• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electronic structure of molecular beam epitaxy grown 1T-MoTe2 film and strain effect?

    2019-11-06 00:46:22XueZhou周雪ZeyuJiang姜澤禹KenanZhang張柯楠WeiYao姚維MingzheYan顏明哲HongyunZhang張紅云WenhuiDuan段文暉andShuyunZhou周樹(shù)云
    Chinese Physics B 2019年10期
    關(guān)鍵詞:明哲

    Xue Zhou(周雪), Zeyu Jiang(姜澤禹), Kenan Zhang(張柯楠), Wei Yao(姚維),Mingzhe Yan(顏明哲), Hongyun Zhang(張紅云), Wenhui Duan(段文暉), and Shuyun Zhou(周樹(shù)云),2,?

    1State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics,Tsinghua University,Beijing 100084,China

    2Collaborative Innovation Center of Quantum Matter,Beijing 100084,China

    Keywords:quantum spin Hall effect,1T-MoTe2,molecular beam epitaxy(MBE),transition metal dichalcogenides(TMDCs)

    1.Introduction

    Topological materials have provided an important platform for exploring new physics and realizing novel quantum phenomena.[1,2]For example, quantum spin Hall effect(QSHE)[3–5]is expected in two-dimensional topological insulators.[6]Transition metal dichalcogenides(TMDCs)with distorted trigonal structurehave been predicted to be important candidates for realizing QSHE with potential applications in topological field effect transistors.[7–11]Recently,thin films have been revealed to show electronic properties compatible with QSHE.[12–14]-MoTe2has similar crystal structure to[15]and can also be a potential candidate for QSHE.MoTe2crystalizes in three structures,hexagonal(2H),monoclinic(),[15]and orthorhombic(Td).[16]Bulk single crystal ofMoTe2undergoes a phase transition to Tdphase[16]which hosts type-II Weyl fermions,[17–19]and a superconducting transition has been reported at even lower temperature,[20]however,mechanically exfoliated few layeredMoTe2has been reported to be a semiconductor.[15]

    2.Methods

    The density functional theory(DFT)calculations are performed using the Vienna ab initio simulation package(VASP)[32]with the Perdew–Burke–Ernzerhof(PBE)[33]exchange–correlation functional and a plane wave energy cutoff of 500 eV.A k-point grid of 16×20×1 is applied to sample the Brillouin zone. The pristine geometric structure of the monolayer is fully relaxed until the residual forces on each atom are less than 0.001 eV/?A,and the obtained equilibrium lattice parameters are a=3.475 ?A and b=6.367 ?A.To simulate the uniaxial strain along the a-axis(b-axis),a stain is applied along the a-axis(b-axis),and the length of b-axis(aaxis)as well as the ionic positions is optimized until the residual forces are less than 0.001 eV/?A.The spin–orbit coupling(SOC)effect has been taken into account in our calculations.

    3.Results and discussion

    Figures 1(a)and 1(b)show the top and side views of the crystal structure ofMoTe2. The Mo atoms deviate from the center of the octahedron formed by six Te atoms,forming zigzag Mo chains along the a-axis direction(see the top view in Fig.1(a))and distorted Te octahedra in the b–c plane(side view in Fig.1(b)). Graphene is a fantastic substrate for growing films with different crystal structures and symmetries through van der Waals epitaxiy,[34]and is used as the substrate for growingMoTe2film. Figures 1(c)and 1(d)show the RHEED and LEED patterns of the graphene/SiC substrate.Figures 1(e)and 1(f)show the RHEED and LEED patterns of theMoTe2films under optimum growth conditions. Sharp streaky stripes(indicated by yellow arrow in Fig.1(e))and six diffraction spots(Fig.1(f))from theMoTe2film are observed in the RHEED and LEED patterns,respectively. TheMoTe2film grows mainly along the same orientation as the graphene substrate with a small distribution of azimuthal angles in the LEED pattern due to the weak van der Waals growth with weak coupling between theMoTe2film and graphene.Because of the different crystal symmetries between the substrate(three-fold symmetry)and theMoTe2film(two-fold symmetry),there are three equivalent orientations ofMoTe2films on graphene,leading to apparently hexagonal LEED patterns,similar to the case ofWTe2film[12]and the previous report onMoTe2[29]yet with better LEED pattern.The observation of diffraction spots from both theMoTe2film and the graphene substrate suggests that theMoTe2film is atomically thin,~1 monolayer(ML)thick.Increasing the growth time leads to weaker diffraction spots from the substrate and the graphene diffraction spots disappear at 2 ML(see Appendix A),however,no major change in the electronic structure is observed since the difference in the electronic structure of monolayer,bilayer,and multilayerMoTe2films is small due to the small band splitting. Using the lattice constants of graphene as a reference,the extracted in-plane lattice constants ofMoTe2from the LEED pattern are a=3.47and b=6.48,suggesting a 2%(tensile)strain along the b-axis direction compared to the lattice constants of a=3.48and b=6.33in the bulk crystal.[15]

    Fig.1.Crystal structure of MoTe2 and diffraction patterns from RHEED and LEED.(a)and(b)Top and side views of the crystal structure of MoTe2.Red and green balls represent Te and Mo atoms,respectively.The dashed box indicates the unit cell.RHEED patterns of(c)the graphene/SiC substrates and(e)the as-grown MoTe2 sample.LEED patterns of(d)the graphene/SiC substrates and(f)the as-grown MoTe2 sample measured at a beam energy of 120 eV.The white and yellow arrows indicate the patterns from graphene and MoTe2,respectively.

    The growth condition is critically dependent on the substrate temperature.Figure 2 shows a systematic study of the RHEED and LEED patterns of the films grown at different substrate temperatures while maintaining other experimental conditions fixed.When the substrate temperature is 331?C,no detectable signals from MoTe2are observed in the RHEED(Fig.2(a))or LEED patterns(Fig.2(e)).Only in a small temperature window of ~25?C between 338?C and 363?C,streaky stripes can be observed(indicated by the yellow arrows)in RHEED(Figs.2(b)–2(d))and diffraction spots are observed in the LEED patterns(Figs.2(f)–2(h)).The sharpest streaky stripes from the RHEED pattern(Fig.2(c))and the best signal from the LEED pattern(Fig.2(g))obtained at the substrate temperature of 350?C indicate that the optimum growth condition includes the substrate temperature of 350?C.

    Fig.2.RHEED and LEED patterns for films grown at different substrate temperatures.(a)–(d)RHEED patterns after growing at the substrate temperature of 331 ?C,338 ?C,350 ?C,and 363 ?C,respectively.(e)–(h)Corresponding LEED patterns.The yellow and white arrows indicate diffraction spots from MoTe2 and graphene,respectively.

    Fig.3.Electronic structure of MoTe2 revealed by ARPES measured at ~10 K.(a)Intensity maps measured from EF to ?0.84 eV with an integrated energy window of 50 meV.(b)ARPES spectrum measured along the Γ–X direction(marked by dotted line in(a)).(c)Zoom-in dispersion near EF.(d)Calculated dispersions along the Γ–X direction(blue)and (red)and(e)zoom-in dispersion near EF with a uniaxial strain of 2%along the b-axis direction and a shift ?0.09 eV in energy.

    Figure 3 shows the electronic structure ofMoTe2revealed by in situ ARPES measurements.Figure 3(a)shows the intensity maps measured from EFto ?0.84 eV.Since the 2HMoTe2is a semiconductor with a gap of larger than 1 eV,[37]this confirms that the measured band dispersion is not from the 2H-MoTe2but from theMoTe2.A hexagonal pocket centered at the Γ point is observed at EFand its size increases at low energies,suggesting that it is a hole pocket. Below?0.56 eV,a new pocket emerges at the Γ point and further splits into two circular pockets,resulting in three hole pockets in total at ?0.84 eV.Figure 3(b)shows the dispersions measured along the Γ–X direction.The dispersion shows a linear dispersing hole pocket through EFand two parabolic bands below ?0.56 eV,consistent with the intensity maps in Fig.3(a).Figure 3(c)shows a zoom-in of the dispersion near EF. In addition to the hole pocket near EFas discussed above,there is another dispersing band within ?0.15 eV,suggesting that this is likely the electron pocket from the conduction band.Figures 3(d)and 3(e)show the calculated band dispersion for comparison.[12]By using the extracted experimental lattice constant from LEED,which indicates a strain of 2%(tensile)along the b-axis direction,a good agreement with the experimental results is obtained.The overall band structure is similar to that ofWTe2,[12,38]yet with two major differences.Firstly,the two bands below ?0.56 eV almost cross(pointed by the red arrow in Fig.3(b)),which is different from those in theWTe2film and is not discussed in previous work onMoTe2.[12]Indeed,the better agreement between the ARPES data and the calculated band structure of the strained film compared to the calculated result of the unstrained film in previous work[12]also indicates the important role of stain in this material.Secondly,both the experimental and calculated results reveal an overlap between the conduction and valence bands,while dopedWTe2has been reported to be an insulator with a gap of 45 meV.[12]Therefore,our ARPES data and calculation show that different fromWTe2,the as-grownMoTe2film is metallic with an overlap between the valence and conduction bands.

    Since the electronic structures ofMoTe2films[7]and bulk crystals[39–41]are strongly dependent on the strain,we calculate the evolution of the electronic structure with uniaxial strain to provide more insights.Figure 4 shows the calculated band structure of monolayerMoTe2film under uniaxial strain along the b-axis(Figs.4(a)–4(e))and a-axis(Figs.4(f)–4(j))with strains ranging from ?2%to 3%.The application of a tensile strain along the a-axis direction has similar effect to the application of a compressive strain along the b-axis direction.The uniaxial strain has two major effects.Firstly,it changes the splitting of the two bands below ?0.5 eV at the Γ point.More importantly,it changes the energy position of these valence bands significantly,while maintaining the energy position of the conduction band.By applying a tensile strain along the a-axis,the overlap between the valence and conduction bands decreases,until eventually a gap of 47 meV emerges at 3%strain(Fig.4(j)).The opening of such a band gap is critical,since it makesMoTe2potentially a quantum spin Hall insulator if the Fermi energy is further tuned to inside the gap region.Therefore in order to realize QSHE inMoTe2films,a tensile strain(3%)along the a-axis is needed.

    4.Conclusion

    To summarize,we have successfully grown high-quality atomically thinMoTe2films using MBE after a systematic investigation of the growth at different substrate temperatures,which is confirmed by RHEED,LEED,and ARPES measurements.Furthermore,ARPES measurements show that the as-grown film is a metal with an overlap between the conduction and valence bands,which is attributed to the strain effect.Comparison of calculated band structures at different strains further suggests that a suitable tensile strain(3%tensile strain along the a-axis direction)can induce a significant gap between the conduction and valence bands.Our work not only reports the MBE growth conditions for obtaining 1T-MoTe2thin film and its experimental electronic structure,but also provides insights for band structure engineering ofMoTe2film to make it a quantum spin Hall insulator.

    Appendix A:Supplemental material

    Figure A1 shows a comparison of RHEED,LEED,and calculated electronic structure for 1 ML and 2 ML films.The observation of graphene spots in Fig.A1(b)shows that the sample is ~1 ML.By doubling the growth time,the diffraction spots from graphene disappear.A comparison of the electronic structures for 1 ML and 2 ML shows that the splitting is very weak and beyond the resolution of the ARPES experiments.

    Fig.A1.Comparison of RHEED,LEED,and calculated electronic structure for 1 ML and 2 ML films.(a)–(c)RHEED,LEED,and calculated electronic structure of 1 ML film,white arrow in(b)indicates the patterns from graphene.(d)–(f)RHEED,LEED,and calculated electronic structure of 2 ML film.

    猜你喜歡
    明哲
    復(fù)蘇在即,重啟增長(zhǎng)
    Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
    “戀愛(ài)腦”的幻滅:黃昏戀里有個(gè)冒牌保姆
    江湖
    遼河(2021年11期)2021-12-28 14:09:32
    GPS定位精度研究
    等我當(dāng)了……
    遲到的玫瑰
    蔣明哲?《送友人》
    High-resolution boosted reconstruction of γ-ray spectra?
    av中文乱码字幕在线| 天天添夜夜摸| 成人国产一区最新在线观看| 99国产精品一区二区三区| 久久精品成人免费网站| 人人妻人人爽人人添夜夜欢视频| 韩国精品一区二区三区| 国产免费男女视频| 精品国产一区二区久久| 十八禁人妻一区二区| 国产一区二区三区综合在线观看| 亚洲国产毛片av蜜桃av| 午夜两性在线视频| 久久亚洲真实| av在线天堂中文字幕| 丰满的人妻完整版| 岛国在线观看网站| 亚洲欧洲精品一区二区精品久久久| 亚洲国产欧美一区二区综合| 国产精品av久久久久免费| 午夜福利18| 在线视频色国产色| 国产精品久久视频播放| 精品免费久久久久久久清纯| 婷婷精品国产亚洲av在线| 91在线观看av| 亚洲国产中文字幕在线视频| 99精品久久久久人妻精品| 极品教师在线免费播放| 国产精品九九99| 国产精品久久久人人做人人爽| 亚洲 欧美 日韩 在线 免费| 欧美国产精品va在线观看不卡| 九色国产91popny在线| 可以免费在线观看a视频的电影网站| av福利片在线| 国产精品久久视频播放| 国产欧美日韩精品亚洲av| 午夜福利一区二区在线看| 丁香欧美五月| 亚洲第一av免费看| 国产精品综合久久久久久久免费 | 欧美+亚洲+日韩+国产| 一进一出抽搐gif免费好疼| 两个人免费观看高清视频| 韩国精品一区二区三区| 国产麻豆69| 国产欧美日韩一区二区三| 亚洲精品在线观看二区| 亚洲成人免费电影在线观看| 国产精品国产高清国产av| 欧美乱色亚洲激情| 国产精品久久电影中文字幕| 亚洲一区高清亚洲精品| 好男人在线观看高清免费视频 | 亚洲精品中文字幕一二三四区| 日韩精品免费视频一区二区三区| 动漫黄色视频在线观看| 亚洲一区高清亚洲精品| 高清毛片免费观看视频网站| 午夜a级毛片| 亚洲欧美日韩另类电影网站| 欧美久久黑人一区二区| av在线天堂中文字幕| 一进一出好大好爽视频| 久久香蕉精品热| 香蕉久久夜色| 怎么达到女性高潮| 午夜成年电影在线免费观看| 又大又爽又粗| 亚洲狠狠婷婷综合久久图片| 18禁国产床啪视频网站| 男女做爰动态图高潮gif福利片 | 国产精品野战在线观看| 日韩大尺度精品在线看网址 | 一级黄色大片毛片| 久久久久久久久免费视频了| 久久香蕉激情| 无人区码免费观看不卡| 非洲黑人性xxxx精品又粗又长| 美女 人体艺术 gogo| 亚洲男人的天堂狠狠| 91精品国产国语对白视频| 亚洲精品在线美女| 波多野结衣av一区二区av| 好男人电影高清在线观看| 身体一侧抽搐| 午夜福利欧美成人| 欧美激情极品国产一区二区三区| 亚洲av日韩精品久久久久久密| 久久久精品欧美日韩精品| 一个人免费在线观看的高清视频| 嫩草影院精品99| 精品国产乱码久久久久久男人| 一夜夜www| 1024视频免费在线观看| av网站免费在线观看视频| 日本 欧美在线| 精品国产一区二区久久| www国产在线视频色| 久久精品国产99精品国产亚洲性色 | 91字幕亚洲| 日本免费一区二区三区高清不卡 | 视频在线观看一区二区三区| 桃红色精品国产亚洲av| 免费看十八禁软件| 久久天躁狠狠躁夜夜2o2o| 中国美女看黄片| a级毛片在线看网站| 一边摸一边抽搐一进一小说| 久久久久久久精品吃奶| 青草久久国产| 可以在线观看的亚洲视频| 国产精品 欧美亚洲| 欧美乱码精品一区二区三区| 一边摸一边做爽爽视频免费| 一级a爱片免费观看的视频| 免费少妇av软件| 宅男免费午夜| 亚洲精品美女久久av网站| 色综合站精品国产| 欧美日本中文国产一区发布| 国产黄a三级三级三级人| 国产精品av久久久久免费| 香蕉丝袜av| 亚洲国产精品成人综合色| 最近最新免费中文字幕在线| 精品熟女少妇八av免费久了| x7x7x7水蜜桃| 国产单亲对白刺激| www.熟女人妻精品国产| 高清在线国产一区| 窝窝影院91人妻| 欧美日本视频| 少妇熟女aⅴ在线视频| 黑人巨大精品欧美一区二区mp4| 大型黄色视频在线免费观看| 欧美日本亚洲视频在线播放| 精品久久久久久,| 日韩欧美一区视频在线观看| 国产成年人精品一区二区| 久久久久久大精品| 满18在线观看网站| 午夜福利在线观看吧| 午夜精品久久久久久毛片777| 久久这里只有精品19| 欧美日韩亚洲国产一区二区在线观看| 高清在线国产一区| 国产精品野战在线观看| 一本大道久久a久久精品| 一边摸一边抽搐一进一出视频| 一级黄色大片毛片| 亚洲全国av大片| 日韩欧美三级三区| 一级,二级,三级黄色视频| 久久久国产成人精品二区| 91老司机精品| 真人做人爱边吃奶动态| 亚洲va日本ⅴa欧美va伊人久久| 老汉色∧v一级毛片| 日韩精品免费视频一区二区三区| 久久中文字幕人妻熟女| 免费搜索国产男女视频| 精品一区二区三区四区五区乱码| 久久青草综合色| 午夜日韩欧美国产| 成人国产综合亚洲| 国产欧美日韩一区二区三区在线| 一a级毛片在线观看| 亚洲中文av在线| 久久亚洲真实| 操美女的视频在线观看| 天堂影院成人在线观看| 一级毛片女人18水好多| 手机成人av网站| 悠悠久久av| 久久国产乱子伦精品免费另类| 国产一区二区激情短视频| 如日韩欧美国产精品一区二区三区| 亚洲国产精品久久男人天堂| 欧美一级a爱片免费观看看 | 亚洲av成人av| 久久精品国产亚洲av高清一级| 欧美成人一区二区免费高清观看 | 国产麻豆成人av免费视频| 中出人妻视频一区二区| 在线播放国产精品三级| 黄色a级毛片大全视频| 国产成+人综合+亚洲专区| 一级a爱视频在线免费观看| 国产精品综合久久久久久久免费 | 亚洲av美国av| 美女高潮到喷水免费观看| 国产伦人伦偷精品视频| 亚洲人成电影观看| 国产高清videossex| 黑人巨大精品欧美一区二区mp4| 精品国产美女av久久久久小说| 一个人观看的视频www高清免费观看 | 999久久久国产精品视频| 宅男免费午夜| 淫秽高清视频在线观看| 最近最新免费中文字幕在线| 日本撒尿小便嘘嘘汇集6| 人妻久久中文字幕网| 久久青草综合色| 曰老女人黄片| 大型黄色视频在线免费观看| 日韩 欧美 亚洲 中文字幕| 久久久精品欧美日韩精品| 国产精品 国内视频| 国产熟女午夜一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 日韩大尺度精品在线看网址 | 亚洲精品国产精品久久久不卡| 久久久久久久精品吃奶| 欧美日韩一级在线毛片| 91麻豆av在线| 日日爽夜夜爽网站| 亚洲欧美精品综合一区二区三区| 午夜视频精品福利| 午夜福利一区二区在线看| 亚洲人成77777在线视频| 禁无遮挡网站| 国产亚洲欧美98| 99精品在免费线老司机午夜| 欧美不卡视频在线免费观看 | 一区在线观看完整版| 午夜福利成人在线免费观看| 丁香六月欧美| 一边摸一边做爽爽视频免费| 人人妻人人澡欧美一区二区 | 日韩欧美在线二视频| av电影中文网址| 成人av一区二区三区在线看| 两个人免费观看高清视频| 成在线人永久免费视频| 两性夫妻黄色片| 国产激情久久老熟女| 波多野结衣巨乳人妻| av免费在线观看网站| 美女免费视频网站| 在线天堂中文资源库| 男人的好看免费观看在线视频 | 成人av一区二区三区在线看| 日韩精品免费视频一区二区三区| or卡值多少钱| 在线观看免费日韩欧美大片| 少妇的丰满在线观看| 一级毛片高清免费大全| 激情视频va一区二区三区| 久久精品国产亚洲av香蕉五月| 成人亚洲精品一区在线观看| 欧美乱妇无乱码| svipshipincom国产片| 免费在线观看视频国产中文字幕亚洲| 黄色 视频免费看| 一进一出好大好爽视频| 国产精品 国内视频| 亚洲精品国产一区二区精华液| 美国免费a级毛片| 纯流量卡能插随身wifi吗| 欧美老熟妇乱子伦牲交| cao死你这个sao货| 久久这里只有精品19| 精品久久久久久久久久免费视频| 一级a爱视频在线免费观看| 久久人人精品亚洲av| 日韩欧美一区二区三区在线观看| 久久天堂一区二区三区四区| 91精品三级在线观看| 在线观看免费日韩欧美大片| 在线播放国产精品三级| 国产精品1区2区在线观看.| 一级a爱片免费观看的视频| 露出奶头的视频| 制服诱惑二区| 91大片在线观看| 亚洲人成网站在线播放欧美日韩| 国产一区在线观看成人免费| 国产亚洲欧美在线一区二区| 18禁黄网站禁片午夜丰满| 午夜免费鲁丝| 在线观看www视频免费| 日韩欧美一区二区三区在线观看| 亚洲七黄色美女视频| 少妇的丰满在线观看| 国产精品乱码一区二三区的特点 | 别揉我奶头~嗯~啊~动态视频| 91大片在线观看| 国产99白浆流出| 亚洲成人国产一区在线观看| 1024视频免费在线观看| 久久久久精品国产欧美久久久| 午夜激情av网站| 一级a爱片免费观看的视频| 中文字幕另类日韩欧美亚洲嫩草| 国产成人一区二区三区免费视频网站| 丁香六月欧美| 一区二区三区高清视频在线| 精品乱码久久久久久99久播| 一边摸一边抽搐一进一小说| 两个人看的免费小视频| 黄色成人免费大全| 在线永久观看黄色视频| 国产成人精品无人区| 桃色一区二区三区在线观看| 丝袜美足系列| 欧美一区二区精品小视频在线| 免费高清视频大片| 老鸭窝网址在线观看| 久久伊人香网站| 麻豆成人av在线观看| 99热只有精品国产| av在线天堂中文字幕| 亚洲人成伊人成综合网2020| 国产99久久九九免费精品| 不卡一级毛片| 亚洲视频免费观看视频| 最近最新免费中文字幕在线| 亚洲欧美精品综合久久99| 亚洲av成人一区二区三| 一进一出抽搐gif免费好疼| 在线天堂中文资源库| 一级作爱视频免费观看| 啦啦啦观看免费观看视频高清 | 少妇裸体淫交视频免费看高清 | 在线国产一区二区在线| 伊人久久大香线蕉亚洲五| 老汉色av国产亚洲站长工具| 日韩有码中文字幕| 亚洲色图综合在线观看| 久久久久久人人人人人| 欧美黑人欧美精品刺激| 国产成人影院久久av| 国产av一区在线观看免费| 又紧又爽又黄一区二区| 免费在线观看完整版高清| 后天国语完整版免费观看| 91老司机精品| 午夜福利高清视频| 在线永久观看黄色视频| 一级,二级,三级黄色视频| 正在播放国产对白刺激| 亚洲 欧美 日韩 在线 免费| 岛国视频午夜一区免费看| 久久性视频一级片| 九色国产91popny在线| 999精品在线视频| 免费高清在线观看日韩| 女警被强在线播放| 9191精品国产免费久久| 久久久国产欧美日韩av| 男女之事视频高清在线观看| 校园春色视频在线观看| 欧美精品亚洲一区二区| 欧美老熟妇乱子伦牲交| 麻豆国产av国片精品| 国产成人免费无遮挡视频| 精品人妻1区二区| 91av网站免费观看| 国产亚洲欧美精品永久| 国产精品99久久99久久久不卡| 婷婷六月久久综合丁香| 久久精品成人免费网站| 制服人妻中文乱码| 国产亚洲av高清不卡| 午夜福利,免费看| 后天国语完整版免费观看| 亚洲国产欧美网| 欧美日本亚洲视频在线播放| 欧美在线一区亚洲| 欧美大码av| 国产午夜福利久久久久久| 亚洲熟妇熟女久久| 非洲黑人性xxxx精品又粗又长| 两性午夜刺激爽爽歪歪视频在线观看 | 久久欧美精品欧美久久欧美| 国产一区二区三区在线臀色熟女| 国内精品久久久久久久电影| 不卡av一区二区三区| 欧美午夜高清在线| 操出白浆在线播放| 久久精品亚洲精品国产色婷小说| 一a级毛片在线观看| 两性夫妻黄色片| 亚洲av成人一区二区三| 亚洲成人精品中文字幕电影| 男女之事视频高清在线观看| 可以免费在线观看a视频的电影网站| 侵犯人妻中文字幕一二三四区| 变态另类丝袜制服| 别揉我奶头~嗯~啊~动态视频| 中文字幕精品免费在线观看视频| 欧美黑人精品巨大| 精品一区二区三区av网在线观看| 91在线观看av| 亚洲av成人不卡在线观看播放网| 欧美黄色片欧美黄色片| 国产精华一区二区三区| 免费观看精品视频网站| 日本五十路高清| 国产精品 国内视频| 中文字幕久久专区| www.自偷自拍.com| 成在线人永久免费视频| 午夜福利成人在线免费观看| 777久久人妻少妇嫩草av网站| 免费高清视频大片| 无人区码免费观看不卡| 久久久久久久久中文| 亚洲第一av免费看| 青草久久国产| 久久精品国产综合久久久| 亚洲欧美日韩无卡精品| 一本久久中文字幕| 窝窝影院91人妻| 波多野结衣av一区二区av| 亚洲黑人精品在线| 50天的宝宝边吃奶边哭怎么回事| 久久久国产欧美日韩av| 在线观看午夜福利视频| 91精品国产国语对白视频| 精品一品国产午夜福利视频| 国产色视频综合| netflix在线观看网站| 一a级毛片在线观看| 久久九九热精品免费| 又黄又粗又硬又大视频| 国产精品,欧美在线| 人人妻人人澡人人看| 欧美精品啪啪一区二区三区| 亚洲成av片中文字幕在线观看| 国产区一区二久久| 少妇 在线观看| 露出奶头的视频| 国产亚洲欧美精品永久| 亚洲国产欧美日韩在线播放| 免费女性裸体啪啪无遮挡网站| 91老司机精品| 国产在线观看jvid| 成年人黄色毛片网站| 国产精品乱码一区二三区的特点 | 亚洲第一av免费看| 777久久人妻少妇嫩草av网站| 长腿黑丝高跟| 亚洲avbb在线观看| 久久人人97超碰香蕉20202| 久久精品成人免费网站| 欧美日本视频| 人人妻人人爽人人添夜夜欢视频| 狂野欧美激情性xxxx| 身体一侧抽搐| 亚洲av熟女| 看免费av毛片| 欧美日本亚洲视频在线播放| 一本久久中文字幕| 不卡av一区二区三区| 女生性感内裤真人,穿戴方法视频| 亚洲免费av在线视频| 999精品在线视频| 两个人视频免费观看高清| 波多野结衣巨乳人妻| 久久天堂一区二区三区四区| 少妇的丰满在线观看| 少妇粗大呻吟视频| 18美女黄网站色大片免费观看| 国产精品亚洲美女久久久| 老汉色av国产亚洲站长工具| 欧美一级毛片孕妇| 一区二区三区高清视频在线| 日本 欧美在线| 又黄又粗又硬又大视频| 国产精品九九99| 久久久久精品国产欧美久久久| 91成人精品电影| 精品欧美国产一区二区三| 亚洲午夜精品一区,二区,三区| 一二三四社区在线视频社区8| 久久久久国产一级毛片高清牌| 国产一区二区三区视频了| a级毛片在线看网站| 久久精品亚洲精品国产色婷小说| 欧美日本中文国产一区发布| 国产激情久久老熟女| 久久久国产欧美日韩av| 一级作爱视频免费观看| 麻豆成人av在线观看| cao死你这个sao货| 曰老女人黄片| 啪啪无遮挡十八禁网站| 亚洲国产精品合色在线| 亚洲一码二码三码区别大吗| 亚洲自偷自拍图片 自拍| 亚洲狠狠婷婷综合久久图片| 久久 成人 亚洲| 免费在线观看完整版高清| 亚洲avbb在线观看| 国产三级在线视频| 操出白浆在线播放| 国产伦一二天堂av在线观看| 黄色女人牲交| 1024视频免费在线观看| 日韩大码丰满熟妇| 美女扒开内裤让男人捅视频| av电影中文网址| 999精品在线视频| 美女午夜性视频免费| 久久久久久大精品| 大码成人一级视频| 午夜福利高清视频| 一本久久中文字幕| 国产精品一区二区精品视频观看| 女性生殖器流出的白浆| 法律面前人人平等表现在哪些方面| 男人舔女人的私密视频| 麻豆国产av国片精品| 久久精品91蜜桃| 亚洲人成电影观看| 变态另类成人亚洲欧美熟女 | 色综合婷婷激情| 成人亚洲精品一区在线观看| 亚洲欧美日韩高清在线视频| 深夜精品福利| 日韩欧美国产在线观看| 亚洲国产看品久久| 女人精品久久久久毛片| 午夜福利高清视频| 波多野结衣一区麻豆| 精品一区二区三区视频在线观看免费| 亚洲国产欧美一区二区综合| 欧美性长视频在线观看| 久久中文字幕一级| 搡老熟女国产l中国老女人| 一进一出好大好爽视频| www.熟女人妻精品国产| 久久精品aⅴ一区二区三区四区| 自拍欧美九色日韩亚洲蝌蚪91| 九色国产91popny在线| 91麻豆精品激情在线观看国产| 成熟少妇高潮喷水视频| 天天躁狠狠躁夜夜躁狠狠躁| 久久久国产成人精品二区| 亚洲伊人色综图| 国产欧美日韩综合在线一区二区| 国产成人欧美| 一区二区三区精品91| 亚洲国产高清在线一区二区三 | 午夜福利欧美成人| 大码成人一级视频| 久久国产乱子伦精品免费另类| 久久久精品国产亚洲av高清涩受| 成人国产一区最新在线观看| 非洲黑人性xxxx精品又粗又长| 日韩免费av在线播放| 欧美日韩一级在线毛片| 国产一级毛片七仙女欲春2 | av在线天堂中文字幕| 看黄色毛片网站| 露出奶头的视频| 在线国产一区二区在线| АⅤ资源中文在线天堂| 久久人人爽av亚洲精品天堂| 久久中文看片网| 日本三级黄在线观看| 一区二区日韩欧美中文字幕| 成熟少妇高潮喷水视频| 亚洲第一av免费看| 精品欧美一区二区三区在线| 亚洲国产精品sss在线观看| e午夜精品久久久久久久| 亚洲美女黄片视频| 久久久国产成人精品二区| 美女大奶头视频| 精品午夜福利视频在线观看一区| 在线观看一区二区三区| 欧美成人免费av一区二区三区| 久久国产乱子伦精品免费另类| 久久精品国产99精品国产亚洲性色 | 久久影院123| 男女下面进入的视频免费午夜 | 色综合站精品国产| 日日摸夜夜添夜夜添小说| 免费高清视频大片| 免费在线观看日本一区| АⅤ资源中文在线天堂| 丁香六月欧美| 色综合站精品国产| 91在线观看av| 女性生殖器流出的白浆| 在线观看舔阴道视频| 色播亚洲综合网| 国产99白浆流出| 久久久精品国产亚洲av高清涩受| 97人妻精品一区二区三区麻豆 | 国产麻豆成人av免费视频| 亚洲自拍偷在线| 国产精品 欧美亚洲| 12—13女人毛片做爰片一| 日韩一卡2卡3卡4卡2021年| 午夜两性在线视频| 久久性视频一级片| 99久久久亚洲精品蜜臀av| 国产精品秋霞免费鲁丝片| 99国产极品粉嫩在线观看| 女人精品久久久久毛片| 国产一区在线观看成人免费| 亚洲国产精品久久男人天堂| 久久亚洲精品不卡| 日本在线视频免费播放| 欧美黄色片欧美黄色片| 久久青草综合色| 国产欧美日韩精品亚洲av| 久久国产亚洲av麻豆专区| 亚洲人成77777在线视频|