• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimizing the defensive characteristics of mild steel via the electrodeposition of Zn—Si3N4 reinforcing particles

    2019-10-31 07:08:12AkndeOluwoleFyomi
    Defence Technology 2019年4期

    I.G.Aknde ,O.O.Oluwole ,O.S.I.Fyomi

    a Department of Mechanical Engineering,University of Ibadan,Ibadan,Oyo state,Nigeria

    b Department of Mechanical Engineering,Covenant University,ota,ogun state,Nigeria

    c Department of Chemical,Metallurgical and Materials Engineering,Tshwane University of Technology,Pretoria,South Africa

    Keywords:Polarization Corrosion Microhardness Coating Composite Matrix

    A B S T R A C T The effect of Zn—Si3N4 deposition prepared via direct electrolytic co-deposition on mild steel was studied as a result its inherent vulnerability to corrosion in an aggressive environment and failure on the application of load.The experiment was conducted varying the mass concentration of silicon nitride(Si3N4)between 7 and 13 g at cell voltage of 0.3 and 0.5 V,at constant temperature of 45°C.The morphologies of the coated surfaces were characterized using high resolution Nikon Optical Microscope and Scanning Electron Microscope(SEM)revealing that the particles of the Zn—Si3N4 were homogeneously dispersed.The corrosion behaviour was studied using potentiodynamic polarization technique in 3.65%NaCl solution and the microhardness was examined using Brinell hardness testing technique.The result of the corrosion experiment confirmed an improved corrosion resistance with a reduction in corrosion rate from 9.7425 mm/year to 0.10847 mm/year,maximum coating efficiency of 98.9%,maximum polarization resistance of 1555.3 Ω and a very low current density of 9.33×10-6 A/cm2.The negative shift in the Ecorr revealed the cathodic protective nature of the coating.The microhardness was also found to have increased from 137.9 HBN for the unmodified steel to a maximum value of 263.3 HBN for the 0.5Zn—13Si3N4 coated steel representing 90.9%increment in hardness as a result of the matrix grain refining and dispersion-strengthening ability of the incorporated Si3N4 particles.

    1. Introduction

    In recent time,incessant failure of engineering materials have orchestrated the application of coating technology as a reliable defence mechanism in automotive,manufacturing,aerospace and chemical processing industries[1].Composite coating is of a rare quality, enabling the deposition of insoluble nano-particles of ceramic,metallic and non metallic alloys into electrolytic bath for specified chemical,mechanical and functional properties[2—8].Metal matrix reinforced with nano particles generally exhibit wide range of engineering applications due to improved hardness and ability to withstand corrosion and wear[9—14].Zn incorporated nano composite coatings have been confirmed to posses’good surface properties which is not unconnected to the strengthening effect of the embedded particles[15].However,these properties can be made better through the incorporation of Si3N4nano particles [16]. By virtue of the strength, hardness, good fracture toughness and thermal resistance,silicon nitride based ceramic have been a good choice for structural component application such as ball bearings and cutting tool applications[17—19].Although attempted codeposition of hard particles such as Al2O3,TiO2,SiC,WC,Cr3C2,TiC and diamond on steel had been done focusing more on the improvement of wear resistance[20].In view of this,Zn nanocomposite coating reinforced with Si3N4particles was developed with some incorporated desired properties.Si3N4,being a versatile ceramic was chosen because of its impeccable performance when high strength,high hardness as well as good resistance to thermal shock is required [21—23]. The excellent mechanical properties[24,25]of Silicon nitride ceramic are the reasons for the attraction in numbers of application such as engine components, spacecrafts and high-temperature electronics[26—28].

    2. Experimental procedure

    2.1. Preparation of substrates

    Mild steel of dimension (50 mm×30 mm x 2 mm) whose chemical composition is shown in Table 1 was used as the cathode substrate and 99.9%zinc plate of(60 mm×40 mm x 10 mm)were prepared as anodes.The surface of the steel was well polished with emery papers of different grades as recommend in the previously by authors Ref.[29,30].The samples were surface cleaned by immersion in 0.01 M of sodium carbonate solution at ambient temperature of 25°C for 10 s.They were pickled and activated with 10%hydrochloric acid at ambient temperature for 10 s,followed by quick rinsing in deionized water.

    2.2. Deposition of Zn—Si3N4

    The bath prepared for the coating process using the parameters in Table 2 was subjected to continuous stirring at 300 rpm and 45°C constant heating throughout the coating process in order to obtain stability in suspension,avoiding particles'agglomeration.Prevention of agglomeration of particles enhances the mobility electrophoresis of the solution[31].The agitations of bath do not only keep the Zn—Si3N4particles suspended in the electrolyte but also assist their mass transportation to the cathode surface.Investigations of various researchers have shown that increased agitation generally enhances the amount of particles in the metal deposit.However,too much or immoderate agitation may influence the movement of the electrodes,alter the charge transfer region and more so,result to a lower quantity of particles in the metal deposit[32].In the plating process,the prepared mild steel being the cathode was positioned in between two zinc plates and connected to the negative terminal of the rectifier in the electrodeposition bath.The zinc(anode)were also immersed and connected to the positive terminal of the rectifier[33,34].The gap between the cathode and anodes was 3 cm.The cathode was positioned equidistance from the anodes.The pH,deposition time,current density and temperature were kept constant as shown in Table 2 varying the mass concentration of Si3N4and cell voltage.The following reactions occurred between zinc and the base metal during the electrodeposition process

    2.3. Characterization of samples and structural test

    The surface adhesion and homogeneous dispersion of Zn—Si3N4on the mild steel resulted in the development of remarkable structures.This was examined using high resolution Nikon Optical Microscope and Scanning Electron Microscope(SEM).The images were taken at 100×and 500×magnifications respectively.Potentiodynamic polarization assessment and Brinell technique at a loadof 30 g for a period of 20 s were used to characterize corrosion and hardness of the coated and uncoated steels.Measurements of the coating thickness were carried out using Elcometer microthickness meter guage(Elcometer 456 Model)with the accuracy of±1%.The thickness of all the samples were measured at different points and the thickness average were obtained for each of the samples and recorded as shown in Table 3.

    Table 2 Process parameter for Zn—Si3N4 sulphate bath formulation.

    2.4. Electrochemical test

    A three-electrode cell assembled in a 3.65%NaCl static solution with Autolab PGSTAT 101 Metrohm Potentiostat connected to NOVA 2.1.2 soft ware via computer system was used to examine the anti-corrosion behaviour of the composite coatings at ambient temperature of 25°C.The steel acted as the working electrode,platinum electrode as the counter electrode and Ag/AgCl was made the reference electrode.Potentiodynamic polarization curves were obtained from cathodic potential of-1.5 V to anodic potential of 1.5 V versus open circuit potential at a sweep rate(scan rate)of 0.005 m/s.This was carried out in similitude to our recent research work[35].

    2.5. Mechanism of zinc corrosion in 3.65%NaCl solution

    Many researchers have reported zinc hydroxide chloride as corrosion products of zinc in NaCl solution[36—38].Obviously,zinc hydroxide chloride is one of the corrosion layer compounds formed after immersion in 3.65%NaCl solution.A lot of studies on corrosion behaviour of zinc in NaCl solutions have shown that corrosion of zinc precedes two partial reactions[39,40].The cathodic reaction in Eq.(4)corresponds to the reduction of oxygen which could leads to a local increase in pH value in the depth of corrosion damages and consequently resulting to the formation of zinc hydroxide chloride in the pits and their neighbourhood areas[41].The anodic reaction involves the dissolution of zinc as shown by Eq.(5).Expectedly,zinc cation and the hydroxide anion react to form zinc hydroxide presented by Eq.(6).At the active cathodic site,zincate ions is produced as indicated by Eq.(7)provided the pH is large enough.In the presence of Sodium Chloride,Chloride ions(Cl-)migrate to the anodic site where Zinc hydroxide chloride is formed as shown in Eq.(8)

    Table 1 Chemical composition of the mild steel used.

    Table 3 Itinerary parameters of Zn—Si3N4 alloy co-deposition.

    3. Results and discussion

    3.1. Structural analysis of uncoated and Zn—Si3N4 deposited mild steel

    The Optical micrographs of the uncoated mild steel,Zn—Si3N4coated at 7%w and 13%w are shown in Figs.1—3 respectively.From the structural characterization,as expected,the uncoated mild steel surface as shown in Fig.1 looked rough exhibits the inherent pitting corrosion initiation tendency[42,43].On the other hand,several crystal growths was seen to have developed on the interface of the coated mild steels in Figs.2 and 3 exhibiting a defect free surface.With the 7%w in Fig.2(a)and 2(b),though Fig.2(a)appears smoother but visible flake-like crystalline pattern were seen at the general interface,which are more obvious in Fig.2(b).The unique microstructure displayed by the composite can be linked to the inclusion and homogeneous dispersion of Si3N4nanoparticles in the Zn matrix,promoting the increase in number of nucleation site and impeding crystal growth,resulting in the generation of small nano-sized metal grains[15,44].

    Fig.1.Optical micrograph of uncoated mild steel

    In the same vein,the 13%w coated mild steel shown in Fig.3(c)and d exhibit similar structures as the 7%w coated but appeared relatively smoother.It is worthy of note that the 0.5Zn—13Si3N4coated steel has the smoothest structure compare to all other coated samples as revealed by the optical microscope.This might be attributed to the increase in mass concentration of Si3N4nanoparticle, minimising the formation of flake-like crystalline pattern.It has been reported that,increasing mass concentration of particles increase the coating thickness leading to less coarse surfaces[45].However,it is worth mentioning that the process parameters can influence the surface texture which may alter the performance and life span of the coating[44].

    SEM micrographs Zn—Si3N4coated mild steel at 7%w and 13%w are shown in Figs.4 and 5 SEM images of the samples show that the pitting evolution at the interface was apparently invisible.Good surface topography,morphological and coverage were observed.The well dispersed quality of the coated surface hindered the ingression of the corrosive ion into the metallic interface.The surface of the sample shown in Figs.4(b)and 5(c) appeared rougher,which is in unison with the images of Optical micrograph.

    The SEM images,in accordance with the work of author Ref.[46]reveal that the zinc interface clearly displayed nodular structures on the coating network with redefined morphology making it look alluring.Expectedly,the path of nucleation started from the zinc metal as load carrier;the dissemination of the particulates involves the nucleation domains and therefore improving the formed nanocomposites.It is also worthy of note that the SEM micrographs reveal images with low porosity.

    3.2. Electrochemical test result of Zn—Si3N4 coated and uncoated mild steel

    Potentiodynamic polarization test performed on Zn—Si3N4coated steel confirmed its ability to resist corrosion in 3.65%NaCl solution.The result of the corrosion experiment obtained from the extrapolation of Tafel curve shown in Fig.6 confirmed an improved corrosion resistance with a reduction in corrosion rate from 9.7425 mm/year to 0.10847 mm/year as indicated in Table 4,maximum polarization resistance of 1555.3 Ω and a very low current density of 9.33×10-6A/cm2.This shows that the coating blocked the active sites of the modified steel impeding the exchange of current.The coatings were able to act as barrier,therefore minimising the cathodic evolution and anodic metal dissolution reactions of the mild steel[47,48].The presence of Si3N4nanoparticles decreases the concentration of chloride ion,resulting in a lower current density in the charge transfer controlled and mixed potential region. At the mixed potential region, the value of corrosion potential depends on the rate of both the cathodic as well as anodic reaction.The rate of the charge transfer reaction at the interface depends not only on the applied potential but also on the concentration of reacting species prevailing at the electrode surface[49].

    Fig.2.Optical micrographs of(a)0.3 Zn—7Si3N4 coated mild steel and(b)0.5 Zn—7Si3N4 coated mild steel.

    Fig.3.Optical micrographs of(c)0.3 Zn—13Si3N4 coated mild steel and(d)0.5Zn—13Si3N4 coated mild steel.

    Fig.4.SEM micrographs of(a)0.3 Zn—7Si3N4 coated mild steel and(b)0.5Zn—7Si3N4 coated mild steel.

    From the results obtained,all the corrosion parameters favoured 0.5Zn—13Si3N4coated sample.This may be as a result of the increased concentration of Si3N4leading to the reduction of the adsorption of chloride ion in aggressive environment[50,51].It can also be traced to the nature and adhesiveness of the passive film produced by 0.5Zn—13Si3N4on the surface of the coated steel or chemical stability of the samples[52].The negative shift in the Ecorrconfirms the cathodic protective nature of the coating[53,54].Generally,Zn—Si3N4was found to have reduced the current density of all the coated samples.The reduction in current densities could be attributed to blockage of the active sites of the steel by the Zn—Si3N4particles.

    Fig.7 shows the OCP versus time curves for the uncoated and Zn—Si3N4coated steel in 3.65% NaCl static solution. Carefully examining the OCP vs.time curves,it can be seen that the presences Zn—Si3N4shifted the potential of the steady-state to more negative values.The notable shift is attributed to the predominant cathodic effect of Si3N4on the mild steel indicating the cathodic reaction is relatively more affected than the anodic reaction [1,51]. It is important to note that the OCP vs.time curve for the coated and uncoated samples were near straight line indicating that steady state potential was attained[54].

    Fig.5.SEM micrographs(c)0.3 Zn—13Si3N4 coated mild steel and(d)0.5Zn—13Si3N4 coated mild steel.

    Fig.6.Potentiodynamic Polarization curves for uncoated and Zn—Si3N4 Composite coated mild steel in 3.65%NaCl medium.

    Table 4 Potentiodynamic Polarization parameters for uncoated and Zn—Si3N4 Composite coated mild steel in 3.65%NaCl medium.

    Fig.7.Evolution of open circuit potential(OCP)vs.exposure time for the uncoated and Zn—Si3N4 Composite coated mild steel in 3.65%NaCl medium.

    3.3. Coating efficiency

    The percentage coating efficiency(%CE)was calculated using equation(9)[55—59].

    jcorr,the corrosion current densities for the coated samples and jocorr,corrosion current density for the uncoated sample.It can be seen in Fig.8 that 0.5Zn—13Si3N4coated steel exhibits the highest coating efficiency of 98.9%.This might be due to the higher concentration of Si3N4and the value of cell voltage,thereby influencing the increase in deposition of the particles leading to higher value of thickness,175.7 μm and effective covering of the steel,preventing the ingression of chloride ion[45,51].Generally the coating efficiency of Zn—Si3N4was found to be on a high side with the minimum value of 94.9%.

    3.4. Microhardness analysis of Zn—Si3N4 coated and uncoated samples

    The microhardness results obtained for the Zn—Si3N4coated and uncoated steel were displayed in the chart in Fig.9.These values were gotten using the Brinell hardness test technique.This is in accordance to ASTM A-370[60].Upon comparison,0.5Zn—15-Si3N4has the highest hardness value of 263.3 BHN.This represents 90.9%increment in the hardness compared to the unmodified mild steel.

    Fig.8.Coating efficiency of Zn—Si3N4.

    Fig.9.Brinell hardness value for Zn—Si3N4 coated and uncoated samples.

    In general,the hardness value for all the coated samples with varying additives showed an increase. The improvement in microhardness could be attributed to the formation of adhesive mechanism of the composite coating on the substrate sample,strain energy imposed by the particles in the matrix on the periphery of the composite coated steel and operating factors such as bath constituents and other processing parameters[61—63].

    4. Conclusions

    (1)Zn—Si3N4nanocomposite coatings have been successfully produced.

    (2)The modified mild steel displayed strong strengthening behaviour with maximum hardness value of 263.3 HBN which amounts to 90.9%increment in hardness compared to the unmodified steel

    (3)0.5Zn—13Si3N4proved to be the optimum bath loading for improved corrosion resistance,hardness and better surface structure.

    (4)The result of the corrosion experiment on 0.5Zn—13Si3N4coated mild steel confirmed an improved corrosion resistance with a reduction in corrosion rate from 9.7425 mm/year to 0.10847 mm/year,coating efficiency of 98.9%,polarization resistance of 1555.3 Ω and a very low current density of 9.33×106A/cm2.

    (5)The negative shift in the Ecorrreveals the predominant cathodic protective nature of the coating.

    Acknowledgments

    This is to acknowledge Department of Mechanical Engineering,University of Ibadan for the P.hD opportunity.Prof.Fayomi Ojo Isaac Sunday of Surface Engineering Research Centre,Covenant University Ota,Nigeria is deeply appreciated for the provision of laboratory facilities and technical advice.

    两性夫妻黄色片| 亚洲精品中文字幕一二三四区| 欧美 日韩 精品 国产| 国产成人免费无遮挡视频| 男人操女人黄网站| 制服诱惑二区| 日韩欧美免费精品| 女人久久www免费人成看片| 精品乱码久久久久久99久播| 久久亚洲精品不卡| 在线观看免费视频网站a站| 国产在线一区二区三区精| 国产亚洲一区二区精品| 成年人午夜在线观看视频| 日韩免费高清中文字幕av| 少妇粗大呻吟视频| 大香蕉久久网| 中文字幕人妻熟女乱码| 黄片播放在线免费| 身体一侧抽搐| 欧美午夜高清在线| 超色免费av| 国产精品久久电影中文字幕 | 国产亚洲精品一区二区www | 免费在线观看亚洲国产| 久久影院123| 亚洲国产精品合色在线| 美女午夜性视频免费| 久久中文字幕一级| 国产精品亚洲av一区麻豆| 国产成人免费无遮挡视频| 国产一区二区三区视频了| 欧美午夜高清在线| 欧美乱妇无乱码| 伦理电影免费视频| 变态另类成人亚洲欧美熟女 | 在线观看www视频免费| 男女午夜视频在线观看| 狠狠婷婷综合久久久久久88av| 大型av网站在线播放| 亚洲色图 男人天堂 中文字幕| 18禁裸乳无遮挡免费网站照片 | 99久久国产精品久久久| 大香蕉久久成人网| 老司机午夜十八禁免费视频| 午夜久久久在线观看| 亚洲色图综合在线观看| 黄频高清免费视频| 一夜夜www| 国产黄色免费在线视频| 最近最新中文字幕大全免费视频| 久久精品国产亚洲av高清一级| 少妇裸体淫交视频免费看高清 | 久久精品亚洲精品国产色婷小说| 91九色精品人成在线观看| 欧美 亚洲 国产 日韩一| 亚洲国产精品合色在线| 老司机在亚洲福利影院| 久久国产精品影院| 国产男靠女视频免费网站| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久亚洲精品国产蜜桃av| 不卡av一区二区三区| 亚洲少妇的诱惑av| 在线看a的网站| 777米奇影视久久| 久久精品亚洲熟妇少妇任你| 成年动漫av网址| 交换朋友夫妻互换小说| 成人影院久久| 国产精品久久久久久精品古装| 人妻一区二区av| 高清毛片免费观看视频网站 | 久久 成人 亚洲| 少妇粗大呻吟视频| 欧美日韩中文字幕国产精品一区二区三区 | 黑人巨大精品欧美一区二区蜜桃| 国产有黄有色有爽视频| 欧洲精品卡2卡3卡4卡5卡区| 在线观看66精品国产| 他把我摸到了高潮在线观看| 国产欧美日韩一区二区精品| 咕卡用的链子| 在线观看免费视频网站a站| 电影成人av| 欧洲精品卡2卡3卡4卡5卡区| 欧美精品亚洲一区二区| 精品人妻在线不人妻| 久久亚洲真实| 久久国产精品人妻蜜桃| 欧美 日韩 精品 国产| 美女扒开内裤让男人捅视频| √禁漫天堂资源中文www| 美女福利国产在线| 国产成人系列免费观看| 免费女性裸体啪啪无遮挡网站| 国产av又大| 大片电影免费在线观看免费| 丁香六月欧美| 久久国产精品影院| 久久狼人影院| 久久精品人人爽人人爽视色| 久久性视频一级片| 大片电影免费在线观看免费| 国产男女内射视频| 看黄色毛片网站| 亚洲中文字幕日韩| 久久国产精品男人的天堂亚洲| 日本精品一区二区三区蜜桃| 亚洲黑人精品在线| 狂野欧美激情性xxxx| 精品国内亚洲2022精品成人 | 日韩成人在线观看一区二区三区| 19禁男女啪啪无遮挡网站| 午夜精品在线福利| 午夜成年电影在线免费观看| 看免费av毛片| 在线十欧美十亚洲十日本专区| 一边摸一边做爽爽视频免费| 久久久久久人人人人人| 女人高潮潮喷娇喘18禁视频| 精品视频人人做人人爽| 国产一卡二卡三卡精品| 国产三级黄色录像| 亚洲七黄色美女视频| 欧美乱妇无乱码| 大码成人一级视频| 精品一区二区三区av网在线观看| 真人做人爱边吃奶动态| 美女国产高潮福利片在线看| 嫩草影视91久久| 欧美黑人精品巨大| 亚洲av熟女| 亚洲人成伊人成综合网2020| 淫妇啪啪啪对白视频| 12—13女人毛片做爰片一| 国产午夜精品久久久久久| 国产成人av教育| 好看av亚洲va欧美ⅴa在| 国产一区有黄有色的免费视频| 男女之事视频高清在线观看| 国产aⅴ精品一区二区三区波| 天堂俺去俺来也www色官网| 男女床上黄色一级片免费看| 日本撒尿小便嘘嘘汇集6| 亚洲专区字幕在线| 国产主播在线观看一区二区| 欧美日韩一级在线毛片| 岛国在线观看网站| 成年人免费黄色播放视频| 国产极品粉嫩免费观看在线| 在线十欧美十亚洲十日本专区| 久久亚洲精品不卡| 日本一区二区免费在线视频| 岛国在线观看网站| 日本精品一区二区三区蜜桃| 久久久久视频综合| 妹子高潮喷水视频| 精品免费久久久久久久清纯 | 男女床上黄色一级片免费看| 久久久国产成人精品二区 | 亚洲国产毛片av蜜桃av| www.999成人在线观看| 日韩有码中文字幕| 国产精品98久久久久久宅男小说| 亚洲成av片中文字幕在线观看| 视频区图区小说| 国产精品久久久久成人av| 一区二区日韩欧美中文字幕| 在线观看免费午夜福利视频| 免费日韩欧美在线观看| 美女高潮喷水抽搐中文字幕| 人妻久久中文字幕网| 国产亚洲精品久久久久久毛片 | 不卡av一区二区三区| 国产蜜桃级精品一区二区三区 | ponron亚洲| 免费观看人在逋| 国内久久婷婷六月综合欲色啪| 亚洲精品中文字幕在线视频| 亚洲av第一区精品v没综合| 免费av中文字幕在线| 每晚都被弄得嗷嗷叫到高潮| 天堂中文最新版在线下载| 国产高清国产精品国产三级| 精品亚洲成国产av| 欧美日韩成人在线一区二区| 亚洲欧美一区二区三区久久| 国产av一区二区精品久久| 最新的欧美精品一区二区| 亚洲精品久久午夜乱码| 亚洲国产精品sss在线观看 | 一进一出抽搐动态| 在线十欧美十亚洲十日本专区| 国产91精品成人一区二区三区| 亚洲人成电影免费在线| 亚洲专区国产一区二区| 亚洲九九香蕉| 久久午夜综合久久蜜桃| tube8黄色片| 久久精品91无色码中文字幕| 王馨瑶露胸无遮挡在线观看| 久久天堂一区二区三区四区| 亚洲精品乱久久久久久| 欧美 日韩 精品 国产| 狠狠婷婷综合久久久久久88av| 国产精品 欧美亚洲| 亚洲中文字幕日韩| 亚洲七黄色美女视频| 久久人人爽av亚洲精品天堂| 美女午夜性视频免费| 桃红色精品国产亚洲av| 99国产精品一区二区三区| 欧美午夜高清在线| 亚洲欧美激情综合另类| 精品国产国语对白av| 免费在线观看影片大全网站| 大香蕉久久网| 制服诱惑二区| av国产精品久久久久影院| 欧美+亚洲+日韩+国产| 精品久久久久久久毛片微露脸| 在线av久久热| videosex国产| 欧美亚洲 丝袜 人妻 在线| 国产精品欧美亚洲77777| 一边摸一边抽搐一进一出视频| 少妇粗大呻吟视频| 亚洲,欧美精品.| 欧美成狂野欧美在线观看| 9色porny在线观看| 国产精品免费视频内射| 久久狼人影院| 天天操日日干夜夜撸| 麻豆av在线久日| 狂野欧美激情性xxxx| av电影中文网址| 成人国产一区最新在线观看| 人人妻,人人澡人人爽秒播| 亚洲熟妇熟女久久| 久久人妻福利社区极品人妻图片| 亚洲熟女精品中文字幕| 久久青草综合色| 免费在线观看影片大全网站| 黄色视频不卡| 黄色片一级片一级黄色片| 看黄色毛片网站| 丝瓜视频免费看黄片| 久久国产精品大桥未久av| 久久草成人影院| 飞空精品影院首页| 欧美日韩成人在线一区二区| 水蜜桃什么品种好| 香蕉丝袜av| 50天的宝宝边吃奶边哭怎么回事| 人妻 亚洲 视频| x7x7x7水蜜桃| 成人av一区二区三区在线看| 大香蕉久久成人网| 精品福利观看| 高清黄色对白视频在线免费看| 少妇猛男粗大的猛烈进出视频| 精品视频人人做人人爽| 中文字幕色久视频| 国产欧美日韩一区二区三区在线| 桃红色精品国产亚洲av| 在线观看66精品国产| 少妇裸体淫交视频免费看高清 | 色在线成人网| 少妇猛男粗大的猛烈进出视频| 一区二区三区激情视频| 国产精品综合久久久久久久免费 | 久久人妻av系列| 夜夜躁狠狠躁天天躁| 国产激情欧美一区二区| 免费在线观看视频国产中文字幕亚洲| av电影中文网址| 老司机深夜福利视频在线观看| 久久人妻av系列| 精品少妇久久久久久888优播| 亚洲一区二区三区不卡视频| 国产精品免费视频内射| 好男人电影高清在线观看| 身体一侧抽搐| 又黄又爽又免费观看的视频| 国产亚洲精品第一综合不卡| 免费高清在线观看日韩| 桃红色精品国产亚洲av| 欧美一级毛片孕妇| 国产成人精品久久二区二区免费| 国产99白浆流出| 一进一出好大好爽视频| 免费高清在线观看日韩| 国产成人一区二区三区免费视频网站| 波多野结衣一区麻豆| 精品国产一区二区久久| 国产国语露脸激情在线看| 久久人妻av系列| 亚洲精品在线美女| 久久天堂一区二区三区四区| 久久天躁狠狠躁夜夜2o2o| 精品欧美一区二区三区在线| 国产成人免费无遮挡视频| 国产成人精品久久二区二区免费| 久热爱精品视频在线9| av欧美777| 亚洲欧美一区二区三区黑人| 亚洲人成电影免费在线| xxxhd国产人妻xxx| 身体一侧抽搐| 中文字幕人妻丝袜制服| 亚洲欧美日韩高清在线视频| 精品亚洲成a人片在线观看| 国产精品av久久久久免费| 91老司机精品| 国产又色又爽无遮挡免费看| 色婷婷av一区二区三区视频| 亚洲精品在线观看二区| 制服诱惑二区| 国产无遮挡羞羞视频在线观看| 狠狠婷婷综合久久久久久88av| 热re99久久国产66热| 国产一区在线观看成人免费| 成年女人毛片免费观看观看9 | 少妇裸体淫交视频免费看高清 | 婷婷成人精品国产| 亚洲五月天丁香| 国精品久久久久久国模美| 深夜精品福利| 国产激情久久老熟女| 天天影视国产精品| 日本wwww免费看| 免费在线观看影片大全网站| 一边摸一边抽搐一进一小说 | 精品久久久久久久毛片微露脸| 国产99久久九九免费精品| 成人av一区二区三区在线看| 母亲3免费完整高清在线观看| 一级毛片女人18水好多| 午夜福利一区二区在线看| 满18在线观看网站| 亚洲国产精品合色在线| 亚洲中文av在线| 黄色怎么调成土黄色| 国产淫语在线视频| 欧美成人免费av一区二区三区 | 成人免费观看视频高清| 丁香六月欧美| 国产一卡二卡三卡精品| 国产高清videossex| av中文乱码字幕在线| 男人的好看免费观看在线视频 | 一级毛片女人18水好多| 深夜精品福利| 法律面前人人平等表现在哪些方面| 日韩欧美国产一区二区入口| 热99re8久久精品国产| 黄色成人免费大全| 黄频高清免费视频| 成人永久免费在线观看视频| 国产精品九九99| 欧美日韩亚洲国产一区二区在线观看 | 欧美精品亚洲一区二区| 久久香蕉国产精品| 人人妻人人添人人爽欧美一区卜| 久久国产精品男人的天堂亚洲| 国产成人影院久久av| 高清欧美精品videossex| 黄色视频,在线免费观看| 中出人妻视频一区二区| 午夜福利欧美成人| 中国美女看黄片| 高清欧美精品videossex| 亚洲精品美女久久av网站| 亚洲欧美激情综合另类| 欧美精品av麻豆av| 成人18禁在线播放| 久久中文字幕人妻熟女| 亚洲色图 男人天堂 中文字幕| 丰满人妻熟妇乱又伦精品不卡| 国产激情欧美一区二区| 男人舔女人的私密视频| 18禁国产床啪视频网站| 中亚洲国语对白在线视频| 亚洲精品国产一区二区精华液| 午夜视频精品福利| 亚洲成人国产一区在线观看| 香蕉国产在线看| 国产激情久久老熟女| 一级黄色大片毛片| 极品教师在线免费播放| 首页视频小说图片口味搜索| 亚洲一区二区三区不卡视频| 国产精品二区激情视频| 日韩人妻精品一区2区三区| 国产淫语在线视频| 国产精品.久久久| 首页视频小说图片口味搜索| 欧美不卡视频在线免费观看 | 老司机午夜福利在线观看视频| 亚洲国产欧美网| www.精华液| 精品电影一区二区在线| 黄片大片在线免费观看| 久久影院123| 亚洲中文字幕日韩| 亚洲精华国产精华精| 国产高清国产精品国产三级| 97人妻天天添夜夜摸| 久久人妻福利社区极品人妻图片| aaaaa片日本免费| 18禁裸乳无遮挡动漫免费视频| 欧美成人午夜精品| 久久人妻熟女aⅴ| 人人澡人人妻人| 国产在线观看jvid| av片东京热男人的天堂| 精品福利观看| 捣出白浆h1v1| 欧美日韩乱码在线| 99久久综合精品五月天人人| 美国免费a级毛片| 999精品在线视频| 国产精品 国内视频| 伦理电影免费视频| 久久久久久免费高清国产稀缺| 久久中文字幕人妻熟女| 99久久综合精品五月天人人| 亚洲伊人色综图| 男女之事视频高清在线观看| 国产精品 欧美亚洲| 国产精品99久久99久久久不卡| 黄色视频,在线免费观看| 首页视频小说图片口味搜索| 热re99久久国产66热| 日本欧美视频一区| 国产麻豆69| netflix在线观看网站| 国产又爽黄色视频| 精品无人区乱码1区二区| 9热在线视频观看99| 亚洲成人国产一区在线观看| 日本vs欧美在线观看视频| www日本在线高清视频| 人妻 亚洲 视频| 一进一出抽搐动态| 午夜激情av网站| 国产精品免费一区二区三区在线 | 男人的好看免费观看在线视频 | 黑人巨大精品欧美一区二区mp4| 丝袜人妻中文字幕| 每晚都被弄得嗷嗷叫到高潮| 丝袜人妻中文字幕| 天天躁夜夜躁狠狠躁躁| 成年女人毛片免费观看观看9 | 亚洲欧美一区二区三区黑人| 午夜日韩欧美国产| av有码第一页| 亚洲专区字幕在线| 国内毛片毛片毛片毛片毛片| 亚洲精品国产区一区二| 久久精品aⅴ一区二区三区四区| 亚洲第一欧美日韩一区二区三区| 亚洲专区中文字幕在线| 女人精品久久久久毛片| tube8黄色片| 无人区码免费观看不卡| tube8黄色片| 国产单亲对白刺激| 欧美+亚洲+日韩+国产| 久久久久视频综合| 亚洲国产毛片av蜜桃av| 国产成人欧美在线观看 | 国产色视频综合| 777久久人妻少妇嫩草av网站| 亚洲欧美一区二区三区黑人| 香蕉久久夜色| 黑丝袜美女国产一区| 欧美性长视频在线观看| 性色av乱码一区二区三区2| 亚洲自偷自拍图片 自拍| 亚洲国产欧美一区二区综合| 欧美日韩精品网址| 99精品欧美一区二区三区四区| 国产1区2区3区精品| 国产精品.久久久| 在线观看免费高清a一片| 18禁美女被吸乳视频| 中文字幕精品免费在线观看视频| 亚洲av第一区精品v没综合| 国产亚洲av高清不卡| 最近最新免费中文字幕在线| 777久久人妻少妇嫩草av网站| 波多野结衣一区麻豆| 亚洲精品在线美女| а√天堂www在线а√下载 | 99精国产麻豆久久婷婷| 亚洲国产欧美网| 国产精品久久久久久人妻精品电影| av国产精品久久久久影院| 国产蜜桃级精品一区二区三区 | 午夜久久久在线观看| 美女视频免费永久观看网站| 老汉色av国产亚洲站长工具| 99久久国产精品久久久| 国产高清videossex| 欧美亚洲日本最大视频资源| 国产精品一区二区在线观看99| 伦理电影免费视频| 纯流量卡能插随身wifi吗| 成人亚洲精品一区在线观看| 制服人妻中文乱码| 男女午夜视频在线观看| 大香蕉久久成人网| 欧美日韩国产mv在线观看视频| 国产精品久久久人人做人人爽| 777米奇影视久久| 国产精品久久久av美女十八| 69av精品久久久久久| 免费在线观看视频国产中文字幕亚洲| 国产主播在线观看一区二区| 最新在线观看一区二区三区| 12—13女人毛片做爰片一| 女人爽到高潮嗷嗷叫在线视频| 日韩制服丝袜自拍偷拍| 久久精品国产亚洲av高清一级| 欧美大码av| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品美女久久av网站| 国产99久久九九免费精品| 两个人免费观看高清视频| 日韩一卡2卡3卡4卡2021年| 国产在线一区二区三区精| 又大又爽又粗| 咕卡用的链子| 俄罗斯特黄特色一大片| 我的亚洲天堂| 久久狼人影院| 丰满人妻熟妇乱又伦精品不卡| 建设人人有责人人尽责人人享有的| 在线天堂中文资源库| 啦啦啦在线免费观看视频4| 久久久精品免费免费高清| 美女 人体艺术 gogo| 国产亚洲av高清不卡| 男女下面插进去视频免费观看| 成年人午夜在线观看视频| 国产午夜精品久久久久久| 精品一区二区三区av网在线观看| 日韩 欧美 亚洲 中文字幕| 精品无人区乱码1区二区| 欧美精品亚洲一区二区| 色精品久久人妻99蜜桃| 成人永久免费在线观看视频| 国产精品香港三级国产av潘金莲| 黄色片一级片一级黄色片| 黄色 视频免费看| a在线观看视频网站| 757午夜福利合集在线观看| 午夜福利免费观看在线| 99精品在免费线老司机午夜| 午夜福利乱码中文字幕| 国产日韩一区二区三区精品不卡| 日韩 欧美 亚洲 中文字幕| 精品国产一区二区久久| 亚洲精品国产区一区二| 视频区图区小说| 男人舔女人的私密视频| 超色免费av| 欧美性长视频在线观看| 在线天堂中文资源库| 午夜免费鲁丝| 日韩欧美一区二区三区在线观看 | 99精品久久久久人妻精品| 欧美日韩瑟瑟在线播放| 天天添夜夜摸| 看免费av毛片| 欧美激情 高清一区二区三区| www.精华液| 欧美激情 高清一区二区三区| 国产精品永久免费网站| 大型黄色视频在线免费观看| 男人操女人黄网站| 麻豆成人av在线观看| 99国产精品一区二区蜜桃av | 国产精品99久久99久久久不卡| 一夜夜www| 亚洲欧美一区二区三区久久| 国产91精品成人一区二区三区| 精品欧美一区二区三区在线| tube8黄色片| 一进一出抽搐动态| 精品亚洲成a人片在线观看| 村上凉子中文字幕在线| 久久午夜亚洲精品久久| 亚洲三区欧美一区| 99热国产这里只有精品6| av免费在线观看网站| 丝袜美腿诱惑在线| 欧美最黄视频在线播放免费 | 日本撒尿小便嘘嘘汇集6| 变态另类成人亚洲欧美熟女 | 国产亚洲欧美98| 丝袜在线中文字幕| 中文欧美无线码| 丝瓜视频免费看黄片| 免费在线观看黄色视频的| 老汉色∧v一级毛片| 嫁个100分男人电影在线观看| 国产精品乱码一区二三区的特点 | 美女扒开内裤让男人捅视频| 天天影视国产精品| 国产97色在线日韩免费| 在线永久观看黄色视频| 午夜久久久在线观看|