• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrodynamic response study on railgun launcher based on electromechanical coupling model

    2019-10-31 07:08:40HongchengXiaoDongmeiYinBaomingLi
    Defence Technology 2019年4期

    Hong-cheng Xiao,Dong-mei Yin,Bao-ming Li

    National Key Laboratory of Transient Physics,Nanjing University of Science and Technology,Nanjing,210094,China

    Keywords:Railgun launcher Sliding contact Dynamic properties Elastic response

    A B S T R A C T The electrodynamic behavior of a medium caliber railgun launcher has been studied based on an electromechanical coupling model,which uses a unified modeling method for both electromagnetic and electromechanical field.This model adopts a material equivalent method to simulating the sliding contact behavior for the in-bore armature.An embedded node encoding program during field meshing operation provides good load transfer accuracy between electromagnetic field and mechanical field.Dynamic properties of in-bore magnetic field are firstly simulated and a subsequent dynamic analysis is conducted by mapping element results from electromagnetic analysis step to structure analysis step.The electromechanical-elastic response of the barrel is studied under the excitation current.The numerical model has shown reliability compared to experimental results.

    1. Introduction

    Since the understanding on the launch dynamic model of the railgun is not clear enough,some theoretical problems remain to be solved before its tactical application[1-5].In the paper,the electrodynamic behavior of a medium caliber railgun launcher has been studied based on the electromechanical coupling model. The coupling model uses unified nonlinear finite element analysis(FEA)files for both electromagnetic and electromechanical analysis.An artificial encoding program on the numbering of the node and element is embedded in the numerical model during its physics field meshing progress.The ordered node encoding rule during FEA operation provides good accuracy for load transfer between electromagnetic field and mechanical field during electromechanical response calculation.The prepared 3-D electromagnetic and mechanical physics files will be simulated in the low frequency electromagnetic module and nonlinear mechanical module.Dynamic distributions of the magnetic field are firstly simulated and a subsequent mechanical analysis under the same time step will be conducted after mapping element results from electromagnetic analysis step to structure analysis step,seeing Fig.1.The quasi ballistic process of armature in bore is simulated by a synchronized iterative computing in each step.The sliding contact status can be estimated during iteration and a new rail-armature contact relation will be created in the next analysis step.The electrodynamic response of the barrel can be analyzed after iterations are finished for the whole launch process.

    2. Electromechanical coupling model and the analysis procedure

    2.1. Construction of quasi sliding contact model for rail-armature interaction

    This model adopts a material equivalent method to simulating the sliding contact behavior between the rail and armature.The moving region of in-bore armature is created as a band before simulation.This region is set as air domain in advance and has a fine contact with the rails at initial launch time,seeing Fig.2.With the predicted value of in-bore armature position at the specific time step,the armature geometry will be reconstructed by accurately selecting out the element entity in the space occupied by present armature material in the moving region.The attributes of the selected elements constructing the armature geometry are then modified and updated to the real armature attributes.For an accurate armature reconstruction in every analysis step,the armature moving area is finely meshed and the nodes of the elements are artificially coded,which can be helpful for element selecting during armature reconstruction,seeing Fig.3.

    Fig.1.Electromechanical FEA model.

    Fig.2.Air domain around the barrel.

    Fig.3.Armature element configuration.

    After the rail-armature contact and air domain are well defined,the FEA physics file will be extracted and submitted to transient electromagnetic analysis module for current density and flux density simulation. In every simulation step, the results from electromagnetic analysis will be extracted and loaded into an external subroutine of interior ballistics calculation.This subroutine systemically analyzes the acceleration history of the armature in bore and gives a prediction of armature position in the next analysis step,which will be adopted for rail-armature interaction redefinition and model updating in the next electromagnetic analysis step.After synchronizing all time steps in the electromagnetic and electromechanical FEA files,the analysis results in every time step will be shared between electromagnetic and electromechanical modules.In addition,the new rail-armature contact relation will be estimated in every analysis step.The estimation is a multiple-parameter diagnosis which involves contact load,contact stiffness,film thickness of discrete lubrication and other factors.Estimation results on rail-armature contact status in previous step will be used as the initial status for the next electromagnetic and electromechanical analysis step. The electromechanical-elastic response of the barrel can be acquired by the above time discrete analysis program after discharging current wave from pulse forming network(PFN)is tested during railgun shot.

    2.2. Acceleration performance prediction of the launcher

    This study systemically analyzes the acceleration history of the in-bore armature and acceleration performance of the launcher is predicted mainly by the following steps[6]:

    (1)Assume the location,velocity and acceleration of armature at present titime step,are known asConduct one electromechanical analysis step at present time step with above FEA model and extract the armature driving forcenormal contact stress

    (2)Calculate the acceleration value of the armature,for next i+1 time,is the rail-armature friction force andis aerodynamic drag of the armature.

    (3)Compute the velocity value of the armature,for next i+1 time,

    (4)Compute the displacement value of the armature,for i+1 time,

    The rail-armature interaction during railgun shot includes tangent friction and normal contact force,seeing Fig.4.The railarmature friction force during a shot can be estimated as the following equation,

    Where,ferefers to the external drive force on the armature.fnis the normal stress on the rail-armature contact surface, fsis the maximum steady-state friction force.p is a ratio coefficient relating to rail-armature friction power.p1and p2are the key values representing lubrication level.The friction coefficient used in the study is simplified to a function of rail-armature friction power[7],seeing following Fig.5.

    2.3. Program implementation based on FEA code development

    A visual finite element analysis(FEA)platform by C#code design language,combined with Ansys computing core has been developed to design a graphical program“Emag_launcher.exe”,for the electromechanical coupling analysis on the railgun barrel.Ansys provides effective field calculation for different physical environments.The sliding contact process and ballistic parameter calculation process are developed separately as subroutines and will be repeatedly called by the designed C#main interface.The most important feature of this code includes transient magnetic field calculation,rail-armature coupling mechanics and internal ballistic calculation.The main program includes a pre-processing unit for multi-parameters recording and physics files forming,a FEA solver unit for parametric model analysis and optimization.The simulation unit mainly includes electromagnetic module,electromechanical module and electro-thermal analysis module.In the post-processing unit,the results data document is processed to realize visualization and digital railgun simulation,seeing Fig.6.This code provides the basis for the fast electromechanical analysis on the composite railgun barrel.

    Fig.4.Force diagram of rail-armature interaction.

    Fig.5.Rail-armature friction mode.

    3. Electromagnetic analysis on an augmented railgun barrel

    3.1. Electromagnetic field distribution on the composite barrel

    A medium caliber railgun launcher is analyzed in the study.The barrel of the launcher has a 45 mm caliber and double turn rails in the bore.The rails and side wall are tightly packaged into glass fiber and T800 fiber wraps.The elliptical contour of bore and external package are shown in Fig.7.The discharging current from PFN is a pulse which has a megampere amplitude and a millisecond duration,seeing Fig.8.The current density on the main rail are solved by the program and distributions at 1.80 ms and 2.60 ms are shown in Fig.9.The maximum current density generates in the back of the armature and the inner face of the main rail,which shows skin effect leads to energy concentration along the internal contour of the bore[8].The magnetic flux density distribution in the longitudinal section of the barrel is shown in Fig.9.Magnetic induction at present current level is about 24 T for double turn structure and no flux propagates into the external wraps of the composite barrel,as shown in Fig.9.The magnetic flux density remains about 3T near the outer layers of the carbon fiber,but this value decreased to 0.02 T in the outer glass fiber layer.

    3.2. Electromagnetic properties estimation of the launcher

    The structure characteristic of the rail-armature circuit is shown in Fig.10.The breech circuit contains two loops,including Turn 1 and Turn 2 in the figure.The muzzle circuit contains a Turn 3 loop.The electromagnetic properties of the augmented railgun launcher are estimated by the post processing part of the FEA platform.Two discharging pluses are analyzed in this part.Discharging current_1 is 1120 kA with a 4.2 ms duration.Discharging current_2 is 960 kA with a 5.1 ms duration,shown in Fig.11.The driving force history on the armature has been calculated by the FEA code.The maximum propulsion on the armature is 529 kN by current_1 and 422 kN by current_2 respectively,as the curves shown in Fig.11.Numerical simulation gives the transient voltage across the rail-armature circuit,which is induced by the circuit resistance under discharging excitation,as shown in Fig.12.The breech voltage rises to kilovolt level due to strong skin effect and eddy current effect.

    The total breech voltage and muzzle voltage under the transient field satisfy the following formulas,

    Fig.6.Visual FEA platform for railgun barrel simulation.

    Fig.7.Barrel structure of a 45 mm caliber,double turn railgun.

    Where,ubreand umuzare total voltages on the breech and the muzzle.urband urmare resistance-voltages across the breech circuit and muzzle circuit.Ebreand Emuzare induced electromotive forces across the breech loop and muzzle loop.The total muzzle voltage is usually taken as a basis for judgment of rail-armature fine contact in previous studies[9-10].So the FEA post processing part gives the computation of the total muzzle voltage.The back EMF in

    Turn 3 is calculated as,

    Where,L is the inductance coefficient of Turn 3 circuit.L′is the inductance gradient along the rail length direction.The first item on the right of the equal sign can be modified as,

    Where,S is the area of Turn 3 loop with a unit length in rail length direction.l is the spacing between the inner rails.This infers that the back EMF on the muzzle is a superposition of two parts.is current_1 and current_2 have been calculated and illustrated in Fig. 13 based on the superposition of above two voltage components.

    Fig.8.Discharging current.

    The acceleration performance of the rail launcher has been studied by the coupled subroutine of interior ballistics calculation.In the interior ballistics process,the time-varying power and energy integral of the armature,total power and energy injected to the launcher are computed respectively.The efficiency of the rail launcher can be expressed as the following[11],

    Fig.9.Current density and magnetic flux density in the contact zone(in the longitudinal section,time=1.80 ms、2.60 ms).

    Fig.10.Structure characteristic of the rail-armature circuit.

    The launching efficiency of the barrel is 18.9%under discharging current_1 and 21.8%under discharging current_2 by estimation,seeing Fig.14.An optimized discharging current may improve the launching efficiency by reducing the residual electric energy after the motional electromotive force andis the induced electromotive force. The total muzzle voltages under discharging projectile passes the muzzle by comparing the two current models.The acceleration performance of the barrel under above current excitations is shown in Fig.15.2201 m/s and 1970 m/s of armature velocities are achieved by excitation current_1 and current_2,which infers that higher peak current has better acceleration capability if overload in the railgun bore is well handled.

    The double turn and half-double turn structure are analyzed here for magnetic improvement study[12].As shown in Fig.16.Type_1 barrel has a 2.2-m-long augmented rail near the breech and type_2 barrel has a full-size augmented rail.The magnetic flux density behind the armature is investigated under 1 MA excitation current.24 T level of induction intensity is created by type_2 barrel,

    Fig.11.Discharging pluses and electric propulsion histories.

    Fig.12.Transient voltage across the rail-armature circuit.

    The incremental inductance of the barrel during railgun shot is investigated and recorded in Fig.17.The double turn structure has a 1.07 μH/m inductance while a single turn structure has a 0.38 μH/m inductance.The augmented rail has obvious effect on improving the transient in-bore flux, which is beneficial for armature acceleration.

    3.3. Acceleration performance under different discharging current excitations

    Fig.13.Total muzzle voltage based on the superposition of two voltage components.

    but the intensity is reduced to 7.5 T by typ_1 barrel in its front half of the bore.The incremental inductance of the barrel is expressed by the following[13],

    Where,φ is the transient flux in the railgun bore,i is the current flow through the rail-armature circuit.The inductance gradient of the barrel is derived as,

    Further investigations on the acceleration capacity of the armature in bore have been conducted by the program[14].Two groups of armature acceleration histories under different discharging pluses are analyzed.The first group is statistics on a 560 g of aluminum armature accelerated by current of 950—1100 kA.Another group is investigations on a 960 g of armature accelerated by excitation current of 1250—1550 kA,seeing Fig.18.The interior ballistic process of armature in bore has been simulated and muzzle velocities of the armature under each excitation conditions are listed in Table 1.According to the numerical result,muzzle velocity of the armature will increase by about 20%with a full-size double turn barrel,compared to a half-augmented barrel.A high amplitude narrow pulse of discharging current will produce much better accelerating performance.And the length of the barrel in the electromagnetic launcher can be effectively shortened based on the effective length of its accelerating region.

    Fig.14.Armature power vs.total power and armature kinetic energy vs.total energy.

    Fig.15.Acceleration histories of the armature.

    Fig.16.Diagram of augmented structure in type_1 barrel and type_2 barrel.

    4. Forced response of the railgun barrel under electrodynamic force

    The transverse vibration equation of fiber reinforced railgun barrel under time varying electrodynamic force can be estimated as the following[15]:

    Fig.17.Incremental inductance of type-1 and type_2 barrel during railgun shot.

    Where,C*I is damping coefficient related to the strain rate of the composite barrel.FAis the force transferred from rail-armature dynamic contact.

    Where,fnis the normal contact force on the rail-armature interface.FRis the time varying repulse force on the rail and can be expressed as,

    Fig.18.Two groups of propulsion pluses for armatures.

    Table 1 Railgun acceleration performance with different rail and armature structures.

    Where,q is the distributed repulse fore on the rail.H(x)is a step function.The armature is treated as a spring-quality-damper dynamic system and its impacting on the rail in the normal direction satisfies the following equation,

    Where,u is the radial displacement of armature in the longitudinal plane.is armature contact damping.is the normal contact stiffness between rail and armature.ε is the relative displacement of rail-armature in the normal direction,

    The normal contact face can be derived as,

    Considered that the interference fitting between rail-armature is artificially constructed during the barrel assembling process,the radial displacement of armature u can be approximated as the following,

    Fig.19.Hoop stress in the cross section(time=2.60 ms,peak current=1120 kA)and radial deformation in the railgun bore(time=1.8 ms,2.6 ms,3.4 ms and 4.0 ms).

    Fig.20.Strain probe points on the augmented composite barrel.

    Fig.21.Maximum radial deformation history on the bottom face of the main rail(peak current=960 kA).

    Where,W(z)is the interference on the rail-armature contact.The forced radial response of the railgun barrel during shot can be evaluated by the joint-solution of Eq.(1)to Eq.(4).In present study,the forced response of the barrel under electrodynamic force and rail-armature interference fitting force are simulated by the FEA system which is further developed based on Ansys software platform.The dynamic response of the 45 mm caliber barrel under 1120 kA excitation current is simulated.Fig.19 shows the hoop stress distribution at 2.6 ms in the cross section which is 1.45 m from the breech during railgun shot.The maximum stress is about 1000 MPa appearing near the inner edge of the main rails as the skin effect produces serious current concentration here which results in serious stress concentration.The same thing happens to the augmented rails and about 720 MPa compressive stress exists in the inner edge of the rails.The maximum tensile stress on the rail-side wall interface is about 250 MPa.The radial deformation of the barrel,especially the outward expansion of the bore has significant effect on the rail-armature contact performance,which may lead transition if severe radial deformation happens in bore.The program conducts a survey on the transient radial deformation of the barrel based on real-time load transfer analysis.The radial deformation cloud diagrams of the barrel at four moments are listed in Fig.19.Due to the non-uniform pressure in bore,the barrel has large radial expansion in the longitudinal cross section and obvious radial compression in the horizontal section.The maximum radial displacement of the rail at 1.80 ms reaches about 1.08 mm,which is located in the bottom surface of the main rail due to electromagnetic pressure and interference fit on the rail-armature contact[16-17].

    The forced response of the barrel has been simulated with a discharging current of 960 kA injected into the main rail.Ten locations are selected as strain probe points which are evenly distributed on the inner surface of the rail and outer surface of the carbon fiber winding layers,as shown in Fig.20[18].The timevarying deformation of the barrel at these probe points are shown in Fig.21.The caliber of the barrel varies rapidly during launch.The maximum radial displacement on the main rail reaches about 0.7 mm near the breech.The hoop stress history in the outer surface of the fiber and Mises stress history in the bottom face of the rail are listed in Fig.22.The stress histories in point_33 and point_44 show that a continuous pressure pulse exists in the front section of the barrel during the whole launch process.Due to the prolonged electromagnetic force in the whole augmented rail,the bore components may be weakened as the repulsive force is persistent in the barrel during launch.So,special considerations should be given during the strength design and vibration design of the augmented railgun barrel.

    Fig.22.Hoop stress history on the outer surface of the fiber layer and Mises stress history on the bottom surface of the main rail(peak current=960 kA).

    Fig.23.Experimental test arrangement on a 45 mm caliber augmented railgun(peak current=1.2 MA,pulse duration=4.1 ms,armature mass=960 g).

    5. Experimental tests

    Experimental tests have been conducted on a 45 mm caliber augmented railgun barrel.The exciting current from the pulse power supply has a 1.25 MA peak value and 4.2 ms duration,seeing Fig.24.Voltage distribution characteristic on the rail,stress characteristics in the fiber layer and muzzle velocity of the armature are also tested by the dynamic measurement system in the launching center,seeing Fig.23.Accelerating history has been tested by probes and muzzle velocity of the armature reaches about 1875 m/s in the first group of 10 shots.Our simulation result is about 1993 m/s for this energy stage and the difference is currently attributed to the lack of cognitive on the internal ballistic process of in-bore armature.

    Fig.24.(a)Current and armature velocity,(b)Voltage characteristic of the barrel.

    Fig.25.Hoop stress-time history at point_1.

    The experimental breech voltage and muzzle voltage are acquired for comparing with the result from the numerical model,seeing Fig.24.The dynamic hoop stress of the barrel is tested by fiber grating sensors which are installed on the outer surface of the fiber layer.Comparison on the experimental and theoretical value of hoop stress at point_22 has been given in Fig.25.The electrodynamic model in presented study shows good reliability and precise according to the comparative analysis between the experimental and numerical data.

    6. Conclusions

    The launch dynamics of a 45 mm caliber railgun launcher has been analyzed based on the electromechanical coupling model.The augmented railgun launcher produces about 450 kN driving power on a half a kilo of aluminum armature at 1 MA current level.The inductance gradient of the full-length augmented railgun structure is 2.8 times more than the gradient value in the single-turn structure,as the calculated result is 1.07 μH/m and 0.38 μH/m for both of them.The augmented type has about 20%launch efficiency and this is considered to be a normal performance compared to other rectangular-bore high inductance railgun. The exciting current caused stress concentration on the rail surface.1 MA peak current produces near 1 GPa equivalent stress on the innermost surface of the main rail,which has taken up more residual strength of the copper rail and will induce fast wear damage progress.This infers that a better profile of bore contour is important and internal convex contour of rail might reduce stress amplitude here in the middle of the rail surface.The numerical model proposed in the study has shown reliability compared to experimental results in our shot tests.However,errors in the accelerating performance evaluation shows an in-depth understanding on the rail-armature contact behavior should be proposed,especially considering more about thermodynamics in rail-armature contact. The dynamic response of the augmented railgun may be special as two pairs of vibration barrels exist in the bore and it should be further examined before its tactical application.

    最近的中文字幕免费完整| 欧美精品亚洲一区二区| 男的添女的下面高潮视频| 99国产精品免费福利视频| 在线观看人妻少妇| 少妇 在线观看| 热re99久久国产66热| 成人国产av品久久久| 少妇熟女欧美另类| 亚洲综合精品二区| 国产高清有码在线观看视频| 亚洲精品国产成人久久av| 亚洲av男天堂| 亚洲国产精品一区二区三区在线| 国产在线视频一区二区| 91成人精品电影| 国产69精品久久久久777片| 亚洲,一卡二卡三卡| 街头女战士在线观看网站| 成人亚洲精品一区在线观看| 青春草国产在线视频| 久久国内精品自在自线图片| 中文字幕av电影在线播放| 观看美女的网站| 色吧在线观看| 国产午夜精品久久久久久一区二区三区| 亚洲第一区二区三区不卡| 成人免费观看视频高清| 精品少妇黑人巨大在线播放| 另类亚洲欧美激情| 97在线人人人人妻| 国产精品嫩草影院av在线观看| 天堂8中文在线网| 亚洲怡红院男人天堂| 国产黄色免费在线视频| 人人妻人人澡人人爽人人夜夜| 免费人成在线观看视频色| 亚洲国产欧美日韩在线播放 | 夜夜爽夜夜爽视频| 内地一区二区视频在线| 亚洲人与动物交配视频| videossex国产| 偷拍熟女少妇极品色| 国产精品国产三级国产av玫瑰| 黄色配什么色好看| 午夜福利影视在线免费观看| xxx大片免费视频| 国产精品无大码| 亚洲欧美精品自产自拍| 岛国毛片在线播放| 日韩欧美一区视频在线观看 | 亚洲欧美精品自产自拍| 日韩一区二区视频免费看| 亚洲精品日本国产第一区| 又大又黄又爽视频免费| 亚洲激情五月婷婷啪啪| av福利片在线观看| 精品人妻熟女毛片av久久网站| 日本欧美视频一区| 香蕉精品网在线| 丝袜脚勾引网站| 亚洲欧美日韩卡通动漫| 欧美少妇被猛烈插入视频| 观看av在线不卡| 成人毛片a级毛片在线播放| 国产精品一区二区在线观看99| 亚洲人成网站在线观看播放| 久久精品国产亚洲av天美| 99热6这里只有精品| 99久久精品国产国产毛片| 最近中文字幕高清免费大全6| 夫妻午夜视频| 亚洲国产av新网站| 国产精品福利在线免费观看| 成年美女黄网站色视频大全免费 | 久久婷婷青草| 97在线人人人人妻| 天堂俺去俺来也www色官网| 人妻人人澡人人爽人人| 国产黄片视频在线免费观看| 一级a做视频免费观看| 在线观看美女被高潮喷水网站| 亚洲精品国产色婷婷电影| 最近最新中文字幕免费大全7| 日本午夜av视频| 日韩av在线免费看完整版不卡| 三级国产精品欧美在线观看| 国产成人精品福利久久| 国产91av在线免费观看| 少妇裸体淫交视频免费看高清| 日韩不卡一区二区三区视频在线| 色网站视频免费| 日韩熟女老妇一区二区性免费视频| 少妇高潮的动态图| 高清视频免费观看一区二区| 在线播放无遮挡| 在线精品无人区一区二区三| 免费看不卡的av| 久久久精品免费免费高清| 80岁老熟妇乱子伦牲交| 蜜桃在线观看..| 秋霞伦理黄片| 久久国产精品男人的天堂亚洲 | 久久精品久久久久久噜噜老黄| 亚洲综合色惰| 色婷婷av一区二区三区视频| 亚洲国产av新网站| 精品久久久久久电影网| 日韩不卡一区二区三区视频在线| www.色视频.com| 国产成人免费观看mmmm| 日本wwww免费看| 国产熟女午夜一区二区三区 | 老司机影院毛片| 久久久国产精品麻豆| 亚洲中文av在线| 夫妻性生交免费视频一级片| 99视频精品全部免费 在线| 久久久久国产网址| 人妻一区二区av| 久久亚洲国产成人精品v| 亚洲无线观看免费| www.av在线官网国产| 色网站视频免费| 亚洲av欧美aⅴ国产| 自拍偷自拍亚洲精品老妇| 汤姆久久久久久久影院中文字幕| 日产精品乱码卡一卡2卡三| 亚洲美女黄色视频免费看| 精华霜和精华液先用哪个| 国产熟女午夜一区二区三区 | 波野结衣二区三区在线| 亚洲电影在线观看av| 国产av精品麻豆| 九九在线视频观看精品| 国产男女超爽视频在线观看| 99视频精品全部免费 在线| 久久99一区二区三区| 亚洲欧美精品专区久久| 亚洲精品,欧美精品| 一区在线观看完整版| 日韩大片免费观看网站| 免费久久久久久久精品成人欧美视频 | 国产色爽女视频免费观看| 涩涩av久久男人的天堂| 成人综合一区亚洲| 成人午夜精彩视频在线观看| 免费看不卡的av| 欧美+日韩+精品| 久久久久久久久久成人| 亚洲在久久综合| 国产成人freesex在线| 免费看光身美女| 国产成人精品福利久久| 亚洲成色77777| .国产精品久久| 国产有黄有色有爽视频| 亚洲第一区二区三区不卡| 成人毛片60女人毛片免费| 男的添女的下面高潮视频| 日韩av在线免费看完整版不卡| 国产精品福利在线免费观看| 哪个播放器可以免费观看大片| 欧美日韩精品成人综合77777| 观看av在线不卡| 又大又黄又爽视频免费| 极品人妻少妇av视频| 女人精品久久久久毛片| 中文精品一卡2卡3卡4更新| 大码成人一级视频| 日本猛色少妇xxxxx猛交久久| 亚洲精品国产成人久久av| 国产亚洲最大av| 嫩草影院新地址| 国产在视频线精品| 欧美日韩av久久| 极品教师在线视频| 亚洲国产毛片av蜜桃av| 97超碰精品成人国产| 国产高清不卡午夜福利| 男的添女的下面高潮视频| 曰老女人黄片| 女的被弄到高潮叫床怎么办| 亚洲不卡免费看| 国产成人精品一,二区| 亚洲,欧美,日韩| 全区人妻精品视频| 日韩av不卡免费在线播放| 亚洲精品日韩av片在线观看| 女人精品久久久久毛片| 亚洲精品国产色婷婷电影| 大片免费播放器 马上看| av女优亚洲男人天堂| 天堂俺去俺来也www色官网| av黄色大香蕉| 久久久精品免费免费高清| 亚洲国产日韩一区二区| 高清午夜精品一区二区三区| 国产免费一级a男人的天堂| 亚洲精品乱码久久久久久按摩| 亚洲欧洲国产日韩| 色视频在线一区二区三区| 能在线免费看毛片的网站| 日韩 亚洲 欧美在线| 国产91av在线免费观看| 两个人免费观看高清视频 | 自拍偷自拍亚洲精品老妇| av又黄又爽大尺度在线免费看| 青春草亚洲视频在线观看| 一本一本综合久久| 日本91视频免费播放| 久久久久久久久久成人| 国产黄片美女视频| 22中文网久久字幕| 午夜av观看不卡| 丰满人妻一区二区三区视频av| 亚洲欧洲精品一区二区精品久久久 | 少妇的逼好多水| 国产精品女同一区二区软件| 少妇猛男粗大的猛烈进出视频| 亚洲av免费高清在线观看| 另类精品久久| 蜜桃久久精品国产亚洲av| 日韩电影二区| 人体艺术视频欧美日本| 男人舔奶头视频| 亚洲国产av新网站| 成人特级av手机在线观看| 在线观看免费高清a一片| 五月天丁香电影| 91精品国产九色| 99热这里只有是精品50| 欧美人与善性xxx| 中文字幕人妻丝袜制服| 欧美精品一区二区免费开放| 国产成人91sexporn| 欧美少妇被猛烈插入视频| 王馨瑶露胸无遮挡在线观看| 免费黄色在线免费观看| 久久久久久人妻| 亚洲人成网站在线观看播放| www.av在线官网国产| 三级国产精品欧美在线观看| 国产 一区精品| 日日撸夜夜添| 亚洲av电影在线观看一区二区三区| 好男人视频免费观看在线| 99热全是精品| av在线app专区| 久久久欧美国产精品| 夫妻性生交免费视频一级片| 日韩av在线免费看完整版不卡| 亚洲美女视频黄频| 狂野欧美激情性xxxx在线观看| 大片免费播放器 马上看| 久久精品夜色国产| av黄色大香蕉| 欧美人与善性xxx| 天堂中文最新版在线下载| 国产精品无大码| 777米奇影视久久| 久久6这里有精品| 丝袜脚勾引网站| av线在线观看网站| a级片在线免费高清观看视频| 久久久久久久久久人人人人人人| 国产亚洲5aaaaa淫片| 免费不卡的大黄色大毛片视频在线观看| 欧美性感艳星| 在现免费观看毛片| 女的被弄到高潮叫床怎么办| h视频一区二区三区| 看十八女毛片水多多多| 91午夜精品亚洲一区二区三区| 少妇人妻久久综合中文| 欧美日韩视频高清一区二区三区二| 我要看黄色一级片免费的| 免费看日本二区| 亚洲丝袜综合中文字幕| 欧美最新免费一区二区三区| 蜜臀久久99精品久久宅男| 日韩大片免费观看网站| 天美传媒精品一区二区| 欧美日韩av久久| 国产在线一区二区三区精| 国产伦理片在线播放av一区| 亚洲欧美精品自产自拍| 一区二区av电影网| 日韩成人av中文字幕在线观看| av女优亚洲男人天堂| 亚州av有码| 一级毛片我不卡| 国产欧美日韩精品一区二区| av免费在线看不卡| 三上悠亚av全集在线观看 | 欧美成人精品欧美一级黄| 男人舔奶头视频| 久久久久网色| 成人毛片60女人毛片免费| 欧美日韩国产mv在线观看视频| 人妻制服诱惑在线中文字幕| 久久久久久久精品精品| 一个人看视频在线观看www免费| av一本久久久久| 国产免费又黄又爽又色| 搡女人真爽免费视频火全软件| 欧美3d第一页| av播播在线观看一区| 国产 精品1| 大陆偷拍与自拍| 91久久精品国产一区二区成人| 欧美+日韩+精品| av天堂久久9| 99久久精品一区二区三区| 亚州av有码| av黄色大香蕉| 国产成人免费观看mmmm| 亚洲av在线观看美女高潮| 街头女战士在线观看网站| 亚洲精品第二区| 欧美精品人与动牲交sv欧美| 男人爽女人下面视频在线观看| 国产有黄有色有爽视频| 高清欧美精品videossex| 老司机影院毛片| 91精品国产国语对白视频| 伊人久久精品亚洲午夜| 亚洲精品久久午夜乱码| 久久久久国产网址| 一二三四中文在线观看免费高清| 女人久久www免费人成看片| 精品少妇久久久久久888优播| 中国美白少妇内射xxxbb| 黑人猛操日本美女一级片| 一级毛片aaaaaa免费看小| xxx大片免费视频| 一个人免费看片子| 大码成人一级视频| 男人添女人高潮全过程视频| 精品久久久久久久久av| 中文字幕久久专区| 国产精品三级大全| 免费看不卡的av| a级毛片免费高清观看在线播放| 日韩电影二区| 又粗又硬又长又爽又黄的视频| 国产一区有黄有色的免费视频| av免费在线看不卡| 午夜影院在线不卡| 2018国产大陆天天弄谢| 美女中出高潮动态图| 亚洲精品色激情综合| tube8黄色片| 国产精品国产三级国产av玫瑰| av在线app专区| 亚洲国产精品专区欧美| av在线app专区| 色婷婷av一区二区三区视频| 国产色爽女视频免费观看| 最近最新中文字幕免费大全7| 涩涩av久久男人的天堂| 五月玫瑰六月丁香| 久久国产精品男人的天堂亚洲 | 搡女人真爽免费视频火全软件| 亚洲人成网站在线播| 欧美精品一区二区免费开放| 韩国高清视频一区二区三区| 亚洲天堂av无毛| 香蕉精品网在线| 五月伊人婷婷丁香| 亚洲av不卡在线观看| 26uuu在线亚洲综合色| 午夜精品国产一区二区电影| 亚洲欧美成人综合另类久久久| 高清毛片免费看| 亚洲怡红院男人天堂| 亚洲精品一区蜜桃| 97超视频在线观看视频| 欧美精品高潮呻吟av久久| 亚洲精品乱久久久久久| 一级毛片aaaaaa免费看小| 国产精品免费大片| 日韩在线高清观看一区二区三区| 午夜免费鲁丝| 女性生殖器流出的白浆| 国语对白做爰xxxⅹ性视频网站| 美女脱内裤让男人舔精品视频| 日韩免费高清中文字幕av| 高清午夜精品一区二区三区| 男人爽女人下面视频在线观看| 成人毛片a级毛片在线播放| 欧美精品亚洲一区二区| 日本与韩国留学比较| 成人二区视频| 一区二区av电影网| 亚洲国产毛片av蜜桃av| 男女边吃奶边做爰视频| 久久av网站| 人人妻人人添人人爽欧美一区卜| 国产白丝娇喘喷水9色精品| 99久久综合免费| 九九在线视频观看精品| 曰老女人黄片| 在线观看免费日韩欧美大片 | 看免费成人av毛片| av国产久精品久网站免费入址| 国产av码专区亚洲av| 国模一区二区三区四区视频| 日本黄大片高清| 下体分泌物呈黄色| 国产亚洲5aaaaa淫片| 国产精品伦人一区二区| 亚洲美女视频黄频| 在线观看一区二区三区激情| av一本久久久久| 久久av网站| 久久精品久久精品一区二区三区| 黑丝袜美女国产一区| 久久国内精品自在自线图片| 亚洲激情五月婷婷啪啪| 美女视频免费永久观看网站| www.色视频.com| tube8黄色片| 日本猛色少妇xxxxx猛交久久| 欧美高清成人免费视频www| 天堂8中文在线网| 少妇高潮的动态图| 99久久精品国产国产毛片| 天天操日日干夜夜撸| 欧美xxxx性猛交bbbb| 国产精品偷伦视频观看了| 国产精品久久久久久久久免| 亚洲av.av天堂| 青春草视频在线免费观看| 成人特级av手机在线观看| 高清视频免费观看一区二区| 大片免费播放器 马上看| 九草在线视频观看| 国产精品女同一区二区软件| 丝瓜视频免费看黄片| 国产一区有黄有色的免费视频| 免费播放大片免费观看视频在线观看| a级毛色黄片| 只有这里有精品99| 成年人午夜在线观看视频| 大陆偷拍与自拍| 精品国产国语对白av| 亚洲中文av在线| 日本爱情动作片www.在线观看| 久热这里只有精品99| 国产亚洲欧美精品永久| 观看免费一级毛片| 视频区图区小说| 久久久久久久大尺度免费视频| 国产一区二区三区av在线| 狂野欧美白嫩少妇大欣赏| 人妻夜夜爽99麻豆av| 国语对白做爰xxxⅹ性视频网站| 黄色一级大片看看| 久久人人爽av亚洲精品天堂| 赤兔流量卡办理| 黑人巨大精品欧美一区二区蜜桃 | 国产一区二区三区综合在线观看 | 亚洲欧美日韩卡通动漫| 你懂的网址亚洲精品在线观看| 精品人妻熟女av久视频| 免费观看a级毛片全部| av黄色大香蕉| 久久久精品94久久精品| 国产精品一区二区三区四区免费观看| 99久国产av精品国产电影| 亚洲av中文av极速乱| 国产欧美日韩一区二区三区在线 | 日韩亚洲欧美综合| 国产精品成人在线| 老熟女久久久| 久久人人爽人人爽人人片va| 99re6热这里在线精品视频| 久久午夜福利片| 91久久精品电影网| 晚上一个人看的免费电影| 丰满人妻一区二区三区视频av| a级一级毛片免费在线观看| 国产黄片视频在线免费观看| 日本-黄色视频高清免费观看| 亚洲精品成人av观看孕妇| 精品国产乱码久久久久久小说| tube8黄色片| 久久午夜综合久久蜜桃| 久久国产精品大桥未久av | 看非洲黑人一级黄片| 亚洲国产毛片av蜜桃av| 免费大片18禁| av.在线天堂| a级毛色黄片| 精品久久久久久电影网| 午夜视频国产福利| 国产亚洲最大av| 18+在线观看网站| 天堂8中文在线网| 欧美区成人在线视频| 2021少妇久久久久久久久久久| 在线天堂最新版资源| 2021少妇久久久久久久久久久| av在线观看视频网站免费| 亚洲av在线观看美女高潮| 男女边吃奶边做爰视频| 性高湖久久久久久久久免费观看| 欧美日韩av久久| 最黄视频免费看| 成人综合一区亚洲| 啦啦啦中文免费视频观看日本| 欧美日韩一区二区视频在线观看视频在线| 国产乱来视频区| 日本vs欧美在线观看视频 | 国产精品久久久久久av不卡| 国产永久视频网站| 蜜桃久久精品国产亚洲av| 一级a做视频免费观看| 欧美激情极品国产一区二区三区 | 能在线免费看毛片的网站| 亚洲av中文av极速乱| 亚洲图色成人| 狂野欧美激情性xxxx在线观看| 成人亚洲精品一区在线观看| 51国产日韩欧美| 亚洲美女视频黄频| 另类亚洲欧美激情| videossex国产| 最新的欧美精品一区二区| 亚洲图色成人| 日韩强制内射视频| 美女脱内裤让男人舔精品视频| 国产日韩欧美视频二区| av免费在线看不卡| 亚洲,欧美,日韩| 日本欧美国产在线视频| 观看av在线不卡| 免费人成在线观看视频色| 免费观看无遮挡的男女| 在线观看av片永久免费下载| 亚洲精品乱码久久久v下载方式| 色哟哟·www| 欧美激情极品国产一区二区三区 | 美女cb高潮喷水在线观看| 中文欧美无线码| 老女人水多毛片| 少妇裸体淫交视频免费看高清| 久久人妻熟女aⅴ| 嘟嘟电影网在线观看| 大片电影免费在线观看免费| 精品酒店卫生间| 最近2019中文字幕mv第一页| 少妇人妻久久综合中文| 午夜福利,免费看| 99久国产av精品国产电影| 精华霜和精华液先用哪个| 免费人成在线观看视频色| 美女福利国产在线| 午夜日本视频在线| 在线观看人妻少妇| 天美传媒精品一区二区| 中文天堂在线官网| av线在线观看网站| 欧美性感艳星| 国产精品一区二区性色av| 国产欧美日韩一区二区三区在线 | 国产日韩欧美视频二区| 亚洲精品乱久久久久久| 人妻制服诱惑在线中文字幕| 亚洲人与动物交配视频| 桃花免费在线播放| 内射极品少妇av片p| 曰老女人黄片| 精品一区二区免费观看| 高清视频免费观看一区二区| 精品一区二区三区视频在线| 草草在线视频免费看| 久久亚洲国产成人精品v| 国内精品宾馆在线| 99热国产这里只有精品6| 久久久欧美国产精品| 春色校园在线视频观看| 日韩中字成人| 国产精品国产av在线观看| 婷婷色综合www| 五月伊人婷婷丁香| 另类亚洲欧美激情| 我要看黄色一级片免费的| av福利片在线| 蜜桃在线观看..| 国产亚洲精品久久久com| 看非洲黑人一级黄片| 国产又色又爽无遮挡免| 国产亚洲精品久久久com| 99热国产这里只有精品6| 亚洲欧美成人精品一区二区| 在现免费观看毛片| 精品国产一区二区久久| 麻豆成人av视频| 久久久久网色| 亚洲国产精品专区欧美| 不卡视频在线观看欧美| 51国产日韩欧美| 亚州av有码| 国产白丝娇喘喷水9色精品| 国产精品一二三区在线看| 一级片'在线观看视频| 国产男女超爽视频在线观看| 国产精品久久久久久精品古装| 国产精品免费大片| 国产av精品麻豆| 18禁动态无遮挡网站| 我要看日韩黄色一级片| 午夜福利网站1000一区二区三区|