• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal estimation of the amplitude of signal with known frequency in the presence of thermal noise*

    2019-11-06 00:43:22JieLuo羅杰JunKe柯俊YiChuanLiu柳一川XiangLiZhang張祥莉WeiMingYin殷蔚明andChengGangShao邵成剛
    Chinese Physics B 2019年10期
    關(guān)鍵詞:一川羅杰

    Jie Luo(羅杰),Jun Ke(柯俊),Yi-Chuan Liu(柳一川),Xiang-Li Zhang(張祥莉),Wei-Ming Yin(殷蔚明),and Cheng-Gang Shao(邵成剛)

    1School of Mechanical Engineering and Electronic Information,China University of Geosciences,Wuhan 430074,China

    2MOE Key Laboratory of Fundamental Physical Quantities Measurement,School of Physics,Huazhong University of Science and Technology(HUST),Wuhan 430074,China

    Keywords:optimal amplitude estimation,thermal noise,torsion pendulum,measurement time

    1.Introduction

    The torsion pendulum is an extremely sensitive physical measurement device of detecting weak forces,which has been used in many gravitational experiments,[1]such as tests of Newtonian gravitational inverse square law,[2,3]tests of weak equivalence principal,[4]tests of Lorentz invariance,[5]etc.The most significant character in these experiments is that the frequency of the signal to be detected is known accurately.[6]Therefore,the accurate estimation of the amplitude of signal with known frequency is a crucial step in obtaining the final experimental result.

    The variance of estimating the amplitude can be contributed by a variety of noise sources,such as thermal noise,local gravitational gradients disturbances,microseismic noise,and so on,[7]among which the thermal noise sets the most fundamental limit to the estimation of the amplitude of the signal with the highest precision.[8]Thermal noise originates from the Brownian motion,[9,10]where the limit of it with torsion pendulum has been long known and extensively studied.[7,11,12]Braginsky and Manukin discussed the situation when the period of the applied torque is equal to the natural period of the pendulum.[12]Chen and Cook discussed the situation when the applied torque is constant in time.[7]According to fluctuation–dissipation theorem or Nyquist theorem,[13–15]the least detectable torque in the presence of the thermal noise can be written as

    where kBis Boltzmann’s constant,T is the absolute temperature,I is the moment of inertia of the pendulum,ω0is the free resonance frequency,Q is the quality factor,and tmis the measurement time.The formula can be regarded as the minimum variance of estimating the amplitude of a periodic torque due to thermal noise.However,the result is only theoretical and we have to linke the thermal noise limit with the data processing method on amplitude estimation.[14]There are many methods to estimate the amplitude of signal with known frequency,such as the fast Fourier transform method,the nonlinear leastsquare fitting method,and the correlation method.[16–18]

    Different methods can estimate the amplitude with different accuracies.[14]We have proved that the correlation method and the nonlinear least-square fitting method are better than others,which have been widely used in subtle signal analysis.[6,14]It has to be mentioned that the correlation method is equivalent to the nonlinear least-square fitting method for amplitude estimation.[2,3,14]By using the correlation method,we found that the variance can meet the limit of Eq.(1)only when the measurement time is much longer than the relaxation time of the torsion pendulum. However it is difficult to achieve for a high-Q torsion pendulum and the system would not be stable over the long times of observation.[7]In pursuit of higher precision and the convenience of experimental observation,the variance of estimation method must be improved when the measurement time is limited.

    In this paper,an optimal estimation method to determine the amplitude of the signal with known frequency in the presence of thermal noise is proposed.Considering that the thermal driving torque is white noise,we first derived the optimal estimation formula for white noise by using the maximum likelihood estimation. To obtain the optimal formula for thermal noise,we use the equation-of-motion filter operator to transform the observable to the torque basis.Then,a transformation back into the displacement representation can give the result.[19]In the gravitational experiments conducted by Huazhong University of Science and Technology(HUST)group,the measurements are often made at levels near or below the thermal noise floor of instruments.[20–22]We finally apply the optimal estimation method to process a typical experimental data set of obtaining the amplitude of the gravitational calibration signal of testing the Newtonian gravitational inverse square law(ISL).The results are in agreement with of our model and prove that the new method is superior even for a real physical system,which is instructive and significant to the experimental design with torsion pendulum.

    2.The least detectable torque

    Considering the case where a mass with moment of inertia I is suspended in the Earth’s gravitational field by a fiber.The angular fluctuations,subject to the velocity damping.[14]Furthermore,there is a sinusoidal torque acting on the pendulum.Then the equation of motion of the pendulum can be expressed as

    where b is the damping coefficient,k is the torsional constant of the fiber,Tth(t)is the thermal fluctuation torque,and Ts(t)is the applied torque on the torsion pendulum. According to fluctuation–dissipation theorem,[15]the thermal fluctuation torque has zero expectationand the autocovariance operator is[14]

    where the mean value denoted byis an ensemble mean.The mean-square spectral density of the fluctuation is,therefore,[14]

    According to the Wiener–Khinchin theorem and contour integration methods,the autocorrelation function Rθ(τ)will be[23]

    where ω1is the resonance frequency,which is defined by=and τ=t1?t2represents the lag time.The applied torque is assumed to be Ts(t)=Ccos(ωst+?s).In actual experiment,?scan be zero by selecting the suitable initial phase.The applied torque can be rewritten as Ts(t)=Ccosωst.In experiment,two timescales are particularly discussed:and.The first represents the situation when the system reaches the equilibrium.The second represents the commonest situation for the pendulum.[7]

    where ωk=2πk/tm,Ak,Bkcan be determined by

    We adopt the same criterion used by Braginsky for a signal to be detectable in any observation at time t:[12]Substituting Eq.(3)into Eq.(8),we can obtain

    Comparing Eq.(9)with Ts(t)at the same frequency and same phase,the least detectable torque can be determined as

    It can be seen that the difference between the free resonance frequency of the torsion pendulum and the frequency of the applied torque is an important factor for determining the least detectable torque.By satisfying the following equation:the first term in Eq.(11)can be distinguish from the second term in the frequency domain.So equation(10)also can be used in this situation.The result proves that equation(10)is valid in any circumstances for placing the signal frequency different from ω1.According to Eqs.(6)and(11),the least detectable amplitude of the displacement of the pendulum to the applied torque can be obtained as

    The formula also can be regarded as the minimum variance of estimating the amplitude of a periodic displacement due to thermal noise.

    3.The correlation method

    Here,we will calculate the variance of amplitude estimation due to thermal noise with the correlation method.However,there are something we must consider firstly. For the experimental data,the free torsional oscillation is an important component of the pendulum’s twist. The free torsional oscillation can be written as:

    which has the same resonance frequency as the second term in Eq.(11).Because the target of the experiment is to obtain the amplitude of the sinusoidal signal with known frequency ωs,we applied a digital filter to remove the sinusoidal signal of the resonance frequency before proceeding with the analysis.The selection of the digital filter will be discussed in Section 5.In this case,the filtered data sequence becomes

    Now,we can extract the amplitude p by correlation method.Put bs=pcosφ,as=psinφ,tm=mTs,the estimation can be expressed as

    Based on thermal noise model,we can obtain the variance according the following equations

    Substituting Eq.(3)into Eq.(15),we have

    where

    For telling the difference between the square of Eq.(16)and Eq.(12),we select the typical experimental parameter of HUST.In this case,Tsis set to 400 s,I ≈6.97×10?5kg·m2,T0≈586 s,the quality factor Q is about 2268,kBis 1.38×10?23J/K,and the absolute temperature T is 300 K.The relaxation time of the torsion pendulum can be calculated τ*=2/β=4×105s.Figure 1 shows the variance of the correlation method as a function of the measurement time.We state the measurement time in unit of signal periods,Note that this variance does not decrease monotonically with increasing measurement time tm.It is apparent that the correlation method is not the optimal method because the line(cycle)is not completely consistent with the line(square),especially when the number of signal periods m<104(tm=4×106s).The gap between the correlation method and thermal limit is caused by the difference in statistical characters of thermal noise and white noise for the torsion pendulum.This is what we expect to fill with by using an optimal method with a short time interval.

    Fig.1.The variance of amplitude estimation with the correlation method as a function of m:(a)the variance of estimating the cosine component,(b)the variance of estimating the sine component.The line(circle)is fitting to the square of Eq.(16),the line(square)is to Eq.(12).

    4.The optimal amplitude estimation

    On the one hand,the estimation of p in Eq.(13)can be regarded as a single-parameter estimation problem since the phase φ is known.Therefore,the maximum likelihood estimation method can be applied to solve this problem.On the other hand,the thermal fluctuation torque is a white noise process and the autocovariance operator Eq.(3)is diagonal.Considering the above two points,we apply the equation-of-motion filter operator ? to obtain the optimal estimation for thermal noise.Firstly,we must derive the optimal estimation formula for white noise.

    4.1.The optimal amplitude estimation for white noise

    Substituting θth(t)by θwhite(t),note that θwhite(t)has the same statistical characters as the thermal fluctuation torque:

    Equation(13)can be rewritten as

    where θs(t,p)=pcos(ωst+φ)and t ∈[0,tm].The likelihood function of θn(t)is

    By making the first derivative function of the logarithm of Eq.(18),the maximum likelihood estimation of p can be obtained by

    Generally,we often use the Cramér–Rao lower bound(CRLB)as the minimum variance of the unbiased estimator.[18]To obtain the CRLB of the maximum likelihood estimator in the presence of white noise,we make the second derivation of Eq.(18)and calculate the expectation of it. The CRLB of this method can be written in the form

    Substituting θs(t,p)=pcos(ωst+φ)into Eq.(19),we have

    which has the same derivation as the correlation method.The expectation and variance ofcan be calculated asandrespectively.In addition,we found that the variance ofis in agreement with the result of Eq.(20).It means that maximum likelihood estimation method and the correlation method are unbiased amplitude estimator with the minimum variance for white noise.For the convenience of further calculation,we give the maximum likelihood estimating function

    where Θ(t;0,tm)=u(t)?u(t ?tm)and u(t)is the step function.

    4.2.The optimal amplitude estimation for thermal noise

    Therefore,equation(21)can be rewritten when working in the torque basis

    It has to be mentioned that the transformation to the torque basis removes the information about the boundary conditions.[19]This will be considered later. Definingand taking the integration by parts,we have

    where

    The maximum likelihood estimating function in the torque basis can be calculated as

    where u(t)is the step function,δ(t)is the impulse function and δ′(t)is the first derivative of the impulse function.Inserting the result into Eq.(25)leads to

    Therefore,we can obtain the final form of Eq.(24)

    The relative variance also can be calculated in the torque basis.Equation(28)can be rewritten as

    where

    with the variance

    Now we discuss the boundary conditions as mentioned before. Because the thermal fluctuation torque that acts on a torsion pendulum is uncorrelated for two different times,the initial position,initial velocity,and the acting forces completely determine the twist of the pendulum.But the amplitude is different from the displacement in Ref.[19]the initial position and initial velocity contain no information about it.So the maximum likelihood estimator and the relative variance are Eq.(28)and Eq.(31),respectively.Note that the variance of the estimator has come to the CRLB,which means that the estimator is optimal. Furthermore,equation(31)equals Eq.(12),which is an important check for the formula of the least detectable torque.

    However,equation(28)cannot be used for experimental data directly. By cutting the measurement time into m periods and further calculation,we can extract the magnitudes of the coefficients ajand bj(j=1,2,...,m)at the j-th period according to the following equations:

    where

    with the uncertainties of ajand bj

    Then the final uncertainties of p can be obtained by

    It can be seen that the variance also come to limit by the above procedure.Different from the correlation method,the maximum likelihood estimator can meet the minimum variance without limitation of the measurement time. To be stressed,the thermal noise must be the leading noise.To validate the expression derived,we first performed the numerical simulation.The numerical results is in good agreement with our theoretical result.Then,we apply the method to process an experimental data set on the basis of the numerical simulation.

    5.Application

    We will apply our method to process the experimental data in determining the amplitude of the gravitational calibration signal of tesings the ISL by HUST.In the experiment,the level of noise is greatly reduced with a good experimental platform.The measurements are made at levels near the thermal noise floor of instruments.The parameters are the same as mentioned in Section 3.Figure 2(a)shows the time-domain figure of the raw signal with the sample interval of ?t=1 s.The length of the raw data is about 23 h. The corresponding power spectrum density(PSD)of the raw data is shown in Fig.2(b),we can see that the low frequency noise is close to the thermal noise limit of the pendulum.The most significant features are that the raw data have a monotonic drift and the free torsional oscillation.

    Fig.2.(a)The raw data of determining the amplitude of the gravitational calibration signal.(b)The solid curve is the corresponding PSD of the raw data,and the dashed line is using the mean-square spectral density of the thermal fluctuation Eq.(4). The data are collected continuously from 17 November 2014 to 18 November 2014.

    Firstly,we suppressed the monotonic drift by using a quadratic function fitting,which can be realized with a mathematical algorithm.Then,we applied a digital filter to remove the free torsional oscillation.The“notch”filter is adding the data to itself at one half oscillation period,which was proposed by the E?t–Wash group.[24]It can be written as

    where θ(ti)is the series of the sample data and T0is the torsional period.Figure 3(a)shows the filtered data.The corresponding PSD of the filtered data is shown in Fig.3(b),we can see that the torsional period of the pendulum and the monotonic drift have been suppressed greatly.Following the above steps,the data can be written as Eq.(13),so our method can be applied for the filtered data.By separating the filtered data into m signal periods,we can extract the magnitudes of the coefficients a j and bj(j=1,2,...,m)at the j-th period with the correlation method Eq.(14)and the optimal estimator Eq.(32).The statistical errors of the sequences{aj}and{bj},respectively,expressed by whereandare the mean value of the sequences{aj}and{bj},respectively.The amplitude of the calibration signal p and its uncertainty can be expressed as follows:

    Fig.3.(a)The data of suppressing the free torsion oscillation.(b)The solid curve is the corresponding PSD of the filtered data,and the dashed line is fitting to Eq.(4).

    After the above steps,we can obtain the uncertainty of different estimators as a function of the sample time.Figure 4 shows the comparison of the uncertainty of the optimal estimator with that of the correlation estimator and the thermal limit,obtained by performing Eqs.(12)and(37).The thermal limit can be regarded as the criterion of selecting the best estimator. From Fig.4,we can see that the uncertainty in the optimal estimator has been improved than the correlation estimator and the uncertainty in the optimal estimator changes more smoothly as the sample time is decreasing.The corresponding measurement time and uncertainty are listed in Table 1. As expected,the measurement time with the optimal method has been reduced half than before for the same uncertainty.These results prove that our method is better than the correlation method in determining the amplitudes,especially when the observed time in the experiment is limited.Hence,the results of processing experimental data are in agreement with the expectation of our model and the difference in statistical characters of thermal noise and white noise for the torsion pendulum is worth considering in pursuit of higher precision.

    Fig.4.A plot of the uncertainty of the thermal limit(circle),the correlation method(diamond),and the optimal method(square)as a function of sample time in processing the filtered data.The optimal estimator changes smoothly as the sample time is decreasing.The gap between the optimal estimator and thermal limit is almost the same for different sample time.

    Table 1.The comparison of the uncertainty with two different methods in our experiment and the thermal limit.It also shows the corresponding measurement time and the number of the signal periods.

    6.Summary

    In the gravitational experiments with torsion pendulum,by using the correlation method based on the Fourier transform,we found that this variance does not decrease monotonically with increasing measurement time tm.Furthermore,there exists the gap which is caused by the difference in statistical characters of thermal noise and white noise for the torsion pendulum.In pursuit of higher precision and a shorter measurement time,we must fill with the gap between the method and the thermal noise limit.In this paper,we proposed an optimal method based on the maximum likelihood estimation and the equation-of-motion filter operator. We have shown that,for thermal noise,the variance of the optimal method can reach the thermal limit of the torsion pendulum without limitation of the measurement time.In Section 5,the results of processing experimental data show that the optimal method can improve the precision of determining the amplitude of signal. Especially,if the observed time in the experiment is limited,the advantage of the new method will be more prominent comparatively. Namely,the measurement time with our method can be reduced about half than before for the same uncertainty,which means that there is no direct benefit from a longer measurement for thermal-noise-limited experiments where the measurements meet the design requirements.[19]This result has implications for the experimental design and for the reduction of measurement time.However,it must be point out that the optimal estimator is not completely consistent with the thermal limit in dealing with the data sequence.Because the noise background of a physical system is generally a superposition of several noise processes,[19]such as the twist angle readout noise,the rotation noise,and so on. The statistical characteristics of the noise have not been fully understood so far. In addition,there are several systematic effects that we have not considered,like fiber inelasticity or nonlinearity and linear fiber drift.These will be fully discussed in a subsequent article.

    猜你喜歡
    一川羅杰
    月亮高高掉進水里頭
    歌海(2023年2期)2023-05-30 05:21:15
    山那邊
    歌海(2022年1期)2022-03-29 21:39:55
    消防員的一天
    胡一川 南澳島
    對弈
    金山(2020年9期)2020-11-10 07:15:08
    說涇渭
    Rainstorm
    上?!暗犊承W(xué)生”事件嫌犯
    雜文選刊(2018年9期)2018-09-07 01:54:54
    It’s Your Turn,Roger?。á颍┹喌侥懔?,羅杰!
    烤紅薯
    av播播在线观看一区| 国产毛片在线视频| 99视频精品全部免费 在线| 国产精品国产三级专区第一集| 啦啦啦在线观看免费高清www| 99久久综合免费| 亚洲欧美日韩另类电影网站| 欧美变态另类bdsm刘玥| 22中文网久久字幕| 亚洲国产欧美在线一区| 日日摸夜夜添夜夜爱| 国产精品一二三区在线看| 日本欧美视频一区| 日韩欧美 国产精品| 成人国产av品久久久| 一区二区av电影网| 国产av国产精品国产| 水蜜桃什么品种好| 午夜视频国产福利| 2022亚洲国产成人精品| 国产精品三级大全| 日韩亚洲欧美综合| 涩涩av久久男人的天堂| 久久久国产精品麻豆| 深夜a级毛片| 噜噜噜噜噜久久久久久91| 麻豆成人午夜福利视频| 极品少妇高潮喷水抽搐| 国产有黄有色有爽视频| 黑人高潮一二区| 日韩欧美精品免费久久| 丁香六月天网| 午夜福利在线观看免费完整高清在| 色婷婷av一区二区三区视频| 午夜福利影视在线免费观看| 国产色爽女视频免费观看| 黑丝袜美女国产一区| 最新中文字幕久久久久| videossex国产| 自线自在国产av| 国产在线免费精品| 免费播放大片免费观看视频在线观看| 天美传媒精品一区二区| 亚洲人成网站在线播| 精品人妻熟女毛片av久久网站| 日产精品乱码卡一卡2卡三| 多毛熟女@视频| 亚洲国产色片| 少妇被粗大的猛进出69影院 | 欧美一级a爱片免费观看看| 免费观看在线日韩| 国产精品人妻久久久影院| 欧美日韩国产mv在线观看视频| 亚洲图色成人| 午夜福利在线观看免费完整高清在| 97超视频在线观看视频| 国产美女午夜福利| 久久av网站| av在线观看视频网站免费| 伦理电影免费视频| 丰满饥渴人妻一区二区三| 国产精品不卡视频一区二区| 欧美精品一区二区免费开放| 天美传媒精品一区二区| 18禁动态无遮挡网站| 精品视频人人做人人爽| 久久狼人影院| av不卡在线播放| 男人和女人高潮做爰伦理| 亚洲精品成人av观看孕妇| 99热这里只有精品一区| 一级爰片在线观看| 蜜桃在线观看..| .国产精品久久| 男女啪啪激烈高潮av片| 日韩精品有码人妻一区| 午夜久久久在线观看| 男男h啪啪无遮挡| 水蜜桃什么品种好| 九九爱精品视频在线观看| 日韩一区二区视频免费看| 国产黄片美女视频| 成人国产麻豆网| 精品一区在线观看国产| 国产亚洲欧美精品永久| 国产成人精品福利久久| 久久女婷五月综合色啪小说| 成年美女黄网站色视频大全免费 | 久久久亚洲精品成人影院| 成人黄色视频免费在线看| 黑人高潮一二区| 国产黄片视频在线免费观看| 秋霞在线观看毛片| 一级毛片aaaaaa免费看小| 成年美女黄网站色视频大全免费 | 精品久久久久久久久亚洲| 欧美精品国产亚洲| 少妇猛男粗大的猛烈进出视频| 简卡轻食公司| 亚洲国产欧美日韩在线播放 | 桃花免费在线播放| 国产高清国产精品国产三级| 午夜福利影视在线免费观看| 国产无遮挡羞羞视频在线观看| 少妇精品久久久久久久| 日本黄色日本黄色录像| 三级国产精品欧美在线观看| 婷婷色综合大香蕉| 九色成人免费人妻av| 日日摸夜夜添夜夜爱| 国产无遮挡羞羞视频在线观看| 人妻制服诱惑在线中文字幕| 欧美精品国产亚洲| 在线观看www视频免费| 国产在线视频一区二区| 十分钟在线观看高清视频www | 亚洲国产日韩一区二区| 各种免费的搞黄视频| 精品一区二区三区视频在线| 一个人看视频在线观看www免费| 又大又黄又爽视频免费| 国产精品久久久久久精品电影小说| h视频一区二区三区| 亚洲av中文av极速乱| 美女xxoo啪啪120秒动态图| 男人狂女人下面高潮的视频| 国产熟女欧美一区二区| 少妇被粗大猛烈的视频| 欧美另类一区| 嫩草影院入口| 国产黄色视频一区二区在线观看| 久久精品国产鲁丝片午夜精品| 国产成人一区二区在线| 寂寞人妻少妇视频99o| 精品国产乱码久久久久久小说| 欧美国产精品一级二级三级 | 亚洲av二区三区四区| 日本与韩国留学比较| 国产欧美另类精品又又久久亚洲欧美| 久久 成人 亚洲| 国产中年淑女户外野战色| tube8黄色片| 色94色欧美一区二区| 亚洲国产欧美在线一区| 国产视频内射| 女人久久www免费人成看片| 久久国产乱子免费精品| 一级毛片久久久久久久久女| 午夜av观看不卡| 日韩av不卡免费在线播放| 丰满人妻一区二区三区视频av| 精品久久久久久久久av| 亚洲成人手机| 香蕉精品网在线| 国产精品久久久久久久久免| 乱码一卡2卡4卡精品| 亚洲av成人精品一区久久| 大片免费播放器 马上看| 熟女人妻精品中文字幕| 精品亚洲成a人片在线观看| 性高湖久久久久久久久免费观看| 亚洲第一区二区三区不卡| av网站免费在线观看视频| 26uuu在线亚洲综合色| 伦理电影免费视频| 老司机亚洲免费影院| 又爽又黄a免费视频| 国产成人精品福利久久| 国产精品偷伦视频观看了| 一级毛片电影观看| 国产亚洲精品久久久com| 亚洲美女搞黄在线观看| 久久久久久久久久成人| 亚洲一区二区三区欧美精品| 男女边吃奶边做爰视频| 王馨瑶露胸无遮挡在线观看| 国产中年淑女户外野战色| 观看免费一级毛片| 一个人看视频在线观看www免费| 男女啪啪激烈高潮av片| 亚州av有码| 亚洲综合精品二区| 少妇被粗大的猛进出69影院 | 久久人人爽人人爽人人片va| 亚洲国产成人一精品久久久| 国产精品久久久久久久电影| 日本猛色少妇xxxxx猛交久久| 少妇人妻精品综合一区二区| 99re6热这里在线精品视频| 免费播放大片免费观看视频在线观看| 精品人妻熟女av久视频| 国产白丝娇喘喷水9色精品| 国产亚洲5aaaaa淫片| 免费观看性生交大片5| 老熟女久久久| 成人毛片a级毛片在线播放| 亚洲精品国产色婷婷电影| 91精品国产九色| 成人亚洲欧美一区二区av| 如日韩欧美国产精品一区二区三区 | 国产在线视频一区二区| 麻豆成人av视频| 免费观看的影片在线观看| 内地一区二区视频在线| www.av在线官网国产| 欧美bdsm另类| 少妇裸体淫交视频免费看高清| 熟女人妻精品中文字幕| 久久这里有精品视频免费| 两个人的视频大全免费| 九色成人免费人妻av| 熟女人妻精品中文字幕| 久久国产精品男人的天堂亚洲 | 色5月婷婷丁香| 国产一区二区在线观看av| 国产 精品1| 亚洲欧美日韩东京热| 国产男人的电影天堂91| 18禁动态无遮挡网站| 边亲边吃奶的免费视频| 18禁在线无遮挡免费观看视频| 国产伦精品一区二区三区四那| 免费播放大片免费观看视频在线观看| 少妇人妻精品综合一区二区| 大话2 男鬼变身卡| 九色成人免费人妻av| 一级毛片我不卡| 91久久精品国产一区二区三区| 精品卡一卡二卡四卡免费| 欧美成人精品欧美一级黄| 老司机影院毛片| 99久久精品热视频| 精品国产国语对白av| 欧美精品高潮呻吟av久久| 国产熟女欧美一区二区| 久久久久视频综合| 亚洲欧美中文字幕日韩二区| 97超碰精品成人国产| 国产精品福利在线免费观看| 久久99热这里只频精品6学生| 欧美日韩亚洲高清精品| 高清视频免费观看一区二区| 亚洲精品自拍成人| 亚洲av电影在线观看一区二区三区| 最近的中文字幕免费完整| 人妻 亚洲 视频| 国产黄片美女视频| 久久久久久伊人网av| 亚洲图色成人| 一级毛片aaaaaa免费看小| 国产精品国产三级专区第一集| 免费观看性生交大片5| 乱人伦中国视频| 国产成人精品无人区| 久久影院123| 中文字幕制服av| 日本黄大片高清| 18禁在线播放成人免费| 99久久人妻综合| 高清午夜精品一区二区三区| 免费久久久久久久精品成人欧美视频 | 久久99热6这里只有精品| 亚洲欧美日韩东京热| 一本—道久久a久久精品蜜桃钙片| 人妻少妇偷人精品九色| 国产精品人妻久久久久久| 成人国产麻豆网| 国产 精品1| 不卡视频在线观看欧美| 精品久久久久久电影网| 五月天丁香电影| 18+在线观看网站| 亚洲精品亚洲一区二区| 男女国产视频网站| 人妻少妇偷人精品九色| 在线观看免费视频网站a站| 永久免费av网站大全| 精品一区在线观看国产| 纯流量卡能插随身wifi吗| 夫妻性生交免费视频一级片| 最近最新中文字幕免费大全7| 成年人午夜在线观看视频| 18+在线观看网站| 亚洲天堂av无毛| 精品久久久精品久久久| 国产淫语在线视频| 亚洲精品色激情综合| 久久久久久人妻| 最新的欧美精品一区二区| 日本欧美国产在线视频| 国产熟女欧美一区二区| 91久久精品国产一区二区成人| 国产精品不卡视频一区二区| av一本久久久久| 亚洲第一av免费看| 草草在线视频免费看| 免费看av在线观看网站| 亚洲精品,欧美精品| 黄色视频在线播放观看不卡| 最近中文字幕2019免费版| 91在线精品国自产拍蜜月| 国产精品人妻久久久久久| 亚洲国产欧美在线一区| 精品亚洲成国产av| 九九久久精品国产亚洲av麻豆| 热re99久久精品国产66热6| 国内少妇人妻偷人精品xxx网站| 精品国产国语对白av| 人妻制服诱惑在线中文字幕| 亚洲国产精品一区三区| 久久精品熟女亚洲av麻豆精品| 如日韩欧美国产精品一区二区三区 | 人人妻人人澡人人爽人人夜夜| 久久人人爽人人爽人人片va| 国产精品伦人一区二区| 大话2 男鬼变身卡| 亚洲精品久久午夜乱码| 91成人精品电影| 亚洲av国产av综合av卡| 亚洲色图综合在线观看| 亚洲精品一区蜜桃| 欧美区成人在线视频| 一级毛片我不卡| 亚洲丝袜综合中文字幕| 五月伊人婷婷丁香| 国产日韩欧美亚洲二区| 国产精品偷伦视频观看了| 亚洲国产最新在线播放| 国产伦精品一区二区三区四那| av免费观看日本| 建设人人有责人人尽责人人享有的| 男的添女的下面高潮视频| 国产精品久久久久成人av| 看十八女毛片水多多多| 99久久综合免费| 欧美激情极品国产一区二区三区 | 日本-黄色视频高清免费观看| 一区二区三区免费毛片| 久久国产精品大桥未久av | 大话2 男鬼变身卡| 男人和女人高潮做爰伦理| 国产白丝娇喘喷水9色精品| 天美传媒精品一区二区| 看免费成人av毛片| 观看美女的网站| 91精品一卡2卡3卡4卡| a级毛片免费高清观看在线播放| 久久精品熟女亚洲av麻豆精品| 亚洲av福利一区| 观看免费一级毛片| 久久久久视频综合| 日韩电影二区| 激情五月婷婷亚洲| 色5月婷婷丁香| 中国国产av一级| 亚洲精品一二三| 精品一区在线观看国产| 亚洲国产精品999| 狂野欧美激情性xxxx在线观看| 女人精品久久久久毛片| av线在线观看网站| 亚洲精品亚洲一区二区| 亚洲av福利一区| 成人二区视频| 免费观看在线日韩| a级毛片免费高清观看在线播放| 在线亚洲精品国产二区图片欧美 | 久久婷婷青草| 国产亚洲5aaaaa淫片| 啦啦啦视频在线资源免费观看| 极品少妇高潮喷水抽搐| 国产女主播在线喷水免费视频网站| 日韩强制内射视频| 成人二区视频| 国产av码专区亚洲av| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品成人久久小说| 尾随美女入室| www.色视频.com| 丰满饥渴人妻一区二区三| 免费观看在线日韩| 精品久久国产蜜桃| 欧美一级a爱片免费观看看| 大码成人一级视频| 80岁老熟妇乱子伦牲交| 一级二级三级毛片免费看| 尾随美女入室| 中文字幕av电影在线播放| av有码第一页| 一区二区三区乱码不卡18| 伦理电影大哥的女人| 免费大片18禁| 亚洲中文av在线| 一二三四中文在线观看免费高清| 伦理电影大哥的女人| 亚洲成人手机| 午夜福利在线观看免费完整高清在| 国产精品熟女久久久久浪| 亚洲av日韩在线播放| 女性被躁到高潮视频| 天天操日日干夜夜撸| av女优亚洲男人天堂| 交换朋友夫妻互换小说| 麻豆精品久久久久久蜜桃| 亚洲美女黄色视频免费看| 男人狂女人下面高潮的视频| 亚洲av成人精品一二三区| 特大巨黑吊av在线直播| 久久久午夜欧美精品| 97在线视频观看| 中文字幕av电影在线播放| 少妇的逼水好多| 亚洲怡红院男人天堂| 亚洲不卡免费看| 日韩中字成人| 建设人人有责人人尽责人人享有的| 亚洲精品亚洲一区二区| 久久久久网色| 天堂中文最新版在线下载| 成人无遮挡网站| 久久久久国产网址| 日本爱情动作片www.在线观看| a级一级毛片免费在线观看| 桃花免费在线播放| 99热这里只有精品一区| 亚洲精品,欧美精品| 色婷婷久久久亚洲欧美| 亚洲三级黄色毛片| 亚洲欧美成人综合另类久久久| 国产乱来视频区| 久久久久久久久久久久大奶| 久久国内精品自在自线图片| 国产男女超爽视频在线观看| 久久6这里有精品| 日韩欧美一区视频在线观看 | 国产老妇伦熟女老妇高清| 五月开心婷婷网| 国产综合精华液| 两个人免费观看高清视频 | 国产在线一区二区三区精| 国产一区二区在线观看日韩| 如何舔出高潮| 3wmmmm亚洲av在线观看| 一级av片app| 哪个播放器可以免费观看大片| 日韩一区二区三区影片| 亚洲av中文av极速乱| 精品人妻熟女av久视频| 高清黄色对白视频在线免费看 | 国产av精品麻豆| 美女内射精品一级片tv| 亚洲国产日韩一区二区| 亚洲av中文av极速乱| 有码 亚洲区| 久久久a久久爽久久v久久| 又大又黄又爽视频免费| 色视频www国产| 交换朋友夫妻互换小说| 国产精品久久久久成人av| 精品国产一区二区三区久久久樱花| 日韩欧美精品免费久久| 日韩欧美 国产精品| 久久99热6这里只有精品| 少妇丰满av| 91成人精品电影| 多毛熟女@视频| 国产探花极品一区二区| 亚洲va在线va天堂va国产| 天天操日日干夜夜撸| 99热全是精品| 最新中文字幕久久久久| 欧美一级a爱片免费观看看| 国产亚洲最大av| 一个人看视频在线观看www免费| 91精品国产国语对白视频| 欧美区成人在线视频| 亚洲国产色片| 免费高清在线观看视频在线观看| 高清毛片免费看| 啦啦啦在线观看免费高清www| 熟女av电影| 男男h啪啪无遮挡| 永久网站在线| 久久99热6这里只有精品| 99热国产这里只有精品6| av在线老鸭窝| 国产高清国产精品国产三级| 岛国毛片在线播放| 国内精品宾馆在线| 国产午夜精品久久久久久一区二区三区| 国产深夜福利视频在线观看| 有码 亚洲区| 国产一区二区三区综合在线观看 | 欧美日韩视频高清一区二区三区二| 久久久久久久久久久免费av| 久久国内精品自在自线图片| 在线观看免费日韩欧美大片 | 欧美最新免费一区二区三区| 曰老女人黄片| 3wmmmm亚洲av在线观看| 国产免费又黄又爽又色| 偷拍熟女少妇极品色| 亚洲成色77777| 人妻少妇偷人精品九色| 日韩伦理黄色片| 国产一区有黄有色的免费视频| 亚洲精品国产色婷婷电影| 伦理电影大哥的女人| 精品一区二区三区视频在线| 国产熟女午夜一区二区三区 | 三级国产精品欧美在线观看| 免费看av在线观看网站| 97超视频在线观看视频| 高清视频免费观看一区二区| 中文字幕精品免费在线观看视频 | 三级国产精品欧美在线观看| 免费看日本二区| 亚州av有码| 尾随美女入室| 国产在视频线精品| av播播在线观看一区| 国产亚洲av片在线观看秒播厂| a级毛片免费高清观看在线播放| 女性生殖器流出的白浆| 乱系列少妇在线播放| 日韩伦理黄色片| 国产淫语在线视频| 91久久精品国产一区二区成人| 天天操日日干夜夜撸| 亚洲国产成人一精品久久久| 日韩av免费高清视频| 欧美激情国产日韩精品一区| 最近手机中文字幕大全| 亚洲美女黄色视频免费看| 亚洲国产毛片av蜜桃av| 久久综合国产亚洲精品| 午夜福利在线观看免费完整高清在| 欧美3d第一页| 大码成人一级视频| 日韩,欧美,国产一区二区三区| 2021少妇久久久久久久久久久| 亚洲真实伦在线观看| 91成人精品电影| 国产精品女同一区二区软件| 国产熟女欧美一区二区| 热re99久久精品国产66热6| 97超视频在线观看视频| 亚洲在久久综合| 在线 av 中文字幕| av免费观看日本| 男女无遮挡免费网站观看| 中文字幕av电影在线播放| 22中文网久久字幕| 免费黄网站久久成人精品| 欧美少妇被猛烈插入视频| 久久女婷五月综合色啪小说| 国产日韩欧美视频二区| 女人精品久久久久毛片| 国产精品不卡视频一区二区| 美女cb高潮喷水在线观看| 深夜a级毛片| 亚洲三级黄色毛片| 久久韩国三级中文字幕| freevideosex欧美| 丝袜喷水一区| 亚洲精品久久午夜乱码| 亚洲av欧美aⅴ国产| 九九爱精品视频在线观看| 免费av中文字幕在线| av天堂中文字幕网| 国产乱来视频区| 久久久久视频综合| 国产欧美亚洲国产| 一本一本综合久久| 国产极品天堂在线| 亚洲精品中文字幕在线视频 | 能在线免费看毛片的网站| 男女免费视频国产| 亚洲精品第二区| 亚洲欧美精品专区久久| 国产爽快片一区二区三区| 黑人高潮一二区| 欧美高清成人免费视频www| 高清不卡的av网站| 亚洲成人av在线免费| 成年人午夜在线观看视频| 在线观看av片永久免费下载| 国产亚洲一区二区精品| 亚洲美女视频黄频| 在线观看一区二区三区激情| 国产精品免费大片| 国产成人午夜福利电影在线观看| 一级毛片久久久久久久久女| 欧美激情极品国产一区二区三区 | 国产成人精品无人区| 一级黄片播放器| 国产一区二区在线观看日韩| 91成人精品电影| 欧美少妇被猛烈插入视频| 九九在线视频观看精品| 超碰97精品在线观看| 大片电影免费在线观看免费| 欧美最新免费一区二区三区| 另类精品久久| 国产精品三级大全| 最近中文字幕2019免费版| 91精品国产九色| av一本久久久久| 欧美xxⅹ黑人| 高清毛片免费看| 一级毛片久久久久久久久女| 中文天堂在线官网| 乱码一卡2卡4卡精品| 亚洲欧美日韩卡通动漫| 亚洲精品乱码久久久久久按摩|