• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nuclear radiation shielding effectiveness and corrosion behavior of some steel alloys for nuclear reactor systems

    2019-10-31 07:08:36SadawyElShazly
    Defence Technology 2019年4期

    M.M.Sadawy ,R.M.El Shazly

    a Mining and Petroleum Engineering Department,Al-Azhar University,Nasr City,Cairo,11371,Egypt

    b Physics Department,Faculty of Science,Al-Azhar University,Nasr City,Cairo,11884,Egypt

    Keywords:Steel alloys Macroscopic cross-section Mass attenuation coefficient Passive film Pitting

    A B S T R A C T Different types of nuclear parameters and corrosion behavior were deduced for carbon steel(AISI 1018),austenitic(304 SS),and duplex(2507 SS)stainless steel alloys.Three types of neutron energies as well as nine gamma ray energy lines(121.78—1407.92 keV)were used to evaluate the macroscopic neutron cross-sections(∑,cm-1)and mass attenuation coefficients(σ,cm2?g-1)of gamma ray respectively.The corrosion behavior was investigated using different electrochemical techniques.The results showed that the stainless-steel alloys had a good attitude than that of carbon steel alloy for neutron and gamma ray parameters,especially the duplex stainless steel.The calculated values of mass attenuation coefficient using WinXcom computer program(Version 3.1),exhibited a very good agreement with the experimental values of that parameters.Moreover,the results indicated that duplex stainless-steel exhibited corrosion resistance higher than 304 SS and AISI 1018 steel alloys.

    1. Introduction

    Different types of nuclear reactors are considered to be the most probable and ideal solution for the problem of needing growth of electrical energy which the world faces nowadays.Stainless-steel alloys are the most commonly constructive and prospective materials for these types of nuclear reactors because of their excellent mechanical properties,weldability,corrosion resistance,irradiation damage resistance,lower induced radioactivity,availability,and easily fabricated by various methods[1—6].Moreover,these alloys exhibit a promising shielding property as they contain heavy metals such as Cr,Ni,Cu and Fe contributing radiation shielding[7].

    For fusion reactors;materials,which be used,will be exposed to fusion neutrons with energy of 14 MeV.Radiation damage of these materials is characterized by synergistic effect of the cascade damage and nuclear transmutation products such as hydrogen and helium[1].The spectrum of gamma-ray energy,which produced in the fusion reactors,requires long lasting,adequate,cost effective shielding materials to optimize the radiation level and collective dose[8].Stainless steel is the most popular type of steel alloys applied where high corrosion resistance and levels of functionality over longer periods of time are required[9—11].It is well-known that the high corrosion resistance of stainless steels in aqueous environments arises from the existence of a thin oxide film on their surfaces.The stability of the oxide passive film and its susceptibility to breakdown depends on certain parameters such as temperature,pH,applied potentials and environments[12].

    Steel alloys,in inner containment wall of double walled structure dome,were used for leak tightness under normal operation and accident conditions in modern reactor designs.The gamma rays emitted from reactors core are polychromatic, while the available data from the experimental results are little for gamma radiation[13—15].Moreover,the electrochemical properties and the corrosion product composition of the stainless and mild steels depend on the conditions(corrosive ions,temperature,etc.)in the secondary circuit of the nuclear power plant.Actually,it is impossible to determine the corrosion behavior for an actual case from theoretical data only.Therefore,the objective of the present study is to distinguish between three types of steel alloys by their nuclear properties and corrosion behavior to illustrate the possibility of their use in different places in nuclear reactors systems.

    2. Materials

    The present study was carried out by using sheets of carbon steel(AISI 1018),austenitic(304 SS),and duplex(2507 SS)stainlesssteel.The chemical compositions were presented in Table 1.Groups of samples were cut from each sheet and machined to 100 mm×100 mm×5 mm and 30 mm×10 mm×5 mm for nuclear and corrosion measurements respectively.The samples were mechanically polished by using grinding machine with SiC abrasive paper subsequently to 1200 grits and water as a lubricant.

    Table 1 Chemical composition and density of investigated steel Alloys.

    3. Experimental measurements and theoretical calculations

    3.1. Neutron and gamma ray measurements

    The density of the investigated steel alloys was measured by using the standard Archimedes principle[14].The BF3neutron detector was used to detect the slow,total slow neutron,and neutron with energy greater than 10 keV fluxes emitted from241Am-Be neutron source with activity 100 mCi and neutron yield=(1.1—1.4)×107n?sec-1. To deduce the values of macroscopic neutron cross-section, the neutron transmitted fluxes were measured according to Eq.(1)[16,17]:

    In slow neutrons measurements, the collimated beam was slowed down by 7 cm polyethylene block behind the sample,also the neutron of energy below 10 keV was cut off by a block of Born carbide B4C.The Schematic diagram of experimental setup was shown in Fig.1.

    The gamma ray attenuation coefficients of the investigated steel alloys barriers were obtained for nine energy lines(121.78,344.27,661.64,778.9,964,1112.4,1173.23,1332.51,and 1407.92 keV)using collimated beam of gamma rays which emitted from 3.7 μCi Eu-152,9.5 μCi Cs-137,and 4.9 μCi Co-60 radioactive sources.The schematic diagram of experimental setup for gamma ray detection is shown in Fig.2.The 3′′×3′′NaI(Tl)scintillation detector was used to measure the gamma ray intensities for the studied energy lines.The Beer-Lambert's equation was used to evaluate the linear attenuation coefficients[18,19]:

    where,Ioand I are the intensities of gamma rays before and after transmitted the sample respectively,μ(by cm-1)is the linear attenuation coefficient of the sample,and x is the thickness of the sample.Mass attenuation coefficient,σ(by cm2?g-1)is another important nuclear parameter which independent of density of the material,was evaluated from Eq.(3)[20,21]after considering superficial density of thickness.

    The comparison between experimental and calculated data using the WinXCom computer program(Version 3.1)according to Eq.(4)was carried out[11,18,19]:

    The maximum errors in ∑,σ,and half value layer(HVL)were evaluated using the following propagation of error formulas[19,22]:

    3.2. Corrosion measurements

    Fig.1.Schematic diagram of experimental setup for neutron detection.

    Fig.2.Schematic diagram of experimental setup for gamma ray detection.

    The electrochemical corrosion tests were carried out using a three-electrode system.Ag/AgCl electrode was used as reference electrode,a platinum foil as counter-electrode and the investigated alloys with a surface area of 1.0 cm2as working electrode.The open-circuit potential(OCP)was recorded after immersion of the samples in the test solution for 15 min.The polarization tests were carried out at a scan rate of 0.5 mV?s-1.The PAR Calc Tafel Analysis software was used to fit the experimental data to the Stern-Geary model for a corroding system.Potentiostatic measurements were carried out at+500 mV(vs Ag/AgCl)for 120 s,where the anodic current was recorded as a function of time.All corrosion experiments were carried out in 3.5 wt%NaCl solution as electrolyte at different temperatures from 25 to 90°C.The solution was prepared from analytical grade and deionized water.The morphology of the surface after polarization was investigated by using optical microscope.

    4. Results and discussions

    4.1. Nuclear attenuation parameters

    The values of cross-sections of slow,total slow neutrons(primary slow as well as slowdown in the studied steel alloys),and neutron with energy greater than 10 keV were deduced from the attenuation curves and presented in Fig. 3 and Table 2. It is observed that,the values of macroscopic cross-sections of slow neutrons in all types of steel alloys were the biggest values among the other neutron energies.This behavior of slow neutron may be attributed to radiative capture,(n,γ)reaction by Mn nuclei in all types of steel alloys and(n,n)reaction between slow neutrons and Fe nuclei.Moreover,the results show that the values of ∑for total slow neutron in duplex stainless-steel alloy are greater than that in other two types of steel alloys owing to(n,n)and(n,γ)reactions in slow down region by W nuclei.On the other hand,the results presented in Fig.3 and Table 2 show that there is insignificant change in macroscopic cross-section values of neutron with energy>10 keV for all alloys.This is due to(n,n)reactions,in this neutron energy range,with Fe,Mn,and Ni which are found in all types of samples.Also,this insignificant change may be attributed to the presence of W nuclei in duplex stainless steel which substitute the effect of low wt%of Fe in this type of alloy.

    Fig.3.Macroscopic cross-sections of different types of steel alloys with different types of neutron energies.

    Table 2 Macroscopic cross-sections of different types of steel alloys with different types of neutron energies.

    Table 3 Half value layer(HVL)of all investigated samples at different neutron energies.

    The comparison of half value layers of the investigated alloys for different neutron energies is shown in Table 3.

    The attenuation relations for the intensity of gamma rays,(in the energy range of 121—1407 keV)measured behind the investigated steel alloy barriers,are used to deduce the total linear attenuation coefficients(μ,cm-1)as a slope of these curves.

    Fig.4.Mass attenuation coefficients of Duplex Stainless steel(2507 SS)samples as a function of gamma ray energy.

    Fig.5.Mass attenuation coefficients of austenitic stainless steel(304 SS)samples as a function of gamma ray energy.

    Fig.6.Mass attenuation coefficients of carbon steel(AISI 1018)samples as a function of gamma ray energy.

    Fig.4-Fig.6 and Table 4 show the behavior of experimental and calculated mass attenuation coefficient(σ,cm2?g-1).On one side,the results show an excellent agreement between the experimental values of mass attenuation coefficients and that calculated by winXCom computer program(Version 3.1).On the other side,the behavior of all these curves can be divided into two regions.The first region from 121 to 400 keV was characterized by a sharp decrease in the values of mass attenuation coefficients with the increase of gamma ray energies.This behavior is due to the photoelectric reaction which predominates between the investigated alloy barriers and gamma rays.The second region from 400 to 1407 keV characterizes by a slight decrease in the values of mass attenuation coefficients with the increase of gamma ray energies.This is attributed to Compton scattering reaction which predominates in this stage.

    Fig.7 shows the comparison between the average experimental values of mass attenuation coefficients of the investigated steel alloys at different gamma ray energies.The basic feature of this Figure is that,there is insignificant difference in the values of mass attenuation coefficients for all investigated alloys.This behavior is attributed to the values of densities of investigated steel alloys nearly the same.However,the duplex stainless-steel alloy has the highest value of mass attenuation coefficients for all used gamma ray energies owing to the presence of heavy nuclei such as Cr,Ni,Mo,and W nuclei as well as Fe nuclei.The comparison of half value layers of different types of investigated steel alloys for different investigated gamma ray energies is shown in Table 5.

    Fig.7.Comparison between mass attenuation coefficients of steel alloys samples with different gamma ray energies.

    4.2. Corrosion behavior

    4.2.1. Open circuit potential(OCP)

    The variation of the free open circuit potential(OCP)with time for the investigated alloys in 3.5 wt%.NaCl solution at 25 and 90°C is shown in Fig.8 and Fig.9 respectively.It can be noted that the OCP as shown in Fig.8 tends from the moment of immersion towards more negative potentials for all alloys.This behavior represents the dissolution of steel alloys[4].After passing short time of immersion,the potentials of duplex and austenitic stainless steel shift towards more positive direction and stabilize while carbon steel shifts towards more negative potential with potential fluctuation.The positive shift in potential might be associated with thickening of the oxide film formed on the surface while the negative shift is attributed to the thinning and dissolution of the film.The OCP of the investigated alloy at 90°C is shown in Fig.9.It can be seen that increasing temperature to 90°C the OCP of all alloys shifts to more negative potentials with great potential fluctuation.However,duplex stainless steel still has more positive potentials comparing to the other alloys.This means that the protective ability of the passive film on duplex stainless steel is greater than the passive film of both austenitic stainless steel and carbon steel.

    4.2.2. Potentiodynamic polarization

    Potentiodynamic polarization curves of investigated alloys in 3.5 wt%.NaCl solution at different temperatures are shown in Fig.10-Fig.12.It can be observed from potentiodynamic polarization curves that the cathodic and anodic curves show a regularpattern for all alloys.The anodic current density continuously increases with increasing corrosion potential(Ecorr).This behavior shows that all investigated alloys have active dissolution behavior in 3.5 wt%.NaCl solution at different temperatures.Additionally,Fig.10-Fig.12 reveal that with increasing temperature,the Ecorrshifts to less noble potential and the corrosion current density(icorr)increases.The carbon steel has the highest current density while the duplex stainless steel has the lowest.On the other hand,the potentiodynamic polarization curves show that by increasing temperature the passive potential regions of duplex and austenitic stainless steel decreases.This behavior is attributed to the decrease in concentration of the dissolved oxygen and reduction of the pH values in some localized micro-regions,which prevent the formation of Cr6+[9—11].

    Table 4 Mass attenuation coefficients of the investigated alloys.

    Table 5 Half value layer(HVL)of all investigated samples at different gamma ray energies.

    Fig.8.Potential-time curves of investigated steel alloys at 25°C in 3.5 wt%NaCl solution.

    Fig.9.Potential-time curves of investigated steel alloys at 90°C in 3.5 wt%NaCl solution.

    Fig.10.Potentiodynamic polarization curves of carbon steel(AISI 1018)in 3.5 wt%NaCl solution at different temperatures.

    Fig.11.Potentiodynamic polarization curves of austenitic stainless steel(304 SS)in 3.5 wt%NaCl solution at different temperatures.

    Fig.12.Potentiodynamic polarization curves of duplex stainless steel(2507 SS)in 3.5 wt%NaCl solution at different temperatures.

    The electrochemical parameters extracted from potentiodynamic polarization curves are summarized in Table 6.It can be seen that the Ecorrfor duplex stainless steel is higher when compared with austenitic stainless steel and carbon steel at all different temperatures.In this case the rise in potential in noble direction with lower(icorr)for duplex stainless steel is due to thick protective film on the surface[5].

    Fig.13 shows the breakdown potential(Eb)of the investigatedsteel alloys as a function of temperature.The Ebvalue decreases with increasing temperature due to the high mobility of aggressive chloride ions[11].However,the Ebof duplex stainless steel is higher when compared with the other steel alloys at different temperatures.This owes to the presence of molybdenum which promotes the passivation process and improves the pitting resistance.When molybdenum is incorporated into the passive film of stainless steel,it produces oxides with different oxidation states.However,the most common corrosion product incorporated into the passive layer is MoO42-,which is extremely stable and fixes this film[23,24].

    Table 6 Electrochemical parameters obtained from potentiodynamic polarization measurements of the investigated steel alloys at different temperatures in 3.5 wt%NaCl solution.

    The activation energy(Ea)of the corrosion process of investigated steel alloys in 3.5 wt%.NaCl solution was calculated by using Arrhenius-equation:

    where,A is the Arrhenius constant,R is the universal gas constant and T is temperature.By plotting ln(K)versus(1/T),as shown in Fig.14 a straight line with a slope equals—Ea/R was obtained.The values of Eawere 25.79,27.32.and 32.06 kJ?mol-1for AISI 1018,304 SS and 2507 SS respectively.The Eavalue of duplex stainless steel >austenitic stainless steel >carbon steel.This means that the protective passive film of duplex stainless steel >austenitic stainless steel >carbon steel.

    Fig.13.The breakdown potential(Eb)of the investigated steel alloys as a function of temperature in 3.5 wt%NaCl solution.

    Fig.14.Arrhenius plots ln icorr vs.1/T for investigated steel alloys in 3.5%wt.NaCl solution.

    On the other hand,Fig.15 and Fig.16 show the optical micrographs of the investigated steel alloys after potentiodynamic polarization tests at 25 and 90°C respectively.As shown in Fig.15(a)carbon steel alloy exhibits uniform dissolution due to absence of a protective oxide layer.While Fig.15(b)and Fig.15(c)indicate that the passive films of both austenitic and duplex stainless steels were dissolved in some selective sites due to defects in the passive layer and accompanied with some small pits.Increasing temperature to 90°C,the carbon steel alloy shows severely dissolution as shown in Fig.16(a)and size of pits increase obviously for both duplex and austenitic stainless steels (Fig.16(b) and Fig.15(c)). However,numbers and sizes of pits for duplex stainless are lower comparing with austenitic stainless steel.This means that the protective barrier layer of duplex stainless steel against corrosion attacks is stronger than the passive layer of austenitic stainless steel.

    4.2.3. Potentiostatic current—time measurements

    Potentiostatic measurements were carried out at 25 and 90°C to gain more information on the passivity of investigated steel alloys in 3.5 wt%NaCl solution.Fig.17 displays the current density variation with time at 25°C and+500 mV vs.(Ag/AgCl).The electrochemical behavior of carbon steel can be classified into two stages.In the first stage the current density increases in few seconds about 24 s and this represent the dissolution of alloy.In the second stage the current density fluctuates until the end of the test.This trend represented the accumulation of corrosion products of a porous γ-Fe2O3/Fe3O4film[25]and initiation of pits.On the other hand,Fig.17 shows that the current densities of austenitic stainless steel and duplex stainless steel keep constant.This behavior represents the dynamic equilibrium between the dissolution and growth of the passive film[10,11].Additionally,Fig.17 reveals that the passive current density of duplex stainless steel is lower than that of austenitic stainless steel.This means that the passive film of duplex stainless steel has low defects compared to austenitic stainless steel.Fig.18 shows the current density variation with time at 90°C and+500 mV vs.(Ag/AgCl).The results indicate that the current density of carbon steel fluctuated from the moment of immersion till the end of the experiment.This behavior was attributed to aggressive dissolution of surface and the corrosion product is very porous at 90°C which dose not have ability to passivate the surface.Furthermore,the current density of austenitic stainless steel and duplex stainless steel accompanied with the fluctuation of current density.This represents the formation of metastable pits on the surface[26].Presence of molybdenum in duplex stainless steel increases the incubation time of pits on the surface and decreases the current density compared with the other alloys.

    Fig.15.Micrographs of surface morphology of investigated steel alloys after potentiodynamic measurements at 25°C.

    Fig.16.Micrographs of surface morphology of investigated steel alloys after potentiodynamic measurements at 90°C.

    Fig.17.Potentiostatic current—time curves of investigated steel alloys at 25 °C and+500 mV in 3.5 wt%NaCl solution.

    Fig.18.Potentiostatic current—time curves of investigated steel alloys at 90 °C and+500 mV in 3.5 wt%NaCl solution.

    5. Conclusion

    A comparison between three types of steel alloys was carried out from the point of view of nuclear and corrosion studies.From the obtained results,it can be conclude that,stainless steel alloys especially duplex 2507 SS,are a good candidate to be used in different position in nuclear reactor systems as reactor fuel cladding,pressure vessel,and piping inner layer,…etc.due to the following:

    1)Duplex 2507 SS has better HVL than that of 304 SS and AISI 1018 for total slow neutron and neutron energy >10 keV.

    2)Duplex stainless steel has the best values of mass attenuation coefficient of gamma ray energies and HVL.

    3)The passive current density of duplex stainless steel is lower than that of austenitic stainless steel and carbon steel.

    4)Pitting corrosion potential of investigated alloys decreased with increasing temperature.However,duplex stainless steel has more pitting resistance compared with other alloys at all different temperatures.

    Acknowledgement

    Authors appreciate their deeply thanks for Al Azhar University,Faculty of Science & Faculty of Engineering, Cairo, Egypt for providing us the necessary materials and measurements.

    亚洲婷婷狠狠爱综合网| 黄色配什么色好看| 波多野结衣巨乳人妻| 国产成人a区在线观看| 最近最新中文字幕大全电影3| 久久久久久久大尺度免费视频| 美女高潮的动态| 熟女人妻精品中文字幕| 春色校园在线视频观看| 色播亚洲综合网| 日本av手机在线免费观看| 一边亲一边摸免费视频| 97人妻精品一区二区三区麻豆| 欧美高清成人免费视频www| 日韩一区二区视频免费看| 亚洲精品一区蜜桃| 嘟嘟电影网在线观看| 男人狂女人下面高潮的视频| 99热全是精品| 欧美xxxx性猛交bbbb| 精品一区二区三区视频在线| 久久久久网色| 99久久精品国产国产毛片| 最后的刺客免费高清国语| 欧美成人一区二区免费高清观看| 好男人视频免费观看在线| 美女内射精品一级片tv| 天天躁日日操中文字幕| av国产久精品久网站免费入址| 亚洲高清免费不卡视频| 啦啦啦中文免费视频观看日本| 视频中文字幕在线观看| 深爱激情五月婷婷| 深爱激情五月婷婷| 搡老妇女老女人老熟妇| 美女xxoo啪啪120秒动态图| 日日干狠狠操夜夜爽| 国产免费视频播放在线视频 | 亚洲婷婷狠狠爱综合网| 一区二区三区免费毛片| 韩国高清视频一区二区三区| 国产视频内射| 99热全是精品| 久久精品久久久久久久性| 韩国高清视频一区二区三区| 欧美3d第一页| 亚洲精品中文字幕在线视频 | 亚洲va在线va天堂va国产| 大香蕉97超碰在线| 2021少妇久久久久久久久久久| 五月天丁香电影| 成人av在线播放网站| 国产精品美女特级片免费视频播放器| 韩国av在线不卡| 人妻系列 视频| 亚洲一区高清亚洲精品| 亚洲欧美成人精品一区二区| 国产探花在线观看一区二区| 国产又色又爽无遮挡免| 久久久久久久久中文| 亚洲欧美成人精品一区二区| 国产成人精品福利久久| 午夜福利在线观看免费完整高清在| 国产一区二区三区综合在线观看 | 午夜福利在线在线| 人人妻人人澡欧美一区二区| av国产免费在线观看| 男女下面进入的视频免费午夜| 日日撸夜夜添| 精品久久久久久久久av| 天美传媒精品一区二区| 久久韩国三级中文字幕| 成人无遮挡网站| 美女内射精品一级片tv| 乱系列少妇在线播放| 日本黄色片子视频| 精品久久久久久成人av| 日日啪夜夜爽| 欧美一级a爱片免费观看看| 亚洲在线观看片| 成人欧美大片| 国产精品不卡视频一区二区| 日本熟妇午夜| 亚洲成色77777| av.在线天堂| 中文天堂在线官网| 亚洲自拍偷在线| 国内揄拍国产精品人妻在线| 2018国产大陆天天弄谢| 一级二级三级毛片免费看| 色播亚洲综合网| 久久久久网色| 一级av片app| 亚洲精品乱码久久久v下载方式| 老师上课跳d突然被开到最大视频| 天堂网av新在线| 国产精品人妻久久久久久| 精品酒店卫生间| 国产有黄有色有爽视频| 国内少妇人妻偷人精品xxx网站| 日本与韩国留学比较| 日韩中字成人| 亚洲国产欧美在线一区| 有码 亚洲区| 视频中文字幕在线观看| 亚洲最大成人手机在线| 少妇熟女欧美另类| 亚洲图色成人| 赤兔流量卡办理| 国产男女超爽视频在线观看| 三级国产精品欧美在线观看| 91午夜精品亚洲一区二区三区| 欧美bdsm另类| 亚洲国产av新网站| 99热网站在线观看| 激情五月婷婷亚洲| 国产av国产精品国产| 亚洲最大成人手机在线| 如何舔出高潮| 国产探花在线观看一区二区| 伊人久久精品亚洲午夜| 91午夜精品亚洲一区二区三区| 成人国产麻豆网| 91久久精品国产一区二区三区| 一区二区三区四区激情视频| 一本久久精品| 三级国产精品片| 午夜福利成人在线免费观看| 亚洲精华国产精华液的使用体验| 欧美日韩综合久久久久久| 久久国产乱子免费精品| 少妇的逼好多水| 久久6这里有精品| 成年人午夜在线观看视频 | 欧美日本视频| 亚洲成色77777| 国产精品国产三级专区第一集| 美女黄网站色视频| 啦啦啦中文免费视频观看日本| 搡老妇女老女人老熟妇| 午夜福利视频1000在线观看| 国产视频内射| 久久精品国产鲁丝片午夜精品| 国产激情偷乱视频一区二区| 黄色一级大片看看| 国产女主播在线喷水免费视频网站 | 欧美xxⅹ黑人| freevideosex欧美| 国内揄拍国产精品人妻在线| 777米奇影视久久| 欧美性猛交╳xxx乱大交人| 国产精品嫩草影院av在线观看| 啦啦啦啦在线视频资源| 精品久久久噜噜| 日韩成人伦理影院| 欧美日韩一区二区视频在线观看视频在线 | 18禁在线无遮挡免费观看视频| 少妇熟女欧美另类| 中文字幕人妻熟人妻熟丝袜美| 午夜免费观看性视频| 日本熟妇午夜| 肉色欧美久久久久久久蜜桃 | 菩萨蛮人人尽说江南好唐韦庄| 亚洲最大成人av| 精品久久久精品久久久| 午夜精品国产一区二区电影 | 国产精品精品国产色婷婷| av国产久精品久网站免费入址| 麻豆精品久久久久久蜜桃| 丝袜喷水一区| 大香蕉久久网| 91午夜精品亚洲一区二区三区| 日韩三级伦理在线观看| 91在线精品国自产拍蜜月| 亚洲国产精品成人久久小说| 99久久人妻综合| kizo精华| 免费无遮挡裸体视频| 少妇的逼好多水| av播播在线观看一区| 久久久久久久久久黄片| 最近中文字幕高清免费大全6| 亚洲国产色片| 亚洲av在线观看美女高潮| 亚洲欧美成人精品一区二区| 亚洲国产高清在线一区二区三| 午夜福利在线在线| 久久久国产一区二区| 18禁裸乳无遮挡免费网站照片| 亚洲国产成人一精品久久久| 欧美97在线视频| 一个人看的www免费观看视频| 黄片无遮挡物在线观看| 噜噜噜噜噜久久久久久91| 成年人午夜在线观看视频 | 老司机影院毛片| 日日啪夜夜撸| 国产 亚洲一区二区三区 | 最近中文字幕高清免费大全6| 精品一区二区三区视频在线| 精品亚洲乱码少妇综合久久| 高清视频免费观看一区二区 | 在现免费观看毛片| 极品教师在线视频| 亚洲性久久影院| 国产黄色免费在线视频| 日韩大片免费观看网站| 一个人免费在线观看电影| 建设人人有责人人尽责人人享有的 | 欧美变态另类bdsm刘玥| 寂寞人妻少妇视频99o| 久久久久久久久大av| 精品久久久久久久末码| 特大巨黑吊av在线直播| 午夜视频国产福利| 国产免费福利视频在线观看| 国产精品国产三级国产av玫瑰| av卡一久久| 久久精品久久久久久久性| 午夜免费男女啪啪视频观看| 免费观看在线日韩| 亚洲国产精品专区欧美| 大片免费播放器 马上看| 精品99又大又爽又粗少妇毛片| 久久久久免费精品人妻一区二区| 中文字幕av成人在线电影| 五月玫瑰六月丁香| 一二三四中文在线观看免费高清| 久久久久性生活片| 亚洲丝袜综合中文字幕| 九九在线视频观看精品| 在线观看一区二区三区| 啦啦啦中文免费视频观看日本| 如何舔出高潮| 成人高潮视频无遮挡免费网站| 免费看a级黄色片| 亚洲最大成人av| 国产中年淑女户外野战色| 真实男女啪啪啪动态图| 国产熟女欧美一区二区| 国产一区二区在线观看日韩| 亚洲精品久久午夜乱码| 久久99热6这里只有精品| 国产在线男女| 成人毛片60女人毛片免费| 97超视频在线观看视频| 国产精品国产三级专区第一集| 精品午夜福利在线看| 中文乱码字字幕精品一区二区三区 | 看十八女毛片水多多多| 久久99蜜桃精品久久| 亚洲av一区综合| 亚洲精品456在线播放app| 欧美人与善性xxx| 亚洲成人中文字幕在线播放| 最近中文字幕高清免费大全6| 成人鲁丝片一二三区免费| 91狼人影院| 美女主播在线视频| 国产高清有码在线观看视频| 蜜桃亚洲精品一区二区三区| 国产成人精品福利久久| 热99在线观看视频| 卡戴珊不雅视频在线播放| 国产91av在线免费观看| 日韩,欧美,国产一区二区三区| 久久精品久久久久久噜噜老黄| 国精品久久久久久国模美| 久久精品久久久久久久性| 搞女人的毛片| av国产免费在线观看| 丝袜美腿在线中文| 国产v大片淫在线免费观看| 一个人看视频在线观看www免费| 黄片无遮挡物在线观看| 国产高清有码在线观看视频| 免费看日本二区| 不卡视频在线观看欧美| 人人妻人人澡欧美一区二区| 午夜亚洲福利在线播放| 国产一级毛片在线| 人妻一区二区av| 国产午夜精品久久久久久一区二区三区| 国产黄色小视频在线观看| 成人二区视频| 色综合色国产| 国产成人91sexporn| 一本久久精品| 夜夜爽夜夜爽视频| 国产有黄有色有爽视频| 国产亚洲91精品色在线| 亚洲精品第二区| 国产精品99久久久久久久久| 亚洲成人中文字幕在线播放| 欧美成人a在线观看| 国产大屁股一区二区在线视频| 国产av码专区亚洲av| 爱豆传媒免费全集在线观看| 五月天丁香电影| 久久亚洲国产成人精品v| 国产精品无大码| 亚洲国产精品成人综合色| 精品久久久久久成人av| 波野结衣二区三区在线| 久久久国产一区二区| 韩国高清视频一区二区三区| 亚洲无线观看免费| 亚洲成人中文字幕在线播放| 能在线免费看毛片的网站| 亚洲av不卡在线观看| 久久鲁丝午夜福利片| 成人国产麻豆网| 日本一二三区视频观看| 日韩欧美一区视频在线观看 | 一级毛片 在线播放| 亚洲精品国产av成人精品| 国产淫语在线视频| 久久精品人妻少妇| 91在线精品国自产拍蜜月| 亚洲av在线观看美女高潮| 国产一级毛片七仙女欲春2| 少妇的逼好多水| 成人二区视频| 精品国产一区二区三区久久久樱花 | or卡值多少钱| 欧美极品一区二区三区四区| 国产熟女欧美一区二区| 国产亚洲午夜精品一区二区久久 | 熟女人妻精品中文字幕| kizo精华| 看非洲黑人一级黄片| 最后的刺客免费高清国语| 成人欧美大片| 97人妻精品一区二区三区麻豆| 亚洲婷婷狠狠爱综合网| 亚洲在线观看片| 日韩欧美精品v在线| 好男人视频免费观看在线| 免费观看精品视频网站| av播播在线观看一区| 18禁裸乳无遮挡免费网站照片| a级一级毛片免费在线观看| 国产 一区精品| 国产成人a∨麻豆精品| 精品国内亚洲2022精品成人| 午夜日本视频在线| 国产免费视频播放在线视频 | 又大又黄又爽视频免费| 天天躁日日操中文字幕| 久久这里有精品视频免费| 看非洲黑人一级黄片| 在现免费观看毛片| 国产伦在线观看视频一区| 久久精品夜夜夜夜夜久久蜜豆| 在现免费观看毛片| 人妻一区二区av| 亚洲av.av天堂| 三级毛片av免费| 国产精品.久久久| 有码 亚洲区| 午夜福利成人在线免费观看| 亚洲欧美一区二区三区黑人 | 丰满乱子伦码专区| 成人亚洲精品av一区二区| 精品国产一区二区三区久久久樱花 | 丰满少妇做爰视频| 免费看不卡的av| 日本wwww免费看| 午夜爱爱视频在线播放| 国产精品.久久久| 日韩av免费高清视频| 成人亚洲精品av一区二区| 免费在线观看成人毛片| a级一级毛片免费在线观看| 别揉我奶头 嗯啊视频| 自拍偷自拍亚洲精品老妇| 男人爽女人下面视频在线观看| 欧美区成人在线视频| 嫩草影院新地址| 夜夜爽夜夜爽视频| 亚洲欧洲国产日韩| 亚洲欧美一区二区三区国产| 国产毛片a区久久久久| 激情 狠狠 欧美| 久久久a久久爽久久v久久| 久久精品夜夜夜夜夜久久蜜豆| 国产精品久久久久久久久免| 亚洲精品乱码久久久久久按摩| 能在线免费看毛片的网站| 黄色配什么色好看| 欧美一区二区亚洲| 国产又色又爽无遮挡免| 国产成人精品婷婷| 午夜精品国产一区二区电影 | 最近中文字幕2019免费版| 欧美最新免费一区二区三区| 欧美另类一区| 精品亚洲乱码少妇综合久久| 欧美日韩在线观看h| 一级黄片播放器| 国产免费福利视频在线观看| 国产精品久久视频播放| 九草在线视频观看| 美女xxoo啪啪120秒动态图| 国产综合懂色| 亚洲av成人精品一二三区| 啦啦啦啦在线视频资源| 成人毛片60女人毛片免费| 欧美xxxx黑人xx丫x性爽| 少妇的逼水好多| 国产成人免费观看mmmm| 亚洲欧美一区二区三区国产| 十八禁网站网址无遮挡 | 成人特级av手机在线观看| 免费黄频网站在线观看国产| 日韩制服骚丝袜av| 亚洲成人一二三区av| 午夜福利成人在线免费观看| 亚洲不卡免费看| 国产一级毛片七仙女欲春2| 国产高清国产精品国产三级 | 3wmmmm亚洲av在线观看| 秋霞在线观看毛片| 久久久久免费精品人妻一区二区| av国产免费在线观看| 免费观看性生交大片5| 精品久久久久久久人妻蜜臀av| 热99在线观看视频| 美女高潮的动态| 久久热精品热| 禁无遮挡网站| 日本熟妇午夜| 中文天堂在线官网| 日韩欧美三级三区| 久热久热在线精品观看| 我的老师免费观看完整版| 久久6这里有精品| 精品久久久久久久人妻蜜臀av| 亚洲精品色激情综合| 久久精品久久久久久久性| 纵有疾风起免费观看全集完整版 | 国产美女午夜福利| 欧美日韩一区二区视频在线观看视频在线 | 国产成人精品福利久久| 舔av片在线| 国产成人a区在线观看| 黄片wwwwww| 麻豆乱淫一区二区| 1000部很黄的大片| 亚洲国产最新在线播放| 不卡视频在线观看欧美| 夫妻午夜视频| av黄色大香蕉| 国产精品av视频在线免费观看| 深夜a级毛片| 国产成人精品久久久久久| 国产免费视频播放在线视频 | 舔av片在线| 久久这里有精品视频免费| 99久久精品热视频| 欧美 日韩 精品 国产| 自拍偷自拍亚洲精品老妇| 久久久久精品性色| 色网站视频免费| 婷婷色综合www| 欧美变态另类bdsm刘玥| 男人舔女人下体高潮全视频| 乱系列少妇在线播放| 国产男女超爽视频在线观看| 成人漫画全彩无遮挡| 免费观看精品视频网站| 3wmmmm亚洲av在线观看| 国产片特级美女逼逼视频| 99久久九九国产精品国产免费| 日韩大片免费观看网站| 国产精品美女特级片免费视频播放器| 黄色配什么色好看| 97超视频在线观看视频| 天堂俺去俺来也www色官网 | 男人舔奶头视频| 大片免费播放器 马上看| 免费人成在线观看视频色| 亚洲一级一片aⅴ在线观看| 直男gayav资源| 亚洲精品成人久久久久久| 精品一区二区三区视频在线| 99视频精品全部免费 在线| 免费看美女性在线毛片视频| 国产 一区 欧美 日韩| 亚洲av成人精品一二三区| 超碰97精品在线观看| 国产黄频视频在线观看| 99热全是精品| 国产永久视频网站| 日本欧美国产在线视频| 少妇熟女aⅴ在线视频| 青青草视频在线视频观看| 久久亚洲国产成人精品v| av一本久久久久| 成人欧美大片| 亚洲18禁久久av| 乱码一卡2卡4卡精品| 国内揄拍国产精品人妻在线| 欧美成人精品欧美一级黄| 日韩欧美精品v在线| a级毛色黄片| 男女边摸边吃奶| 水蜜桃什么品种好| ponron亚洲| 欧美成人一区二区免费高清观看| 女人久久www免费人成看片| 欧美日韩视频高清一区二区三区二| 国产激情偷乱视频一区二区| 最近最新中文字幕免费大全7| 精品99又大又爽又粗少妇毛片| 亚洲成人中文字幕在线播放| 成年免费大片在线观看| 亚洲真实伦在线观看| 99久国产av精品国产电影| 三级经典国产精品| 一个人观看的视频www高清免费观看| 国产伦在线观看视频一区| 成人特级av手机在线观看| av专区在线播放| 国产精品三级大全| 国产成人精品一,二区| 日韩大片免费观看网站| 乱码一卡2卡4卡精品| av免费在线看不卡| 精品久久久久久成人av| 国产不卡一卡二| 婷婷色av中文字幕| 欧美日韩在线观看h| 免费看av在线观看网站| 国产亚洲5aaaaa淫片| 秋霞在线观看毛片| 国产极品天堂在线| a级毛色黄片| 亚洲欧美精品专区久久| 建设人人有责人人尽责人人享有的 | 国产精品无大码| 干丝袜人妻中文字幕| 国产黄频视频在线观看| 免费看av在线观看网站| 国产真实伦视频高清在线观看| 国产精品国产三级国产专区5o| 久久久亚洲精品成人影院| 一级黄片播放器| 22中文网久久字幕| 乱系列少妇在线播放| freevideosex欧美| 亚洲精品第二区| 久久久午夜欧美精品| 免费在线观看成人毛片| 亚洲真实伦在线观看| 国产精品一二三区在线看| 人人妻人人澡欧美一区二区| 一级av片app| 久久国产乱子免费精品| 国产一级毛片在线| 91av网一区二区| 中文字幕免费在线视频6| 热99在线观看视频| 精品久久久久久成人av| 搡女人真爽免费视频火全软件| 高清在线视频一区二区三区| 久久久成人免费电影| 中文字幕人妻熟人妻熟丝袜美| 国产 亚洲一区二区三区 | av黄色大香蕉| 爱豆传媒免费全集在线观看| 国产精品麻豆人妻色哟哟久久 | 青春草视频在线免费观看| 狂野欧美激情性xxxx在线观看| 日韩电影二区| 嫩草影院精品99| 看免费成人av毛片| 丰满少妇做爰视频| 久久久久久久久久人人人人人人| 久久精品久久精品一区二区三区| 亚洲av二区三区四区| 18禁在线无遮挡免费观看视频| 老司机影院毛片| 美女cb高潮喷水在线观看| 国内精品美女久久久久久| 最近2019中文字幕mv第一页| 在线观看av片永久免费下载| 乱系列少妇在线播放| 国产精品福利在线免费观看| 午夜精品国产一区二区电影 | 日本-黄色视频高清免费观看| 国产精品熟女久久久久浪| 1000部很黄的大片| 国产乱来视频区| 少妇被粗大猛烈的视频| 国产在视频线在精品| 日韩av免费高清视频| 国产又色又爽无遮挡免| 日本免费a在线| 一个人看的www免费观看视频| 亚洲婷婷狠狠爱综合网| 国内精品美女久久久久久| 非洲黑人性xxxx精品又粗又长| 美女大奶头视频| 又爽又黄a免费视频| 777米奇影视久久| kizo精华| 亚洲欧美日韩卡通动漫| 最近中文字幕2019免费版| 好男人在线观看高清免费视频| 日日啪夜夜撸| 国产精品蜜桃在线观看| 草草在线视频免费看| 99热这里只有是精品50| 久久久精品94久久精品|