• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The role of CALYPSO in the discovery of high-Tc hydrogen-rich superconductors?

    2019-11-06 00:45:46WenwenCui崔文文andYinweiLi李印威
    Chinese Physics B 2019年10期
    關鍵詞:文文

    Wenwen Cui(崔文文)and Yinwei Li(李印威)

    Laboratory of Quantum Materials Design and Application,School of Physics and Electronic Engineering,Jiangsu Normal University,Xuzhou 221116,China

    Keywords:CALYPSO,structure prediction,hydrogen-rich superconductors

    1.Introduction

    Superconductivity,one of the most intriguing material properties,has sparked countless studies since its discovery in 1911.[1]Superconductors are categorized as either conventional(if their behaviour can be explained by the Bardeen–Cooper–Schrieffer(BCS)theory[2]or its derivatives)or unconventional(otherwise). Based on BCS theory,materials with light elements are especially favourable for achieving superconductivity because these elements provide high frequencies in the phonon spectrum. This theory has underpinned the design of conventional high-Tcsuperconductors.For many years,the development of superconductors was restricted by the Mcmillan limit,[3]which states that the maximum Tcin conventional superconductors cannot exceed 40 K.To overcome this limit,scientists addressed the following two questions. Are there conventional superconductors with Tcabove 40 K in nature based on the known materials? What is the origin of the superconductivity? Ashcroft’s proposal that solid hydrogen(H2)and hydrogen-rich compounds represent candidates for high-Tcsuperconductors provided a turning point.[4,5]However,the metallization of solid hydrogen is challenging experimentally. A claim by Dias and Silvera to have observed atomic metallic hydrogen in the laboratory[6]remains controversial.[7,8]

    Hydrogen-rich materials have become the main focus of superconductor research because metallization can be realized at lower pressures due to chemical precompression.[5]There are vast numbers of hydrides in nature, including many known hydrides and many new hydrides that can only be formed at high pressure. Therefore,discovering new hydrogen-containing superconductors by using traditional experimental methods based on trial and error is painstaking,and time-consuming work. Consequently,theoretical predictions are urgently required to guide the experimental synthesis of high-Tcsuperconductors. The key to designing H-containing superconductors at high pressure is to determine the crystal structures. Crystal structure AnaLYsis by Particle Swarm Optimization(CALYPSO)[9–11]is one of the most efficient structure prediction methods,and only needs the chemical composition and external conditions,such as pressure,to predict stable and metastable structures in combination with first-principles calculations.[12–18]CALYPSO has theoretically predicted large numbers of superconductors,[19,20]some of which have been confirmed experimentally.

    Fig.1. Calculated and experimental Tc values of hydrogen-rich superconductors by year of publication.Solid red circles denote the calculated Tc of hydrogen-rich superconductors predicted by CALYPSO.Three experimental results are denoted by green squares,a blue triangle,and a pink diamond.

    Given the accuracy and fruitful results of CALYPSO in searching for high-Tcsuperconductors,we present a review of the recent advances in the CALYPSO prediction of superconducting hydrides at high pressure(Fig.1).Experimentalists have attempted to obtain many predicted superconductors,among which hydrogen sulfides[21]and LaH10[22,23]have set record Tcvalues of 203 K and 250 K,respectively.

    2.Superconductors predicted by CALYPSO

    CALYPSO in combination with first-principles calculations has predicted many hydrides with high Tcvalues,including alkaline earth metal hydrides(e.g.,CaH6,[24]MgH6[25]),rare-earth metal hydrides(e.g.,YH6,[26]YH10,and LaH10[27,28]),transition metal hydrides(e.g.,NbH4,[29]VH8,[30]TcH2,[31]WH5,and WH6[32]),boron group hydrides (e.g., GaH3[33]), tetragen hydrides (e.g., SiH4[34]and PbH8[35]),pnictogen hydrides(e.g.,PH3,[36]P4H6,[37]and AsH8[38]),chalcogen hydrides(e.g.,H2S,[39]H4S3,[40]H3Se,[41]H4Te, and H5Te2[42]), halogen hydrides (e.g.,HBr[43]and HCl[44]),and noble gas hydrides(XeH2[45]).These hydrides have a wide range of Tcvalues up to 326 K.The compressed hydrogen sulfides[39]and lanthanum hydrides[27,28]have been synthesized experimentally.[21–23]Thus,we discuss these two breakthrough compounds in detail.

    Fig.2.Typical structures predicted by CALYPSO in sulfur hydrides:(a) H2S(90 GPa),(b)Cmca H2S(170 GPa),(d)P212121 H3S4(25 GPa),and(d)Pnma H3S4(100 GPa). The small pink and large yellow spheres represent hydrogen and sulfur atoms,respectively.

    2.1.Hydrogen sulphide:the first example of a predicted superconductor confirmed experimentally

    As a typical molecular system,H2S crystallizes in three different phases at ambient pressure.[46,47]Under high pressure, more complicated phases emerge theoretically and experimentally,[48,49]but these remain elusive.[39]H2S was not initially identified as a promising superconductor because it was expected to dissociate into its constituent elements at high pressure(80 GPa)before metallization.[50,51]In 2014,CALYPSO predicted that H2S is thermodynamically stable up to at least 200 GPa.In addition,the structure predictions also identifeid two metallic phases with space groups(Fig.2(a))and Cmca(Fig.2(b))that are stable above 80 GPa and are superconductor candidates with estimated Tcaround 80 K.[39]Inspired by this prediction,Drozdov et al.[21]compressed the sulfur hydrides in a diamond anvil cell.They detected superconductivity by a sharp drop to zero resistance and magnetic susceptibility measurements.The measured Tcwas sensitive to temperature,which suggested that there was a low-Tcphase with Tcof 33–150 K at 110–220 GPa when the samples were prepared at low temperature(<100 K)and a high-Tcphase with Tcof 203 K when the sample was heated to room temperature.Drozdov et al.did not identify the two phases,however,they suggested that the low-Tcphase was H2S because it agreed well with our predicted results.[39]

    Many subsequent studies investigated the origin of the Tcvalue of 203 K.Theoretical studies reported that the high-Tcphase originated from H3S,formed by the decomposition of compressed H2S at high pressure.[52–58]H3S was first synthesized in 2011 by Strobel et al.,and then was predicted as a superconductor with a high Tcof ~200 K,[50]close to the experimentally observed high Tcvalue.[21]The decomposition product of compressed H2S was studied under high pressure by first-principles structure predictions and x-ray diffraction(XRD)experiments.[40]In addition to H2S and H3S,CALYPSO predicted new stoichiometries of H2S3,H3S2,HS2,and H4S3.Based on these results,a possible dissociation path for H2S of 8H2S →S+4H3S+H4S3was proposed and confirmed by high-pressure XRD experiment.This was also the first demonstration of the partial decomposition of H2S into H3S at high pressure.The co-existence of H3S and H2S provided direct evidence that explained the experimental observation of two superconductive phases.The P212121and Pnma structures of H4S3are shown in Figs.2(c)and 2(d),respectively,and the Pnma phase is superconducting with Tcof ~2 K at 140 GPa.

    The mechanism of the superconductivity at 203 K in compressed hydrogen sulfide at high pressure has been widely studied to aid the design of new high-Tcsuperconductors.[52,58–60]Several theoretical studies revealed that covalent bonding plays a key role in the large electron–phonon coupling.[61–63]To establish the relationship between Tcand covalent bond strength,we constructed a hypothetical compound,H6SSe,by substituting half of the S atoms in H3S with Se atoms.[62]Using the unbiased CALYPSO method,we identified three dynamically stable structures(Figs.3(b)–3(d)). These three structures retain the maincubic framework of H3S(Fig.3(a))with different Se substitution positions,leading to the formation of covalent S–H and Se–H bonds with different bond strengths.To investigate the effect of covalent bonding on the high Tcof chalcogen hydrides,we plotted Tcas a function of bond strength reflected by the Laplacian ?2ρ(Fig.3(e)).Tcdecreased from 195 to 115 K as the strength of the weakest covalent H–S or H–Se bond in each structure decreased,indicating that strong covalent bonds are important in determining the high Tcof the H3S system.

    Fig.3.(a)structure of H3S and the predicted(b)(c)Cmmm,and(d) structures of H6SSe at 200 GPa.(e)Tχ and electron–phonon coupling constant λ as functions of bond strength of the weakest covalent bonds in H3S and H6SSe.

    2.2.Clathrate hydrides:a leap to room-temperature superconductivity

    2.2.1.LaH10

    Hydrogen sulfide superconductivity is not the only prediction that has been confirmed experimentally.[21]In 2017,two separate CALYPSO studies of lanthanum hydride systems revealed new compounds with stoichiometries of LaH3,LaH4,LaH5,LaH8,and LaH10,as well as the known compound LaH2.[27,28]LaH10was predicted to be dynamically stable above 220 GPa with a face-centred cubic(fcc)structure(space groupthat was a unique H32clathrate-like structure,consisting of four H squares and 12 H hexagons(Fig.4(a)).The Tcof LaH10was estimated to be 257–274 K at 250 GPa,which is close to room temperature.The astonishing predicted Tcin LaH10prompted these hydrides to be experimentally synthesized. Just after the theoretical work was published,Geballe et al.[64]synthesized the lanthanum superhydrides LaH10±x(?2 ≤x ≤1)by directly compressing La and H2samples at 170 GPa and 1000 K.They subsequently published a different synthesis route using ammonia borane(NH3BH3)as the hydrogen source,[22]which produced LaH10±xat pressures of 180–200 GPa.They observed sharp drops in resistivity when they cooled the samples to 260 K,which indicates the superconducting transition. Drozdov et al.[23]also reported the superconductivity of fcc LaH10with Tcof 250 K at 170 GPa,synthesized by direct reaction of lanthanum and hydrogen under high pressures. The superconductivity was supported by the observation of zero resistance,the isotope effect,and a decrease in Tcupon the application of an external magnetic field.Previously,they had reported a Tcof 215 K in lanthanum hydrides,[65]which may correspond to other LaHxphases.The measured Tcof 250–260 K from the two independent experiments agree well with the predicted Tcof LaH10,[27,28]which demonstrates that CALYPSO is a powerful tool in the search for high-Tcsuperconductors.

    Fig. 4. Clathrate hydrides predicted by CALYPSO. (a) La(y)H10,(b)Im3m Ca(y)H6,(c)P63/mmc Sc(Y,Ce)H9,and(d)Li2MgH16.[66]The building block metal atoms centred in the H32,H24,H29,H18 and H28 cages are also shown in each panel.

    2.2.2.Other clathrate hydrides

    LaH10was not the first structure containing an H-cage to be predicted. In 2012,Ma’s group used CALYPSO to predict that a new calcium hydride,CaH6,could be synthesized by compressing elemental calcium and hydrogen or CaH2and hydrogen.[24]In the CaH6structure,hydrogen atoms linked by weak covalent bonds form a clathrate with a calcium atom at the centre(Fig.4(b)).This unique body-centred cubic structure had a predicted Tcof 235 K at 150 GPa,which was the first time that a Tcof more than 200 K was predicted for a hydride.Later,this type of structure was also found in yttrium hydrides.In 2015,using CALYPSO,we predicted that a yttrium atom can react with six hydrogen atoms to form YH6at 120 GPa with the same structure as CaH6and a higher Tcof 264 K,[26]approaching room temperature. In 2017,in the same study that predicted LaH10,YH10was predicted to have a Tcof up to 305–326 K at 250 GPa,surpassing room temperature.[27,28]Ref.[28]also found that H atoms could form different cages in the rare earth(RE=Sc,Y,La,Ce,Pr,etc.)hydrides,such as,H24in REH6,H29in REH9,and H32in REH10(Fig.4).Surprisingly,it is also demonstrated that the calculated Tcfor the clathrates increases with increasing H cage size.For example,YH6,YH9,and YH10have Tcof 264 K(120 GPa),276 K(150 GPa),and 303 K(400 GPa),respectively.Other RE hydrides,LaH9,CeH9,CeH10,and PrH9,had much lower Tc(<56 K)due to the higher mass of the RE elements,although ScH6and ScH9had Tcof ~190 K.Liang et al.used CALYPSO to predict the ternary clathrate hydride,CaYH12,[67]which had a similar H clathrate structure to YH6and CaH6and possessed a Tcof 258 K at 200 GPa. More recently,Ma’s group predicted a clathrate structure in ternary hydride,Li2MgH16[66]with space group(Fig.4(d)),which contains Li-centered H18cages and Mg-centered H28cages. In particular,it exhibits a Tcof around 473 K at 250 GPa,the highest Tcin all the hydrides,which provides the possibility to obtain superconductivity even higher than room temperature.

    3.Other superconductors

    Owing to the high-Tcsuperconductivity of hydrogen sulfide,hydrides of elements neighbouring S,such as P,[36,38,68,69]Se,[41]and Te,[42]have been investigated.

    3.1.Phosphorus hydrides

    Just after the experimental observation of superconductivity in compressed H2S,Drozdov et al.compressed PH3,[70]an analogue of H2S,and observed a high Tcof ~100 K around 200 GPa,indicated by the abrupt drop to zero resistance.However,they did not identify the origin of the superconducting phase.Analogous to the decomposition of hydrogen sulfides,PH3may also decompose to new P–H compounds. Hence,it is important to search for new structures and stoichiometries to explain the origin of the Tcof ~100 K.CALYPSO structure prediction has been vital in exploring the origin of the superconductivity in phosphorous hydrides.In 2016,Liu et al.performed a structure search in the PHx(x=1,2,3,4,5)system at high pressure with CALYPSO.[36]The P212121(<210 GPa,Fig.5(a))andC2/m(>210 GPa,Fig.5(b))phases of PH3were discovered at high pressure. The calculated Tcof the C2/m phase was 83 K,which agreed well with the experimental results.However,these two phases were predicted to be energetically unstable,and decomposed into P and H at high pressure.

    Wang’s group explored the decomposition of PH3at high pressure via a combination of experiments and CALYPSO prediction.[37]XRD and Raman measurements showed that PH3underwent decomposition at high pressures to produce a new stable compound,P4H6. P4H6is generated stepwise.First,dimerized PH3decomposes to P2H4:2PH3→P2H4+H2. Then,P4H6is generated by the further decomposition of P2H4:2P2H4→P4H4+H2. At low temperatures,P4H6can be observed up to 200 GPa.[70]However,the exact structure could not be determined experimentally.CALYPSO predicted the metallic structures of P4H6to be Cmcm(<182 GPa,Fig.5(c))and C2/m(>182 GPa,Fig.5(d)).In addition,the Tcof the C2/m phase was estimated to be 67 K at 200 GPa,which agreed with the measured Tc,indicating that P4H6could be the superconductor observed experimentally by Drozdov et al.[70]

    3.2.Other chalcogen hydrides

    In 2016,Ma’s group used CALYPSO to predict three metallic stoichiometries of HSe2,HSe,and H3Se,all of which exhibit superconductivity.[41]H3Se had the same cubic structure(Fig.3(a))as H3S and had a predicted Tcof 110 K at 250 GPa.Although H3Se and H3S have the same structures,the spectral functional are different because the Se atoms are heavier,which contributes to the lower Tc.In the same year,they identified three metallic stoichiometries of H4Te,H5Te2,and HTe3.Unlike the covalent bonds of H–S(Se)in H3S(Se),the H–Te bonds in tellurium hydrides are ionic bonds.[42]Especially,P6/mmm H4Te(Fig.6(a))contains elongated“H2”molecules,which is a superconductor with estimated Tcof 104 K at 170 GPa. While H5Te2,with space group C2/m(Fig.6(b)),has a relatively lower Tcof 58 K at 200 GPa.

    Fig.5.Structures of phosphorus hydride compounds predicted by CALYPSO.(a)P212121 PH3,(b)C2/m PH3,(c)Cmcm P4H6,and(d)C2/m P4H6.

    3.3.Other hydrides

    In addition to the typical hydride superconductors,CALYPSO has predicted other hydrogen-containing superconductors (Fig. 1) such as GaH3,[33]NbH4,[29]BeH2,[71]W–H,[32]and MgSiH6.[75]However,their Tcvalues are low(10–140 K).Thus,we do not discuss them in detail in this review.

    Fig.6. Structures of tellurium hydrides predicted by CALYPSO.(a)P6/mmm H4Te and(b)C2/m H5Te2.

    4.Summary and outlook

    We have summarized progress in high-Tcsuperconductors predicted by CALYPSO,and described the prediction of H2S and LaH10,which stimulated subsequent experimental studies. The observed Tcvalues of these compounds of 250–260 K pave the way to room-temperature superconductivity.Crystal structure prediction has been important in finding high-Tcsuperconductors. Because theorists have calculated Tcof binary hydrides for most elements in the periodic table,research can now focus on ternary hydrides as the next area in which to discover superconductors,however,the computational burden for these studies will be far higher.Experimentalists still face the challenge of synthesizing theoretically predicted materials.Furthermore,reducing the pressures at which superconducting phases appear is also a major challenge,so that superconductivity can be observed outside of diamond anvil cells and used in practical applications.The search for superconductors with higher Tcis another area of research.For example,predicting clathrate structures with larger cages may be a possible route to higher-Tcsuperconductors.

    猜你喜歡
    文文
    CLIMATE IN CRISIS
    漢語世界(2022年5期)2022-10-15 12:27:00
    TEA LEAVES
    漢語世界(2022年4期)2022-08-08 14:38:00
    Auto Ad Infringement
    Cash Withheld
    Breaking the Chain
    TEA LEAVES
    漢語世界(2022年1期)2022-03-01 05:54:40
    茶話會
    TEA LEAVES
    漢語世界(2021年6期)2021-12-17 10:53:32
    Power Down
    China’s Other Vaccine Drive
    在线播放国产精品三级| 日本黄色视频三级网站网址| 在线观看一区二区三区| 国产精品蜜桃在线观看 | 看免费成人av毛片| 亚洲自拍偷在线| av免费在线看不卡| 插阴视频在线观看视频| 久久久久久久久久久丰满| 少妇熟女aⅴ在线视频| 日韩一本色道免费dvd| 国产亚洲精品久久久com| 久久99热6这里只有精品| 国产精品1区2区在线观看.| 免费观看a级毛片全部| 一级毛片aaaaaa免费看小| 久久久久久久午夜电影| 久久鲁丝午夜福利片| 日韩高清综合在线| 久久99精品国语久久久| 免费观看精品视频网站| 简卡轻食公司| 听说在线观看完整版免费高清| 国产精品久久久久久久电影| 久久精品国产亚洲av天美| 激情 狠狠 欧美| 久久精品91蜜桃| 99热精品在线国产| 99热这里只有是精品在线观看| av又黄又爽大尺度在线免费看 | 亚洲高清免费不卡视频| 国产av在哪里看| 成人特级黄色片久久久久久久| 国产老妇伦熟女老妇高清| 婷婷色综合大香蕉| 亚洲在线观看片| 国产精品久久久久久av不卡| 成人毛片a级毛片在线播放| 国产中年淑女户外野战色| 五月玫瑰六月丁香| 久久久欧美国产精品| 日本免费a在线| 国产精品久久久久久亚洲av鲁大| 丝袜喷水一区| av在线播放精品| av在线蜜桃| 国产高清三级在线| 天堂√8在线中文| 看片在线看免费视频| АⅤ资源中文在线天堂| 久久亚洲国产成人精品v| 精品久久久久久久末码| 亚洲自拍偷在线| 国产乱人偷精品视频| 九色成人免费人妻av| 天堂av国产一区二区熟女人妻| 观看美女的网站| 亚洲精品久久久久久婷婷小说 | 国内久久婷婷六月综合欲色啪| 亚洲精品粉嫩美女一区| 伦理电影大哥的女人| 乱系列少妇在线播放| 久久婷婷人人爽人人干人人爱| 亚洲丝袜综合中文字幕| 欧美成人一区二区免费高清观看| 国产高清视频在线观看网站| 精品不卡国产一区二区三区| 午夜免费激情av| 日韩精品青青久久久久久| 欧美一级a爱片免费观看看| 久久久久久国产a免费观看| 国产免费一级a男人的天堂| 中文字幕制服av| 麻豆国产97在线/欧美| 国产精品国产高清国产av| 三级毛片av免费| 久久久久久久久大av| 午夜免费男女啪啪视频观看| 男女边吃奶边做爰视频| .国产精品久久| 久久精品国产99精品国产亚洲性色| 少妇的逼好多水| 国产精品1区2区在线观看.| 一进一出抽搐动态| 97超视频在线观看视频| 国产精品一区二区三区四区免费观看| 非洲黑人性xxxx精品又粗又长| eeuss影院久久| 九草在线视频观看| 亚洲四区av| 久久精品夜夜夜夜夜久久蜜豆| 亚洲性久久影院| 热99re8久久精品国产| а√天堂www在线а√下载| 一个人免费在线观看电影| 欧美又色又爽又黄视频| 国产成年人精品一区二区| 成人三级黄色视频| 国产精品国产高清国产av| 成人鲁丝片一二三区免费| ponron亚洲| 国产精品1区2区在线观看.| 国产极品精品免费视频能看的| 一区二区三区高清视频在线| 国产极品精品免费视频能看的| 91精品一卡2卡3卡4卡| 大又大粗又爽又黄少妇毛片口| 99热这里只有精品一区| 中文字幕免费在线视频6| 韩国av在线不卡| 好男人在线观看高清免费视频| 亚洲精品影视一区二区三区av| 一个人免费在线观看电影| 少妇裸体淫交视频免费看高清| 午夜福利在线在线| 午夜精品在线福利| 天美传媒精品一区二区| av视频在线观看入口| 美女xxoo啪啪120秒动态图| 国产视频首页在线观看| 国产精品女同一区二区软件| 69人妻影院| 一区二区三区四区激情视频 | 啦啦啦啦在线视频资源| 亚洲av电影不卡..在线观看| 99久久成人亚洲精品观看| 联通29元200g的流量卡| 午夜视频国产福利| 久久久久久久久久成人| 国产亚洲精品av在线| 欧美日本视频| 欧美日韩国产亚洲二区| 国产黄片美女视频| 亚洲欧美精品自产自拍| 国产精品一区二区在线观看99 | 深夜a级毛片| 国产真实伦视频高清在线观看| 久久婷婷人人爽人人干人人爱| 欧美性猛交黑人性爽| av视频在线观看入口| 97热精品久久久久久| 国产淫片久久久久久久久| 国产精华一区二区三区| 两个人视频免费观看高清| 校园人妻丝袜中文字幕| 在线观看午夜福利视频| 精品人妻熟女av久视频| 亚洲欧美精品综合久久99| 午夜精品一区二区三区免费看| 不卡视频在线观看欧美| 成人亚洲欧美一区二区av| 在线观看av片永久免费下载| 久久热精品热| 村上凉子中文字幕在线| 国内揄拍国产精品人妻在线| 高清日韩中文字幕在线| 成人特级av手机在线观看| 一夜夜www| 亚洲av免费高清在线观看| 免费在线观看成人毛片| 免费看日本二区| 国产乱人偷精品视频| 免费观看精品视频网站| 内射极品少妇av片p| 日本-黄色视频高清免费观看| 久久热精品热| 美女大奶头视频| 国产精品一区二区三区四区久久| a级毛片免费高清观看在线播放| 亚洲最大成人av| 91在线精品国自产拍蜜月| 国内精品宾馆在线| 欧美色欧美亚洲另类二区| 亚洲精品乱码久久久v下载方式| 99久久精品一区二区三区| 人人妻人人看人人澡| 亚洲成av人片在线播放无| 精品久久久久久久久久免费视频| 老女人水多毛片| 亚洲三级黄色毛片| 久久久久久久久久成人| 亚洲国产高清在线一区二区三| 亚洲第一区二区三区不卡| 午夜福利在线在线| 国产伦精品一区二区三区视频9| 亚洲av.av天堂| av在线天堂中文字幕| 美女cb高潮喷水在线观看| 日本黄色片子视频| 久久久a久久爽久久v久久| 欧美变态另类bdsm刘玥| 国产毛片a区久久久久| 日本成人三级电影网站| 美女脱内裤让男人舔精品视频 | 亚洲七黄色美女视频| 欧美在线一区亚洲| 亚洲国产色片| 女的被弄到高潮叫床怎么办| 波多野结衣巨乳人妻| 婷婷精品国产亚洲av| 一进一出抽搐gif免费好疼| 中文字幕av成人在线电影| 欧美bdsm另类| 亚洲无线在线观看| 午夜福利视频1000在线观看| 女的被弄到高潮叫床怎么办| 欧美变态另类bdsm刘玥| 欧美三级亚洲精品| 3wmmmm亚洲av在线观看| 色吧在线观看| 综合色av麻豆| 亚洲精品久久国产高清桃花| 美女 人体艺术 gogo| 中文字幕制服av| av在线亚洲专区| 12—13女人毛片做爰片一| 免费av毛片视频| 一级毛片久久久久久久久女| 午夜爱爱视频在线播放| 丝袜喷水一区| 99久久九九国产精品国产免费| 男女啪啪激烈高潮av片| 国产精品免费一区二区三区在线| 青青草视频在线视频观看| 日本一二三区视频观看| 国产精品一二三区在线看| 欧洲精品卡2卡3卡4卡5卡区| 成人美女网站在线观看视频| 国产白丝娇喘喷水9色精品| 国产av在哪里看| 男女边吃奶边做爰视频| 老司机影院成人| 亚洲国产精品国产精品| 国产探花极品一区二区| 成人毛片a级毛片在线播放| 久久精品国产清高在天天线| 欧美激情在线99| 国产69精品久久久久777片| 久久久久久久久中文| 人人妻人人澡人人爽人人夜夜 | 男人舔女人下体高潮全视频| 免费看美女性在线毛片视频| 亚洲精品久久国产高清桃花| 成人性生交大片免费视频hd| 亚洲av电影不卡..在线观看| 联通29元200g的流量卡| 看十八女毛片水多多多| 此物有八面人人有两片| 日日撸夜夜添| 亚洲最大成人av| 插阴视频在线观看视频| 九九爱精品视频在线观看| 久久这里有精品视频免费| 在线观看免费视频日本深夜| 蜜臀久久99精品久久宅男| 色哟哟·www| 亚洲欧美日韩高清专用| 在线播放国产精品三级| 免费av观看视频| 亚洲成人久久性| 亚洲一级一片aⅴ在线观看| 91久久精品国产一区二区成人| 久久久国产成人免费| 日本三级黄在线观看| 国产成人freesex在线| 国产精品无大码| 国产精品日韩av在线免费观看| 免费观看的影片在线观看| 女的被弄到高潮叫床怎么办| 赤兔流量卡办理| 男女啪啪激烈高潮av片| 波多野结衣高清作品| 少妇猛男粗大的猛烈进出视频 | 亚洲欧美日韩卡通动漫| 少妇人妻精品综合一区二区 | 国产熟女欧美一区二区| 深夜a级毛片| 青青草视频在线视频观看| 在线免费十八禁| 99热这里只有是精品50| 岛国毛片在线播放| 又粗又爽又猛毛片免费看| 亚洲国产欧洲综合997久久,| 97热精品久久久久久| 老司机福利观看| 欧美人与善性xxx| 国产午夜福利久久久久久| 男人舔女人下体高潮全视频| 亚洲av熟女| 亚洲精品456在线播放app| av在线亚洲专区| 男人舔奶头视频| 国产精品国产三级国产av玫瑰| 国产精品久久视频播放| 国产精品蜜桃在线观看 | 国产成人精品久久久久久| 日韩欧美一区二区三区在线观看| 69av精品久久久久久| 夜夜夜夜夜久久久久| 久久亚洲国产成人精品v| 亚洲自拍偷在线| 18禁在线播放成人免费| 国产精品美女特级片免费视频播放器| 最近最新中文字幕大全电影3| 一级黄色大片毛片| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲第一电影网av| 丝袜喷水一区| 国产熟女欧美一区二区| 久久久久久伊人网av| 卡戴珊不雅视频在线播放| 麻豆乱淫一区二区| 国产精品不卡视频一区二区| 亚洲av中文av极速乱| 久久久精品欧美日韩精品| 久久九九热精品免费| 蜜桃久久精品国产亚洲av| 黄色日韩在线| 久久国产乱子免费精品| 一边亲一边摸免费视频| 欧美成人a在线观看| 中文字幕制服av| 看免费成人av毛片| 国产高清激情床上av| 亚洲五月天丁香| 亚洲av不卡在线观看| 欧美潮喷喷水| 身体一侧抽搐| 亚洲综合色惰| 女人十人毛片免费观看3o分钟| 一级av片app| 三级经典国产精品| 村上凉子中文字幕在线| 91久久精品国产一区二区三区| 欧美色视频一区免费| 亚洲人成网站高清观看| 一个人看的www免费观看视频| 亚洲欧洲国产日韩| 亚洲欧美日韩卡通动漫| 免费看av在线观看网站| 国内精品一区二区在线观看| 哪个播放器可以免费观看大片| 综合色av麻豆| 亚洲成a人片在线一区二区| 中国美白少妇内射xxxbb| 免费看a级黄色片| 一个人免费在线观看电影| 99热这里只有精品一区| 女同久久另类99精品国产91| 国产私拍福利视频在线观看| 给我免费播放毛片高清在线观看| 青春草视频在线免费观看| 天堂中文最新版在线下载 | 国产精品99久久久久久久久| 日韩av不卡免费在线播放| 亚洲最大成人av| 99热全是精品| 国产亚洲精品av在线| 国产精品一区二区性色av| 国产一区二区激情短视频| 欧美色欧美亚洲另类二区| 久久久久久久久中文| 免费看a级黄色片| 狠狠狠狠99中文字幕| 亚洲国产精品国产精品| 国产亚洲精品久久久久久毛片| 变态另类丝袜制服| 国产亚洲欧美98| 伦理电影大哥的女人| 热99在线观看视频| 国产精品嫩草影院av在线观看| 中文字幕av在线有码专区| 日日啪夜夜撸| 丝袜美腿在线中文| 国内久久婷婷六月综合欲色啪| 网址你懂的国产日韩在线| 亚洲av.av天堂| 一本一本综合久久| 亚洲av中文字字幕乱码综合| 2022亚洲国产成人精品| 成年女人永久免费观看视频| 麻豆av噜噜一区二区三区| 国语自产精品视频在线第100页| 高清日韩中文字幕在线| 乱系列少妇在线播放| 久久久欧美国产精品| 搡女人真爽免费视频火全软件| 免费观看的影片在线观看| 日韩欧美在线乱码| 亚洲美女视频黄频| 亚洲成人久久爱视频| 亚洲,欧美,日韩| 色综合亚洲欧美另类图片| av女优亚洲男人天堂| 日韩大尺度精品在线看网址| 国产亚洲5aaaaa淫片| 黄色视频,在线免费观看| 美女 人体艺术 gogo| 午夜精品一区二区三区免费看| 女同久久另类99精品国产91| 最新中文字幕久久久久| 在线观看美女被高潮喷水网站| 亚洲美女搞黄在线观看| 国产老妇女一区| 97超视频在线观看视频| 秋霞在线观看毛片| 91精品一卡2卡3卡4卡| 男人舔女人下体高潮全视频| 亚洲欧美日韩高清专用| 免费av观看视频| 国产精品av视频在线免费观看| 六月丁香七月| 丝袜喷水一区| 99国产极品粉嫩在线观看| 欧美在线一区亚洲| 亚洲av中文字字幕乱码综合| 国产 一区精品| 日韩亚洲欧美综合| 内射极品少妇av片p| 高清日韩中文字幕在线| 欧美xxxx性猛交bbbb| 欧美+日韩+精品| 亚洲av.av天堂| 一级黄片播放器| av天堂中文字幕网| 成年女人永久免费观看视频| 国产中年淑女户外野战色| 国产精品.久久久| 长腿黑丝高跟| 欧美成人免费av一区二区三区| 91久久精品电影网| 夜夜爽天天搞| 亚洲av中文字字幕乱码综合| 男女下面进入的视频免费午夜| 午夜福利视频1000在线观看| 看黄色毛片网站| 99热网站在线观看| 最近2019中文字幕mv第一页| 尾随美女入室| 国产伦精品一区二区三区视频9| 99久国产av精品国产电影| 内射极品少妇av片p| 久久久久免费精品人妻一区二区| 精品一区二区三区人妻视频| 青春草亚洲视频在线观看| 日韩大尺度精品在线看网址| 91av网一区二区| 国产精品嫩草影院av在线观看| 日本熟妇午夜| 亚洲国产欧美在线一区| 欧美成人精品欧美一级黄| 成人毛片a级毛片在线播放| 69人妻影院| 精品国内亚洲2022精品成人| 亚洲成人中文字幕在线播放| 午夜爱爱视频在线播放| 久久鲁丝午夜福利片| 国产亚洲91精品色在线| 99热这里只有精品一区| 亚洲精品乱码久久久久久按摩| 一夜夜www| 国产午夜精品一二区理论片| 久久九九热精品免费| 国产亚洲精品久久久com| 国产免费男女视频| 丰满乱子伦码专区| 国产高清三级在线| 村上凉子中文字幕在线| 国产片特级美女逼逼视频| 一个人看的www免费观看视频| 国产精品精品国产色婷婷| 国产v大片淫在线免费观看| 日韩人妻高清精品专区| 久久午夜福利片| 国产精品99久久久久久久久| 有码 亚洲区| 国产大屁股一区二区在线视频| 亚洲国产精品sss在线观看| 亚洲四区av| 一级黄色大片毛片| 国产高清有码在线观看视频| 亚洲精华国产精华液的使用体验 | 91精品国产九色| 日韩精品青青久久久久久| 麻豆国产av国片精品| 熟女电影av网| 欧美在线一区亚洲| 国产伦理片在线播放av一区 | 午夜免费激情av| 国产精品国产高清国产av| 我要看日韩黄色一级片| 日韩视频在线欧美| 色吧在线观看| 久久精品国产亚洲av天美| 哪个播放器可以免费观看大片| 三级毛片av免费| 欧美三级亚洲精品| 18禁在线无遮挡免费观看视频| 亚洲性久久影院| 国产视频首页在线观看| 国产探花在线观看一区二区| 日日撸夜夜添| 尤物成人国产欧美一区二区三区| 哪个播放器可以免费观看大片| 久99久视频精品免费| 亚洲人成网站在线播放欧美日韩| 一区二区三区四区激情视频 | 国产av不卡久久| 亚洲美女搞黄在线观看| www日本黄色视频网| 日本黄色片子视频| av天堂在线播放| 18禁在线无遮挡免费观看视频| 人人妻人人看人人澡| 亚洲成人精品中文字幕电影| 97在线视频观看| 国产人妻一区二区三区在| 99久久成人亚洲精品观看| 亚洲av中文字字幕乱码综合| 岛国毛片在线播放| 国产av在哪里看| 丰满乱子伦码专区| 国产乱人偷精品视频| 亚洲欧美日韩无卡精品| 久久精品夜色国产| 成人毛片60女人毛片免费| 日本欧美国产在线视频| 三级男女做爰猛烈吃奶摸视频| 中国美女看黄片| 国产毛片a区久久久久| 日韩成人av中文字幕在线观看| 中国美白少妇内射xxxbb| 久久久久久大精品| 小蜜桃在线观看免费完整版高清| 久久婷婷人人爽人人干人人爱| 欧洲精品卡2卡3卡4卡5卡区| 男人舔女人下体高潮全视频| 中文字幕制服av| 国产不卡一卡二| 干丝袜人妻中文字幕| 亚洲欧美精品专区久久| 又爽又黄无遮挡网站| 亚洲成人精品中文字幕电影| 欧美丝袜亚洲另类| 成人毛片a级毛片在线播放| 午夜精品在线福利| 亚洲电影在线观看av| 亚洲欧美清纯卡通| 欧美三级亚洲精品| 国产精华一区二区三区| 夫妻性生交免费视频一级片| 18禁在线无遮挡免费观看视频| 久久鲁丝午夜福利片| а√天堂www在线а√下载| 成人高潮视频无遮挡免费网站| 狠狠狠狠99中文字幕| 看免费成人av毛片| 青青草视频在线视频观看| 国产免费男女视频| 国产高清有码在线观看视频| 白带黄色成豆腐渣| 久久午夜福利片| 女同久久另类99精品国产91| 国产精品久久视频播放| 欧美不卡视频在线免费观看| 国产成人a∨麻豆精品| 欧美最新免费一区二区三区| 中国美女看黄片| av天堂中文字幕网| 一边摸一边抽搐一进一小说| 在线观看免费视频日本深夜| 日韩高清综合在线| 寂寞人妻少妇视频99o| 久久久久网色| 久久精品人妻少妇| 美女高潮的动态| 精品久久久久久久久亚洲| 内地一区二区视频在线| 国产高清激情床上av| 国产色爽女视频免费观看| 亚洲国产欧美在线一区| 欧美潮喷喷水| 噜噜噜噜噜久久久久久91| 特级一级黄色大片| 少妇猛男粗大的猛烈进出视频 | 欧美区成人在线视频| 男人的好看免费观看在线视频| 免费观看在线日韩| 好男人在线观看高清免费视频| 色噜噜av男人的天堂激情| 久久人人爽人人片av| 深夜a级毛片| 亚洲精品456在线播放app| 久久精品夜夜夜夜夜久久蜜豆| 别揉我奶头 嗯啊视频| 九九久久精品国产亚洲av麻豆| 最近最新中文字幕大全电影3| 欧美精品国产亚洲| 午夜视频国产福利| 欧美性感艳星| 日韩国内少妇激情av| 嫩草影院入口| av.在线天堂| 国产精品一区www在线观看| 日日啪夜夜撸| 亚洲精品456在线播放app| 26uuu在线亚洲综合色| 别揉我奶头 嗯啊视频| 亚洲熟妇中文字幕五十中出| 亚洲丝袜综合中文字幕| 18禁在线播放成人免费| 看免费成人av毛片| 国产精品久久久久久av不卡| 三级男女做爰猛烈吃奶摸视频| 久久午夜亚洲精品久久|