精品久久久 | 国产成人午夜福利电影在线观看| 免费av中文字幕在线| 人妻 亚洲 视频| 丰满乱子伦码专区| 国产精品国产av在线观看| 亚洲欧洲日产国产| 国产av一区二区精品久久| 精品午夜福利在线看| 亚洲国产成人一精品久久久| 国产成人精品在线电影| 五月开心婷婷网| 插阴视频在线观看视频| 日日摸夜夜添夜夜添av毛片| 精品久久久久久电影网| 美女cb高潮喷水在线观看| 大香蕉97超碰在线| 欧美变态另类bdsm刘玥| 日韩伦理黄色片| 欧美精品亚洲一区二区| 国产精品一区二区在线观看99| 视频区图区小说| 青春草国产在线视频| 交换朋友夫妻互换小说| 亚洲婷婷狠狠爱综合网| 日韩强制内射视频| 午夜激情福利司机影院| av视频免费观看在线观看| 制服诱惑二区| 少妇 在线观看| 肉色欧美久久久久久久蜜桃| 大片电影免费在线观看免费| 国产日韩欧美亚洲二区| 日本午夜av视频| 熟女人妻精品中文字幕| 国产探花极品一区二区| 啦啦啦在线观看免费高清www| 少妇人妻精品综合一区二区| 精品人妻熟女毛片av久久网站| 最新中文字幕久久久久| 一边摸一边做爽爽视频免费| 99视频精品全部免费 在线| 视频区图区小说| 国产 精品1| 国产成人精品在线电影| av一本久久久久| tube8黄色片| 日本色播在线视频| 国产成人a∨麻豆精品| 日韩欧美一区视频在线观看| 精品国产一区二区久久| 超碰97精品在线观看| 欧美日韩一区二区视频在线观看视频在线| 青青草视频在线视频观看| 日韩电影二区| 日韩大片免费观看网站| 国产亚洲一区二区精品| 国产免费福利视频在线观看| 亚洲成人手机| 免费av不卡在线播放| 一本大道久久a久久精品| 交换朋友夫妻互换小说| 久久精品国产亚洲网站| 哪个播放器可以免费观看大片| 亚洲不卡免费看| 桃花免费在线播放| 中文字幕久久专区| 国产亚洲最大av| 免费看光身美女| 亚洲成人手机| 女人久久www免费人成看片| 日韩成人av中文字幕在线观看| 亚洲欧美成人精品一区二区| 日韩中文字幕视频在线看片| 51国产日韩欧美| 波野结衣二区三区在线| 亚洲精品乱久久久久久| 熟妇人妻不卡中文字幕| 亚洲精品乱码久久久久久按摩| 欧美日韩国产mv在线观看视频| 男人添女人高潮全过程视频| 18在线观看网站| 男男h啪啪无遮挡| 日韩在线高清观看一区二区三区| 91aial.com中文字幕在线观看| 美女福利国产在线| 尾随美女入室| xxx大片免费视频| 嫩草影院入口| 高清毛片免费看| 久久久午夜欧美精品| 婷婷色综合www| 亚洲,欧美,日韩| 国产成人免费观看mmmm| 国产在线视频一区二区| 亚洲高清免费不卡视频| 国产有黄有色有爽视频| 简卡轻食公司| 免费观看a级毛片全部| 新久久久久国产一级毛片| 亚洲内射少妇av| 尾随美女入室| 男男h啪啪无遮挡| av.在线天堂| 最近2019中文字幕mv第一页| 日韩中字成人| 黄色欧美视频在线观看| 18禁在线播放成人免费| 大陆偷拍与自拍| 午夜激情av网站| 91久久精品电影网| 超碰97精品在线观看| www.色视频.com| h视频一区二区三区| 综合色丁香网| av有码第一页| 亚洲,一卡二卡三卡| 亚洲av免费高清在线观看| 狂野欧美白嫩少妇大欣赏| 性高湖久久久久久久久免费观看| 国精品久久久久久国模美| 秋霞伦理黄片| 久久久久人妻精品一区果冻| 久久狼人影院| √禁漫天堂资源中文www| 午夜视频国产福利| 日韩强制内射视频| 久久亚洲国产成人精品v| 久久久久人妻精品一区果冻| 久久av网站| 国产高清国产精品国产三级| 色5月婷婷丁香| 综合色丁香网| 亚洲在久久综合| 视频中文字幕在线观看| 成年人免费黄色播放视频| 久久97久久精品| 国产精品一区二区在线观看99| 婷婷色综合www| 久久99一区二区三区| 曰老女人黄片| 亚洲精品亚洲一区二区| 在线观看www视频免费| 欧美日韩视频精品一区| 香蕉精品网在线| 最新中文字幕久久久久| 日日啪夜夜爽| 777米奇影视久久| 成人午夜精彩视频在线观看| 国产成人精品久久久久久| xxxhd国产人妻xxx| 国产精品.久久久| 最后的刺客免费高清国语| 两个人的视频大全免费| 亚洲人与动物交配视频| 欧美日韩在线观看h| 午夜精品国产一区二区电影| 七月丁香在线播放| av专区在线播放| 亚洲精品国产色婷婷电影| 日韩成人伦理影院| 免费观看无遮挡的男女| 国产精品一区二区三区四区免费观看| 视频中文字幕在线观看| 国产成人freesex在线| 观看美女的网站| 高清视频免费观看一区二区| 日日撸夜夜添| 久久精品国产亚洲av天美| 免费播放大片免费观看视频在线观看| 久久久久国产精品人妻一区二区| 国产男女超爽视频在线观看| 亚洲高清免费不卡视频| 精品国产一区二区三区久久久樱花| 午夜福利视频精品| 国产精品一区二区在线观看99| 能在线免费看毛片的网站| 日本免费在线观看一区| 2021少妇久久久久久久久久久| 亚洲欧洲国产日韩| 日日啪夜夜爽| 一本色道久久久久久精品综合| 少妇精品久久久久久久| 免费久久久久久久精品成人欧美视频 | 午夜av观看不卡| 欧美精品亚洲一区二区| 久久精品国产鲁丝片午夜精品| 久久久久久久久久久久大奶| 狂野欧美激情性bbbbbb| a级毛片在线看网站| 精品人妻熟女av久视频| 一区二区三区精品91| 日本黄色片子视频| 91国产中文字幕| 亚洲精品中文字幕在线视频| 国产欧美日韩综合在线一区二区| 亚洲少妇的诱惑av| 亚洲av国产av综合av卡| 精品少妇久久久久久888优播| 久久精品人人爽人人爽视色| 亚洲av免费高清在线观看| 国产高清不卡午夜福利| 亚洲四区av| 午夜日本视频在线| 亚洲精品456在线播放app| 精品久久久久久电影网| 久久久久久久久久久丰满| 最新中文字幕久久久久| 亚洲国产精品国产精品| 在线观看三级黄色| videos熟女内射| 中文精品一卡2卡3卡4更新| 亚洲欧美成人精品一区二区| 日韩成人av中文字幕在线观看| 人体艺术视频欧美日本| 亚洲国产色片| freevideosex欧美| 国产精品久久久久久精品古装| 免费播放大片免费观看视频在线观看| 精品亚洲成a人片在线观看| 日韩三级伦理在线观看| 亚洲精品一二三| 国产亚洲午夜精品一区二区久久| 熟女av电影| 国产成人a∨麻豆精品| 寂寞人妻少妇视频99o| 99热全是精品| 美女主播在线视频| 亚洲少妇的诱惑av| 有码 亚洲区| 日本黄色日本黄色录像| 亚洲国产最新在线播放| 欧美精品人与动牲交sv欧美| 婷婷色av中文字幕| 色婷婷av一区二区三区视频| tube8黄色片| 久久ye,这里只有精品| 国产成人午夜福利电影在线观看| 一区二区三区四区激情视频| 99国产综合亚洲精品| 亚洲国产精品成人久久小说| 久久99精品国语久久久| 高清毛片免费看| 九色成人免费人妻av| 久久av网站| 性色avwww在线观看| 男女边摸边吃奶|