• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhancing von Neumann entropy by chaos in spin–orbit entanglement*

    2019-11-06 00:43:34ChenRongLiu劉郴榮PeiYu喻佩XianZhangChen陳憲章HongYaXu徐洪亞LiangHuang黃亮andYingChengLai來穎誠(chéng)
    Chinese Physics B 2019年10期
    關(guān)鍵詞:憲章

    Chen-Rong Liu(劉郴榮), Pei Yu(喻佩), Xian-Zhang Chen(陳憲章),Hong-Ya Xu(徐洪亞), Liang Huang(黃亮),?,and Ying-Cheng Lai(來穎誠(chéng)),3

    1School of Physical Science and Technology,and Key Laboratory for Magnetism and Magnetic Materials of MOE,Lanzhou University,Lanzhou 730000,China

    2School of Electrical,Computer,and Energy Engineering,Arizona State University,Tempe,AZ 85287,USA

    3Department of Physics,Arizona State University,Tempe,AZ 85287,USA

    Keywords:spin–orbit entanglement,chaos,von Neumann entropy,spin decoherence

    1.Introduction

    Quantum entanglement,the intercorrelation among different subsystems or distinct degrees of freedom of a system,is foundational to quantum mechanics and fundamental to quantum information science and technology.[1]From the point of view of quantum–classical correspondence,entanglement has no classical counterpart. However,the nature of the classical dynamics can still have some impact on quantum entanglement.[2–16]While vast knowledge has been accumulated in the field of quantum chaos that studies the manifestations of classical chaos in the corresponding quantum system,[19–21]the interplay between chaos and quantum entanglement remains to be a fundamental and fascinating topic in contemporary physics.[2–16]Typically,entanglement is referred to the intercorrelation among different subsystems,e.g.,between two particles(electrons or photons)of an entangled pair.Meanwhile,the entanglement of distinct degrees of freedom of a single particle has also been discussed and demonstrated experimentally.[7,22–27]The purpose of this paper is to investigate the interplay between chaos and intraparticle quantum entanglement that can be characterized,e.g.,by the von Neumann entropy between the spin and the orbital degrees of freedom of a single electron. This problem is highly relevant to spintronics and spin-based quantum computing/communication technologies.Our finding is that chaos can enhance intra-particle quantum entanglement.

    Historically, the concept of quantum entanglement was originated from the Einstein–Podolsky–Rosen (EPR)paradox[28]and Schr?dinger’s cat.[29]The phenomenon of quantum entanglement is counterintuitive as it entails nonlocal properties of physical processes[8,11,30–33]and plays an important role in the foundation of quantum mechanics. Various aspects of quantum entanglement such as characterization,detection,and control have been actively investigated,[32]with significant applications in quantum teleportation,[34]quantum searching algorithms,[35]quantum communication[32,36,37]and computing.[32]

    Quantum entanglement is intimately related to the concept of quantum coherence based on the principle of superposition of quantum states.[11,31,38]When a state ψ is composed by two coherent states ψ1and ψ2:ψ=ψ1+ψ2,one haswhere the cross term characterizes the coherence and can be observed through interference.The presence of a detector of certain resolution[11,38]will degrade and even destroy the interference pattern and,consequently,coherence.Remarkably,the detector can generate entanglement between the detecting and the object systems,[8,11,30–32]leading to decoherence of the state of the object systems.[8,11,31,39–42]Indeed,the study of decoherence and entanglement constitutes an important branch of modern quantum mechanics.[8,11,30,33,43–45]

    There were some previous studies of the role of classical chaos in entanglement and decoherence.[2,5–8,10–13,17,18]For example, the issue of decoherence in classically chaotic systems was investigated in terms of the Lyapunov exponent,[5,6,10,12]where an implicit relation between the purity or coherence of the quantum state and the Lyapunov exponent was obtained in the semiclassical limit.[12]The exponent was shown[12]to be effectively the decay rate of the degree of coherence,i.e.,chaos is more effective at reducing coherence,suggesting that the nature of the classical dynamics plays a determining role in decoherence,regardless of the environment. The inter-relation between decoherence and entanglement then suggests that chaos might be able to enhance entanglement.[3,4,9,13]For a classically chaotic system,the simultaneous loss of coherence of certain degree of freedom and the gain of its entanglement with other degrees of freedom of the system were demonstrated.[11]In optomechanics,it was shown that complicated nonlinear dynamical behaviors can enhance quantum entanglement.[14]

    Our investigation of the interplay between chaos and spin–orbit entanglement was motivated by two considerations.Firstly,manipulating the spin degree of freedom is the base of spintronics(a major class of energy efficient electronics[46,47]),the development of which often relies on a good understanding of spin transport[46–48]in mesoscopic solid state devices such as quantum dots.[49]In the mesoscopic regime,both classical and quantum behaviors are relevant,and previous works showed that different types of classical dynamics can have characteristically different effects on the electronic transport phenomena such as conductance fluctuations.[50–62]Thus,while spin is a quantum variable with no classical counterpart,in mesoscopic systems the nature of classical dynamics would have effects on quantum behaviors that involve spin due to the spin–orbit interaction.[63]Secondly,while there were previous studies on the role of classical chaos in spin transport[63–67]and entanglement between the spin and orbital degrees of freedom,[23,25,31,32,68]the interplay between chaos and intraparticle entanglement has not been investigated.Addressing this issue may lead to insights into spin-based quantum computing or quantum information technologies.

    In this paper,we study spin–orbit entanglement in twodimensional mesoscopic systems with a focus on the role of classical chaos in intra-particle entanglement. For simplicity,we study entanglement between the spin and orbital degrees of freedom of an electron in quantum-dot systems that can be chaotic in the classical limit. The underlying physical mechanism for the spin–orbit entanglement is Rashba spin–orbit coupling.[68–75]The two-dimensional quantum dot is chosen to be a cosine cavity whose classical dynamical properties can be controlled by continuously varying its length parameter.[56]To be systematic,we study nine system configurations with various degrees of chaos as characterized by the phase space structure and the maximum Lyapunov exponent. The main finding is that,in the weakly Rashba spin–orbit coupling regime,chaos can significantly enhance the spin–orbit entanglement.Because of the potential role of such intra-particle entanglement in,e.g.,quantum teleportation and communication,[76,77]our result points at the advantage of exploiting classical chaos in these applications.[25,27]

    It is worth emphasizing the difference between the present work and our previous works on the role of chaos in spin transport.In particular,in Ref.[67],we studied graphene quantum dots subject to unpolarized injection and examined how chaos can induce spin polarization.In Ref.[63],we considered semiconductor two dimensional electron gas(2DEG)cavities with polarized injection and investigated the circumstances under which classical chaos would preserve or destroy spin polarization. In the present work,we address the role of chaos in spin–orbit entanglement,a kind of entanglement between the internal degrees of freedom of a single particle,which can be exploited to enhance the transmission bandwidth in quantum communication. This type of intraparticle entanglement has been studied but mostly in photonic systems.[7,22–27]In solid state systems,one relevant work[68]treated the interplay among time-reversal symmetry,entanglement,and weak-(anti)localization quantum correction to conductance.While the setting of this work is chaotic quantum dots,the issue of the effect of chaos on intra-particle entanglement is not touched.The results in our present work reveal that chaos is capable of distributing scattering electrons into different transmission channels(transverse modes),leading to an enhancement of the spin–orbit entanglement at the expense of spin polarization.To the best of our knowledge,our work has uncovered the beneficial role of chaos in enhancing intraparticle entanglement.

    2.Classical dynamics and Rashba Hamiltonian

    We consider two-dimensional mesoscopic quantum dot type of systems. An exemplary system consists of a central cavity(scattering region)and a number of electronic waveguides(or leads)connected to the cavity.To generate a wide range of classical dynamical behaviors,we choose the cavity to have a cosine shape,[56,58,78,79]in which the whole spectrum of classical dynamics from integrable to mixed dynamics and finally to fully developed chaos can be arisen through continuous tuning of a geometric parameter of the system.In particular,the cavity region D is defined by the boundaries x=0,x=L,y=0,and y=W+(M/2)[1?cos(2πx/L)]. To be concrete,we assume there are two leads attached to the cavity:one on the left and the other on the right side.The nature of the classical dynamics is determined by the values of the parameter ratios[56]M/L and W/L.For example,for M/L=0.11 and W/L=0.18,the classical phase space is mixed with the coexistence of Kolmogorov–Arnold–Moser(KAM)tori and chaotic regions. For M/L=0.22 and W/L=0.36,there is fully developed chaos without any stable periodic orbit.

    Fig.1.Lyapunov exponent of the chaotic component in the cosine cavity.The dashed curve is the maximal Lyapunov exponent λ1 versus the length L of the cavity.The insets are two representative Poincaré surfaces of section of the closed billiard system without leads attached to it:mixed dynamics for L=1.8μm(upper right)and chaotic dynamics for L=0.5μm(lower left).Altogether nine cases of different values of L are shown:L=0.5,0.55,0.6,0.67,0.8,1.0,1.33,1.5,1.8μm.Other parameters are M=0.15μm and W=0.24μm.

    In our simulations,we fix M=0.15μm,W=0.24μm(also the width of the leads),and vary L in the range from 0.5μm to 2.0μm so as to generate classical dynamics with different degrees of chaos.In particular,for a closed cosine billiard system,as the length L is altered,the degree of chaos in the classical dynamics can be modulated in a continuous fashion.There are two aspects in the evolution of chaos:the chaotic component in the phase space that can increase in size(accompanied by a simultaneous decrease in the regular KAM component)and the maximum Lyapunov exponent λ1that can be calculated conveniently in the Birkhoff coordinates.[80]Figure 1 shows λ1versus L and representative phase space structures revealed on the Poincaré surface of section.For the four cases with L ≤0.67,there is fully developed chaos without any stable periodic orbit in the phase space.For the five cases with L ≥0.67,the phase space is mixed.[56]

    To activate the Rashba spin–orbit interaction,we apply an electrical field perpendicular to the cavity plane.The Hamiltonian of the system is given by[81]

    where σ0is the 2×2 unit matrix,are the Pauli matrices,m*is the electron’s effective mass,and α is the strength of Rashba spin–orbit coupling.The confinement potential isandotherwise.

    3.Characterization of spin–orbit entanglement and role of classical chaos in enhancing entanglement

    For the open billiard system with leads attached to it,propagating or conducting channels will be activated when the electron Fermi energy εfis larger than the cut-off energy of the dispersion relation.[49]Consider the case of two symmetric leads,one on the left and the other on the right side of the scattering region,where the transport direction is from left to right.Suppose there are a number of channels in the left lead,each associated with spin-up states.The incoming orbital and spin states in the left lead are denoted asand,respectively.The outgoing states are in the right lead.In general,the incoming and outgoing states can be written as[82]

    where the square modulus of the expansion coefficientsgives the probability for a spin-up incoming channelfrom the left lead to scatter into a spin-σ′channelstate in the right lead.That is,for any incoming state as defined in Eq.(2),equation(3)gives the corresponding state after scattering.The resulting outgoing state in the right lead is a pure but nonseparable,entangled state.[8,11,30,32,33,41–43]Associated with the outgoing state,the quantum spin and orbital degrees of freedom are thus entangled.[32,41,42,76]

    When N channels are activated in the left lead,the incoming state vector can be written as the following superposition state:

    The corresponding state in the right channel after scattering is

    With the normalization conditionwe obtain the normalization coefficient as

    And the outgoing state can be written as

    The density matrix associated with the outgoing state is

    The reduced density matrix for the spin degree of freedom can be obtained by averaging out the total density matrix over the orbital subspace,leading to the spin density matrix that describes the spin subspace from which an observer can get the information about the system including entanglement.[11,30,32,33]Specifically,the spin density matrix is given by[8,81–84]

    Note that,the reduced spin density matrix no longer corresponds to a pure state,[8,31,83]with which the degree of mixture or reduction in coherence[11]of the remained spin state can be quantified by the puritya measure of the pureness of the state.The amount of spin–orbit entanglement can be quantified by the von Neumann entropy[8,11,30–33]

    where λi’s are the eigenvalues of the reduced density matrix.

    For a spin-1/2 particle,the spin density matrix can be expressed[31,81–83]in terms of the spin polarization vectorThe reduced density matrix in Eq.(8)can thus be expressed as

    We then have

    The spin density matrix in Eq.(9)is obtained by tracing over the orbital part of the composite spin-orbit stateBecause the spin density matrix possesses positive eigenvalues(due to the non-negativeness of probability),the positive determinant det[ρs]≥0 leads to the conditionSince the purity associated with Eq.(9)is information about the coherent motion of the spin state is encoded into the rotation ofand the decay of spin coherence will lead to<1.[82,83]This means thatmagnitudecan be effectively an indicator of the purity or the coherence of the spin state.In particular,indicates that this spin state is completely polarized and pure andis a vector on the Bloch sphere,the limit at the other endmeans that this spin state is totally unpolarized.While the intermediate caseindicates that this spin state is partially polarized and incompletely mixed.[11,31]Note that in generalcould be a better indicator of spin coherence as they correspond to the off-diagonal element of the reduced density matrix. While as illustrated in Ref.[82],for spin transport with multi-transmitting modes,the quantitywhich describes the spin polarization of the charge current,could serve the purpose better.Furthermore,we have calculatedthe results are consistent withThus from now on,we shall useas an indicator of spin coherence.

    That chaos can enhance spin–orbital entanglement can be argued,heuristically,as follows.The pair of eigenvalues of the spin density matrix can be obtained aswith which the van Neumann entropy can be expressed in terms of the magnitude ofas[86]

    The degree of spin–orbit entanglement as characterized by the van Neumann entropy S is thus directly connected withproviding an explicit relation between coherence and entanglement.The orbital degree of freedom is thus responsible for spin decoherence,providing a mechanism through which the spin polarization is reduced.

    4.Results

    We employ the tight-binding approximation and the recursive scattering matrix method[87–89]to calculate the spinresolved transmission matrixand the spin polarization vectorIn particular,we discretize the scattering region using a square lattice with the nearest hopping energywhere a is the side length of the unit cell.The Rashba spin–orbit interaction strength is tso=α/2a.For convenience,we setso that t0=1 and tsobecomes dimensionless.If the cavity is simply a ribbon,the spin polarization in the perpendicular z direction,denoted as Pz,exhibits periodic oscillations[90–92]with tso.The periodic behavior persists even for a ribbon cavity with rough edges in the regime of weak spin–orbit interaction,although the oscillatory behavior tends to deteriorate as the interaction strength becomes strong.[63]It is thus convenient to normalize tsoby,whereis the specific value of the spin–orbit interaction strength at which the phase of spin polarization ratio Pzchanges by π,e.g.,from spin up prior to entering the cavity to spin down after exiting it.

    Figure 2 shows the indicators of spin coherence and the entanglement degree versus the Fermi energy εfand spin–orbit coupling strength tso,where panels(a)and(c)are for a completely chaotic dot as marked byin Fig.1,while panels(b)and(d)display the corresponding results but for the case of mixed classical dynamics specified byin Fig.1.We see that for the fully chaotic cavity,there is a large decrease in coherence as characterized byand simultaneously a marked enhancement of the entanglement degree as quantified by the entropyas compared with the case with mixed dynamics.This suggests that,while both sub-band mixture and spin–orbit coupling reduce the coherence,[82]classical chaos can lead to a larger loss of coherence,as shown explicitly in Fig.2(e).And simultaneously,there is significant enhancement of spin–orbit entanglement by chaos,as shown in Fig.2(f).

    Fig.2.Dependence of the indicators of spin coherence and the degree of entanglement on Fermi energy and spin–orbit coupling strength.(a)and(c)Three-dimensional display of the magnitude of the spin polarization vectorand van Neumann entropy S versus the Fermi energy εf and the spin–orbit coupling strength tso for the cavity shape marked asin Fig.1,where the classical dynamics are fully chaotic.(b)and(d)Similar 3D plot but for the case marked as in Fig.1,where the classical dynamics are of the mixed type.(e)The value ofaveraged over a relatively large interval of the Fermi energy versus tso for case (solid curve)and case(dashed curve).(f)The corresponding average value of entropy S versus tso for the cases in(e).Both εf and tso are measured in units of t0,the hopping energy of any pair of nearest sites in the square lattice as a result of discretization of the two-dimensional Schr?dinger equation.

    Fig.3.Indicators of spin coherence and the degree of entanglement averaged over the Fermi energy versus the spin–orbit coupling strength.(a)–(d)Averaged magnitude of the polarization vectorand(e)–(h)averaged van Neumann entropy S versus the normalized value tso of spin–orbit interaction strength for four different intervals of energy averaging:[0.016,0.0624],[0.0632,0.140],[0.1408,0.2472],and[0.248,0.3816],corresponding to regimes with one to four transmission modes,respectively.In each panel,the five dot-dashed curves are for mixed dynamics while the four solid curves correspond to chaotic dynamics.

    To gain more insights into the phenomenon of enhancement of spin–orbit entanglement by classical chaos,we show in Figs.3(a)–3(d)the value ofaveraged over four different energy intervals,each corresponding to a distinct transport regime. The corresponding behaviors of the entropy S are shown in Figs.3(e)–3(h),respectively. In particular,in Figs.3(a)and 3(e),there is only one activated channel so we haveand S=0 because,in this case,the whole state in Eq.(6)is separable,

    where there is no entanglement between the spin and orbital degrees of freedom and consequently,no loss of coherence.In Figs.3(b)–3(d)and 3(f)–3(h),more than one channel are activated.As a result,the value ofis reduced from the unity value,indicating a loss of coherence of the spin state and a simultaneous increase in the entropy. Indeed,insofar as the weak coupling regimeis concerned,the patterns of decrease in coherence and increase in the entanglement degree withas a result of classical chaos persist.If the spin–orbit interaction is too strong,the phenomena of chaos enabled coherence reduction and entanglement enhancement may not hold and the corresponding patterns may even reverse,as in this case chaos can result in enhanced spin sub-band intermixing,but with even bigger fluctuations.[63]That chaos tends to reduce coherence and directly enhances spin–orbit entanglement is consistent with previous results.[8,11,40–42]From the measurement point of view,the loss of coherence is intimately related to entanglement.Actually,the entanglement between the spin and orbital degrees is the direct reason leading to the loss of coherence of the spin state for the class of systems studied here.

    5.Conclusion

    For a composite quantum bipartite system with subsystems or sub-degrees of freedom,[8,11,30–33]decoherence of a subsystem and entanglement between the subsystems are intimately related.[8,11,30,33]In general,coherence is an important measure characterizing a quantum state that is the superposition of other states.When a detector is present,the quantum properties may be destroyed and the system can approach a state describable by a classical probability distribution. Our work presents an explicit demonstration of this general principle underlying coherence and entanglement in terms of spin and orbital degrees of freedom in mesoscopic electronic/spin systems with distinct types of classical dynamics.In particular,scattering into different orbital subspace leads to a nonseparable state described by a spin density matrix and loss of coherence.The entanglement for this composite system can then be studied based on the coherence of the spin subspace.For this system,reduced coherence and enhanced entanglement are thus two coexisting aspects of the same composite system.

    Intuitively,classical chaos can reduce coherence in the spin polarized state through enhanced interaction between different degrees,especially through scattering into different orbital states. A question is then whether chaos can enhance entanglement.While there were previous efforts in this topic,[2,5–8,10–13]we focus on the spin–orbit entanglement,a kind of intra-particle entanglement. Using two-dimensional quantum dot systems with Rashba spin–orbit interactions as a prototypical setting,for which classical dynamics of different degrees of chaos can be readily generated,we calculate the measures of coherence and entanglement for a number of systematic cases and obtain the confirmation that,in the weakly coupling regime,chaos can significantly enhance the spin–orbit entanglement. Our result provides insights into the effect of chaos on orbital–spin hybrid entangled state,which may have potential advantages in enhancing the capacity of quantum communication based on intra-particle entanglement.[76,77,93,94]

    Acknowledgment

    YCL and HYX are supported by the Pentagon Vannevar Bush Faculty Fellowship program sponsored by the Basic Research Office of the Assistant Secretary of Defense for Research and Engineering and funded by the Office of Naval Research through Grant No.N00014-16-1-2828.

    猜你喜歡
    憲章
    “《大憲章》連續(xù)性神話”的知識(shí)考古
    舊題重溫《大憲章》
    德國(guó)少數(shù)民族語言保護(hù)政策及其特點(diǎn)
    《能源憲章條約》下國(guó)際投資仲裁案例研究
    仲裁研究(2019年1期)2019-09-25 07:40:56
    帶著老伴走天下
    新天地(2019年6期)2019-06-21 01:45:10
    《歐盟基本權(quán)利憲章》直接效力問題研究
    能源“憲章”或?qū)⑾w制霧霾
    英國(guó)為800歲《大憲章》策展
    鄭憲章:浪漫地記錄上海的“長(zhǎng)大”
    馮憲章教授治療蕁麻疹經(jīng)驗(yàn)
    在线观看舔阴道视频| 妹子高潮喷水视频| 欧美激情 高清一区二区三区| 日本a在线网址| av网站免费在线观看视频| 欧美日韩乱码在线| 精品久久久精品久久久| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产欧美日韩在线播放| 波多野结衣高清无吗| 亚洲精品美女久久av网站| 日韩视频一区二区在线观看| 国产成人一区二区三区免费视频网站| 亚洲午夜理论影院| 久久久国产欧美日韩av| 日韩精品免费视频一区二区三区| 国产精品国产av在线观看| 人成视频在线观看免费观看| 夫妻午夜视频| 女同久久另类99精品国产91| 两个人免费观看高清视频| 久久久久久久精品吃奶| 在线播放国产精品三级| 欧美日韩黄片免| 1024香蕉在线观看| 成年人黄色毛片网站| 久久影院123| 亚洲五月色婷婷综合| 精品一品国产午夜福利视频| 午夜福利免费观看在线| 国产亚洲欧美98| 99国产精品99久久久久| av天堂在线播放| 久久精品人人爽人人爽视色| 国产亚洲欧美98| 色播在线永久视频| 久久香蕉精品热| 一区二区日韩欧美中文字幕| 满18在线观看网站| 免费不卡黄色视频| 日韩国内少妇激情av| 天天躁狠狠躁夜夜躁狠狠躁| 免费观看人在逋| 黄色片一级片一级黄色片| 午夜免费鲁丝| 大型黄色视频在线免费观看| 99精国产麻豆久久婷婷| 亚洲成国产人片在线观看| 女人爽到高潮嗷嗷叫在线视频| 国产精品影院久久| 亚洲国产精品一区二区三区在线| 免费av中文字幕在线| 精品福利观看| 国产成年人精品一区二区 | 亚洲午夜理论影院| 亚洲第一av免费看| 中国美女看黄片| 日本三级黄在线观看| 成年版毛片免费区| 91麻豆精品激情在线观看国产 | 亚洲专区中文字幕在线| 俄罗斯特黄特色一大片| 免费久久久久久久精品成人欧美视频| 色老头精品视频在线观看| 中文字幕人妻丝袜制服| 在线av久久热| 制服人妻中文乱码| 亚洲在线自拍视频| 色综合婷婷激情| 欧美乱色亚洲激情| av视频免费观看在线观看| 国产精品久久视频播放| 国产精品永久免费网站| 亚洲欧美精品综合一区二区三区| av视频免费观看在线观看| 国产黄色免费在线视频| 国产成人av激情在线播放| 欧美亚洲日本最大视频资源| 成年人免费黄色播放视频| 久99久视频精品免费| 精品一区二区三区av网在线观看| 麻豆久久精品国产亚洲av | 一本大道久久a久久精品| 久久国产乱子伦精品免费另类| 中文字幕人妻丝袜制服| 搡老乐熟女国产| 日本黄色视频三级网站网址| 午夜福利在线免费观看网站| 免费久久久久久久精品成人欧美视频| 不卡一级毛片| 国产一区二区三区在线臀色熟女 | 丰满的人妻完整版| 免费在线观看黄色视频的| 亚洲中文日韩欧美视频| 久久久国产欧美日韩av| 免费女性裸体啪啪无遮挡网站| 成熟少妇高潮喷水视频| 超碰97精品在线观看| 国产黄a三级三级三级人| 免费在线观看黄色视频的| 91精品国产国语对白视频| 好男人电影高清在线观看| 亚洲av日韩精品久久久久久密| aaaaa片日本免费| 美国免费a级毛片| 欧美av亚洲av综合av国产av| 十八禁人妻一区二区| 国产精品一区二区免费欧美| av中文乱码字幕在线| 国产有黄有色有爽视频| √禁漫天堂资源中文www| 亚洲精品成人av观看孕妇| 免费高清视频大片| 国产单亲对白刺激| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成人国产一区在线观看| 精品国产一区二区久久| 欧美精品亚洲一区二区| 国产精品二区激情视频| 欧美中文日本在线观看视频| 一区二区三区激情视频| 99国产综合亚洲精品| 久久草成人影院| 午夜激情av网站| 少妇被粗大的猛进出69影院| 操出白浆在线播放| 美女国产高潮福利片在线看| 老汉色av国产亚洲站长工具| 国产97色在线日韩免费| 一级黄色大片毛片| 亚洲精品粉嫩美女一区| 老司机福利观看| 亚洲五月色婷婷综合| 99在线人妻在线中文字幕| 老司机午夜十八禁免费视频| 在线观看免费视频日本深夜| 国产av精品麻豆| 欧美日韩亚洲国产一区二区在线观看| 亚洲欧美激情在线| 国产精品av久久久久免费| 成熟少妇高潮喷水视频| 久久精品91蜜桃| 国产黄a三级三级三级人| 夜夜夜夜夜久久久久| 九色亚洲精品在线播放| 亚洲男人天堂网一区| 久久久国产成人免费| 黑人操中国人逼视频| 亚洲自拍偷在线| 亚洲国产欧美一区二区综合| 一级毛片高清免费大全| 1024香蕉在线观看| 亚洲一区高清亚洲精品| 久久精品91蜜桃| 成人亚洲精品一区在线观看| 美女扒开内裤让男人捅视频| 精品电影一区二区在线| 国产精品久久久久久人妻精品电影| 91大片在线观看| 91字幕亚洲| 男女之事视频高清在线观看| 亚洲精品久久午夜乱码| 最好的美女福利视频网| 国产色视频综合| 午夜日韩欧美国产| 亚洲视频免费观看视频| 亚洲免费av在线视频| 亚洲一区中文字幕在线| av有码第一页| 国产亚洲欧美精品永久| 日本免费一区二区三区高清不卡 | 欧美中文日本在线观看视频| 丝袜在线中文字幕| 久久久久久久久久久久大奶| 黄色毛片三级朝国网站| 在线观看一区二区三区| 亚洲人成电影免费在线| 一级a爱视频在线免费观看| 亚洲视频免费观看视频| 视频区图区小说| 欧美精品啪啪一区二区三区| videosex国产| 搡老乐熟女国产| 午夜免费成人在线视频| 欧美乱妇无乱码| av电影中文网址| 欧美黑人精品巨大| 日本wwww免费看| 国产乱人伦免费视频| 国产一区二区在线av高清观看| 久久草成人影院| 身体一侧抽搐| 国产精品久久视频播放| 高清欧美精品videossex| 午夜免费观看网址| 极品人妻少妇av视频| 亚洲av五月六月丁香网| 亚洲人成77777在线视频| 国产激情久久老熟女| 热re99久久精品国产66热6| 亚洲狠狠婷婷综合久久图片| 黄片播放在线免费| 男人舔女人下体高潮全视频| 中文字幕人妻熟女乱码| 岛国在线观看网站| 午夜福利免费观看在线| 人人妻人人添人人爽欧美一区卜| 美女午夜性视频免费| 国产熟女午夜一区二区三区| 女同久久另类99精品国产91| 叶爱在线成人免费视频播放| 日日夜夜操网爽| 一区福利在线观看| av福利片在线| 啦啦啦在线免费观看视频4| 精品国产超薄肉色丝袜足j| 亚洲少妇的诱惑av| 亚洲中文av在线| 真人一进一出gif抽搐免费| 正在播放国产对白刺激| 欧美成人午夜精品| 亚洲av美国av| 国产精品偷伦视频观看了| av福利片在线| 国产精品一区二区免费欧美| 在线十欧美十亚洲十日本专区| 少妇粗大呻吟视频| 国产一区二区在线av高清观看| 国产欧美日韩综合在线一区二区| 亚洲中文日韩欧美视频| 久久久久亚洲av毛片大全| 亚洲av电影在线进入| 久久久久久亚洲精品国产蜜桃av| 免费日韩欧美在线观看| 国产免费av片在线观看野外av| 91av网站免费观看| 在线国产一区二区在线| 天堂动漫精品| 夫妻午夜视频| 亚洲第一av免费看| 女人精品久久久久毛片| 自线自在国产av| 这个男人来自地球电影免费观看| 日韩精品中文字幕看吧| 欧美日韩亚洲综合一区二区三区_| 91老司机精品| av视频免费观看在线观看| e午夜精品久久久久久久| 妹子高潮喷水视频| 国产黄色免费在线视频| 9热在线视频观看99| 成人亚洲精品一区在线观看| 国产99久久九九免费精品| 在线观看免费视频网站a站| 精品一区二区三区四区五区乱码| 12—13女人毛片做爰片一| 一级片免费观看大全| 91九色精品人成在线观看| 中文字幕人妻丝袜一区二区| 正在播放国产对白刺激| 国产高清激情床上av| 亚洲欧美激情综合另类| 18禁观看日本| 99在线视频只有这里精品首页| 亚洲欧美精品综合一区二区三区| cao死你这个sao货| 欧美 亚洲 国产 日韩一| 国产一区二区激情短视频| 国产高清国产精品国产三级| 精品人妻在线不人妻| e午夜精品久久久久久久| 悠悠久久av| 视频在线观看一区二区三区| 亚洲午夜精品一区,二区,三区| 亚洲av日韩精品久久久久久密| 最近最新中文字幕大全电影3 | 岛国在线观看网站| 亚洲av第一区精品v没综合| 久久国产亚洲av麻豆专区| 亚洲精品一二三| 国产区一区二久久| 免费看a级黄色片| 欧美精品一区二区免费开放| 国产精品99久久99久久久不卡| 精品国产乱码久久久久久男人| 免费在线观看日本一区| 天堂动漫精品| 淫妇啪啪啪对白视频| 国产主播在线观看一区二区| 国产激情久久老熟女| 日韩成人在线观看一区二区三区| 亚洲成a人片在线一区二区| 欧美一区二区精品小视频在线| 久久久久九九精品影院| 日韩精品中文字幕看吧| 亚洲一码二码三码区别大吗| 女性被躁到高潮视频| 99国产综合亚洲精品| 免费一级毛片在线播放高清视频 | 成年人黄色毛片网站| 亚洲专区国产一区二区| 麻豆av在线久日| 757午夜福利合集在线观看| 国产精品av久久久久免费| 国产成人免费无遮挡视频| 天堂动漫精品| 黄片播放在线免费| 99国产精品免费福利视频| 久久久久精品国产欧美久久久| 午夜免费成人在线视频| 欧美日韩一级在线毛片| 国产高清视频在线播放一区| 久久香蕉激情| 亚洲人成网站在线播放欧美日韩| 在线观看午夜福利视频| 国产乱人伦免费视频| 中文字幕另类日韩欧美亚洲嫩草| 欧美人与性动交α欧美软件| 51午夜福利影视在线观看| 黑人操中国人逼视频| av有码第一页| 看片在线看免费视频| 亚洲熟妇中文字幕五十中出 | 国产一区二区激情短视频| 久久人妻av系列| 国产av一区二区精品久久| 亚洲欧美精品综合久久99| 亚洲成人精品中文字幕电影 | 最新美女视频免费是黄的| 国产精品香港三级国产av潘金莲| 亚洲一区高清亚洲精品| 丁香欧美五月| 91麻豆av在线| 亚洲精品久久成人aⅴ小说| 丝袜人妻中文字幕| 成人特级黄色片久久久久久久| 久久天躁狠狠躁夜夜2o2o| 老熟妇乱子伦视频在线观看| 一级片免费观看大全| 热99国产精品久久久久久7| 叶爱在线成人免费视频播放| 中文字幕精品免费在线观看视频| 久久久精品欧美日韩精品| 亚洲精品av麻豆狂野| 99国产精品免费福利视频| 久久人人爽av亚洲精品天堂| 国产精品二区激情视频| 精品国内亚洲2022精品成人| 成人免费观看视频高清| 看黄色毛片网站| 国产免费现黄频在线看| 国产亚洲精品一区二区www| 女性生殖器流出的白浆| 精品国产国语对白av| 色综合站精品国产| 精品国产国语对白av| 亚洲av电影在线进入| 午夜日韩欧美国产| 91av网站免费观看| 亚洲国产精品合色在线| 亚洲黑人精品在线| 麻豆成人av在线观看| 亚洲精华国产精华精| 亚洲专区国产一区二区| 男人的好看免费观看在线视频 | 精品久久久久久电影网| 精品人妻1区二区| 18禁黄网站禁片午夜丰满| ponron亚洲| 一级作爱视频免费观看| 男人舔女人的私密视频| 很黄的视频免费| 亚洲伊人色综图| 日韩一卡2卡3卡4卡2021年| 黑人巨大精品欧美一区二区蜜桃| 国产区一区二久久| 巨乳人妻的诱惑在线观看| 老司机福利观看| 男人舔女人下体高潮全视频| 亚洲欧洲精品一区二区精品久久久| 国产欧美日韩一区二区三| 黑人猛操日本美女一级片| 男女做爰动态图高潮gif福利片 | 国产精品电影一区二区三区| 一级a爱片免费观看的视频| 1024视频免费在线观看| 美女福利国产在线| 国产不卡一卡二| 精品熟女少妇八av免费久了| 成年版毛片免费区| 午夜福利免费观看在线| 最新美女视频免费是黄的| 亚洲欧美日韩无卡精品| 久99久视频精品免费| 久久国产精品影院| 日韩欧美免费精品| 黑人欧美特级aaaaaa片| 国产真人三级小视频在线观看| 真人一进一出gif抽搐免费| 亚洲午夜精品一区,二区,三区| 久久久久久久午夜电影 | 精品人妻在线不人妻| 国产精品 欧美亚洲| 久久精品aⅴ一区二区三区四区| 久久久国产一区二区| 久久亚洲精品不卡| 精品日产1卡2卡| 午夜影院日韩av| 精品福利永久在线观看| 日韩av在线大香蕉| 久久久久精品国产欧美久久久| 波多野结衣高清无吗| 亚洲人成电影观看| 高清欧美精品videossex| 欧美黑人欧美精品刺激| 欧美成人免费av一区二区三区| 亚洲专区中文字幕在线| 一区二区三区精品91| 欧美日韩瑟瑟在线播放| 露出奶头的视频| 怎么达到女性高潮| 日韩欧美一区视频在线观看| 在线观看免费午夜福利视频| 亚洲中文字幕日韩| 亚洲av第一区精品v没综合| 一区二区三区国产精品乱码| 老汉色av国产亚洲站长工具| 欧美中文综合在线视频| 悠悠久久av| 国产成人精品无人区| 香蕉久久夜色| 极品教师在线免费播放| av电影中文网址| 女生性感内裤真人,穿戴方法视频| 多毛熟女@视频| 欧美日本亚洲视频在线播放| 久久九九热精品免费| 亚洲五月色婷婷综合| av网站免费在线观看视频| 在线观看免费视频日本深夜| 99精品欧美一区二区三区四区| xxx96com| 亚洲成av片中文字幕在线观看| 亚洲欧洲精品一区二区精品久久久| 国产xxxxx性猛交| 99久久精品国产亚洲精品| 黄色 视频免费看| 日韩高清综合在线| 亚洲自偷自拍图片 自拍| 日韩三级视频一区二区三区| 黄色毛片三级朝国网站| 欧美激情极品国产一区二区三区| 亚洲精品国产色婷婷电影| 美女大奶头视频| 欧美中文日本在线观看视频| 老熟妇仑乱视频hdxx| 国产午夜精品久久久久久| 美女福利国产在线| 天堂√8在线中文| 久久热在线av| 88av欧美| 久久人妻av系列| 国产av一区二区精品久久| 成熟少妇高潮喷水视频| 国产成人系列免费观看| 夜夜夜夜夜久久久久| 亚洲美女黄片视频| e午夜精品久久久久久久| 亚洲成人精品中文字幕电影 | 国产亚洲欧美98| 亚洲av成人不卡在线观看播放网| a在线观看视频网站| 国产精品99久久99久久久不卡| 国产精品久久视频播放| 天堂俺去俺来也www色官网| 亚洲黑人精品在线| 免费日韩欧美在线观看| 日韩欧美免费精品| 亚洲一区二区三区不卡视频| 国产精品日韩av在线免费观看 | 国产1区2区3区精品| 十八禁网站免费在线| 成人18禁在线播放| 在线观看一区二区三区激情| 亚洲avbb在线观看| 久久久水蜜桃国产精品网| av电影中文网址| 免费看十八禁软件| 99久久人妻综合| 亚洲男人的天堂狠狠| 长腿黑丝高跟| 不卡av一区二区三区| 桃红色精品国产亚洲av| av天堂在线播放| 国产成人啪精品午夜网站| 亚洲av成人av| 两性午夜刺激爽爽歪歪视频在线观看 | 精品无人区乱码1区二区| 日本欧美视频一区| 高潮久久久久久久久久久不卡| 露出奶头的视频| 国产精品1区2区在线观看.| 99在线视频只有这里精品首页| 天天躁狠狠躁夜夜躁狠狠躁| 91大片在线观看| 日韩视频一区二区在线观看| 亚洲精品成人av观看孕妇| 国产国语露脸激情在线看| avwww免费| 国产激情欧美一区二区| 男女下面插进去视频免费观看| 国产一区二区三区视频了| 十分钟在线观看高清视频www| 亚洲视频免费观看视频| 咕卡用的链子| 国产精品久久视频播放| 久久久久亚洲av毛片大全| √禁漫天堂资源中文www| av有码第一页| 国产精品1区2区在线观看.| 久99久视频精品免费| 男人舔女人下体高潮全视频| 国产激情欧美一区二区| 久久精品国产亚洲av高清一级| 色哟哟哟哟哟哟| 无人区码免费观看不卡| 丰满的人妻完整版| 9191精品国产免费久久| 中国美女看黄片| 精品人妻1区二区| 级片在线观看| 国内毛片毛片毛片毛片毛片| 一区二区三区激情视频| 女人被狂操c到高潮| 日韩欧美三级三区| 老司机深夜福利视频在线观看| 久久性视频一级片| 亚洲第一av免费看| 国产激情欧美一区二区| 老鸭窝网址在线观看| 999久久久国产精品视频| 多毛熟女@视频| 淫秽高清视频在线观看| 亚洲欧美激情在线| 国产单亲对白刺激| 亚洲精品美女久久av网站| 亚洲国产精品合色在线| 国产欧美日韩综合在线一区二区| 久久精品国产亚洲av香蕉五月| 久久久久久久久中文| 这个男人来自地球电影免费观看| 日本五十路高清| 中文字幕最新亚洲高清| 欧美日韩亚洲综合一区二区三区_| 日韩国内少妇激情av| 亚洲国产欧美一区二区综合| 女性被躁到高潮视频| 午夜福利在线免费观看网站| 亚洲中文字幕日韩| 国产精品偷伦视频观看了| 午夜视频精品福利| 精品一区二区三区四区五区乱码| 男人舔女人的私密视频| 日本wwww免费看| 天天影视国产精品| 午夜久久久在线观看| 亚洲激情在线av| 黄片播放在线免费| 国产亚洲欧美在线一区二区| 看片在线看免费视频| 久久人妻熟女aⅴ| 亚洲av五月六月丁香网| 久久精品91无色码中文字幕| 999精品在线视频| 欧美日韩福利视频一区二区| 日韩中文字幕欧美一区二区| 麻豆国产av国片精品| 国产亚洲精品第一综合不卡| 免费久久久久久久精品成人欧美视频| 亚洲精品久久成人aⅴ小说| 在线播放国产精品三级| 两个人免费观看高清视频| 国产在线精品亚洲第一网站| 99在线人妻在线中文字幕| 香蕉久久夜色| 久久99一区二区三区| 国产视频一区二区在线看| 欧美人与性动交α欧美精品济南到| 国产精品影院久久| 老司机福利观看| 欧美黄色片欧美黄色片| 午夜日韩欧美国产| 最近最新中文字幕大全免费视频| 侵犯人妻中文字幕一二三四区| tocl精华| 久久欧美精品欧美久久欧美| 成人亚洲精品av一区二区 | 人成视频在线观看免费观看| 一边摸一边做爽爽视频免费| 操出白浆在线播放| 在线视频色国产色| 久久久久精品国产欧美久久久| 成年人免费黄色播放视频| 香蕉久久夜色| 亚洲一区二区三区欧美精品| 不卡一级毛片| 日本撒尿小便嘘嘘汇集6| 亚洲精品久久成人aⅴ小说| 亚洲在线自拍视频| 亚洲七黄色美女视频| 亚洲av成人不卡在线观看播放网| 黑人欧美特级aaaaaa片| 母亲3免费完整高清在线观看| 国产三级在线视频| 中文字幕av电影在线播放|