• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The catalytic activity of transition metal oxide nanoparticles on thermal decomposition of ammonium perchlorate

    2019-10-31 07:08:38JlpVrPrgneshDveShliniChturvedi
    Defence Technology 2019年4期

    Jlp A.Vr ,Prgnesh N.Dve ,b,*,Shlini Chturvedi

    a Department of Chemistry,K S K V Kachchh University,Mundra Road,Bhuj,370 001,Gujarat,India

    b Department of Chemistry,Sardar Patel University,Vallabh Vidyangar,388 120,Gujarat,India

    c Samarpan Science and Commerce College Gandhinagar,Gujarat,India

    Keywords:Metal oxide nanoparticles(MONs)Ammonium perchlorate(AP)Catalytic activity Activation energy

    A B S T R A C T The catalytic proficiency of three MONs for AP thermal decomposition was studied in this work.A chemical co-precipitation method was used for synthesis of MONs(CuZnO,CoZnO,and NiZnO)and their characterization carried out by utilizing XRD,FTIR,and SEM.The TGA/DSC technique was employed for the investigation of the catalytic proficiency of MONs on the AP.The DSC data were used for measuring activation energy of catalyzed AP by using Ozawa,Kissinger,and Starink method.The MONs were much sensitive for AP decomposition,and the performance of AP decomposition was further improved.Among all the MONs,the CuZnO exhibits higher catalytic action than others and decomposition temperature of AP is descending around 117°C by CuZnO.The reduction in the activation energy was noticed after the incorporation of MONs in AP.

    1. Introduction

    The transition metals have important utilization account in vast fields caused by its exceptional characteristics like optical,magnetic,electronic and also the catalytic proficiency[1—3].The catalytic proficiency enhances sharply by nanometer size oxide particles than micrometer size oxide particles[4].Nano-size materials gained attention in extreme research activities, mainly because of size effect,the optical and electronic properties and the role played by surface phenomena.The catalytic applications of transition metal oxides in the composite solid propellants[5,6].The MONs with AP affect on the process of decomposition and the gasphase reaction of the AP reported in literature[7].Among propellants AP is the most vital and main oxidizing agents,it has a deciding and competitive part in the burning process[4,8—11].

    AP is a stable chemical composite that gradually decompose at a low temperature. Therefore, it is important to get better or improved decomposition performance of AP to demand to generate high energy at low temperature.For that reason,the researchers are taking more interest in the thermal behavior and ignition of AP,because of its thermal behavior,AP is especially sensitive to the diminutive quantity existence of additives [4,12,13]. The investigators have described that metal oxides,such as MnO2[14],NiO[15],ZnO[16],CuO[17],Cu2O[18],Co3O4[19],CuFe2O4and MnFe2O4[9]exhibit better catalytic proficiency in the AP thermal decomposition.These minute amount additives are working like a ballistic catalyst to tailor the propellants ballistic properties.Nanosized particles have great catalytic actions due to the small size and vast surface areas.Therefore,researchers more interested in doing better combustion performance of composite solid propellants with these nanomaterials[20—22].

    In the present studies,three types of MONs(CuZnO,CoZnO,and NiZnO) have synthesized through co-precipitation route. The comparison study of three MONs as catalyst was simultaneouly studied on the AP decomposition.The catalytic ability of MONs have been measured on thermal behavior of AP by TG-DSC techniques.The Starink,KAS and FWO techniques have been applied to calculate activation energies of catalyzed AP.

    2. Experimental

    2.1. Reagents and chemicals

    All metal nitrate and NaOH were acquired from Merck.AP was acquired from National Chemicals and used with no additional purification.

    2.2. Synthesis of nanoparticles

    The synthesis of MONs(CuZnO,CoZnO,and NiZnO)were earlier reported through co-precipitation procedure[23].0.2 M solution of metal nitrate(Cu,Co,and Ni)and 0.4 M zinc nitrate solution prepared.Afterward,mixing both solutions and then dropwise adding of 0.5 N NaOH with continued stirring.Keep constant pH 11—12 of the reaction till metal hydroxides precipitates. Wash the precipitates with water to make them free from nitrate ions.The brown precipitation was dried at 60°C in the oven for 5 h and then calcined at 300°C for 5 h.

    2.3. Characterization

    The characterization of all nanoparticles was done by utilizing X-ray Diffraction(powder XRD,Rigaku mini flex 600),with CuKα radiation(λ=1.5418)and FTIR spectra were investigated by utilizing MB 3000 FTIR spectrometer(ABB Pvt.Ltd.,Germany)with ATR(horizontal attenuated total reflection).The morphology of nanoparticles is characterized by utilizing Scanning Electronic Microscopy(SEM,JEOL JSM-6510 LV)with 30 kV voltages.The crystallite size was estimated by Scherrer's equation[24].

    2.4. Thermal analysis

    The catalytic competency of MONs investigated after the addition of MONs in AP by utilizing TG-DSC(PerkinElmer STA-8000 instrument).The virgin AP is carried out in the TG-DSC for the comparative study.All samples were recorded ~10 mg of pure AP and AP with nano-catalyst in the proportion of 99:1 in N2atmosphere(20 ml min-1)at 10°C?min-1heating rate by using platinum crucible.

    2.5. Kinetic studies

    The DSC experiments carried out with three heating rate 5,10 and 15°C?min-1.The activation energy was calculated by three methods including Flynn wall Ozawa(FWO),Starink methods and Kissinger Akahira Sunose(KAS)[25—27].By using FWO,KAS and Starink techniques,activation energy was calculated based on Eqs.(1)—(3),respectively.The activation energy was estimated from the slope of a graph of lnβ for FWO,ln(β/T2)for KAS and ln(β/T1.92)for Starink against 1000/T by different(three)heating rates(β),where Tmis the peak temperature of the DSC thermogram.

    The slope value of the plot gives the activation energy(Ea).The value of the exponential factor(A)can be estimated from the intercept of the respective plots.

    3. Results and discussion

    3.1. Characterization of nanoparticles

    The XRD graphs of three metal incorporated ZnO nanoparticles are unleashed in Fig.1.XRD of MONs shows sharp and high diffracted intensity of peaks,it indicates that all the particles display fine crystalline nature.The XRD diffractogram for three metal doped samples are in concurrence with the JCPDS file no 36—1451[28].It was simply indexed to hexagonal wurtzite phase with P63mc group.Incorporation of the metals in ZnO influences the lattice parameter of peaks and it diffuses to the crystal site,Cu,Co,and Ni are changed zinc site in the ZnO so they are enhanced the size of crystallite[29,30].In the case of CoZnO and NiZnO two additional peaks due to secondary phase formation have been observed in the XRD spectra.Nevertheless,the extra peaks at 59.01°and 64.90°in CoZnO nanoparticles are analyzed to Co3O4(JCPDS file No.42—1467)secondary phase.Whereas,NiZnO nanoparticles confirmed the presence of two extra peaks at 74.96°and 79.07°which are analyzed to be NiO(JCPDS Card 47—1049).These may be attributed due to accomplishment of the saturated state of doping level by Cu,Co and Ni-doped ZnO nanoparticles respectively[31,32].

    Broad nature of diffraction peaks due to the microstrain also indicates the nanosized nature of the prepared MONs.The crystallite size D has been obtained from the highest diffraction peak along the plane by using the Scherrer formula[24]as follows:

    where λ is the wavelength of the employed CuKα radiation(0.15418 nm),β is the full width at half-maximum(FWHM)of the peaks,and θ is the Bragg angle obtained from 2θ value corresponding to maximum intensity peak in XRD pattern.The strain can be calculated by the formula:

    Fig.1.XRD Pattern of metal oxide nanoparticles.

    Fig.2.FTIR graphof Metal oxide nanoparticles.

    The crystallite size and microstrain of the synthesized MONs is reported in Supplementary Material Table 1.The microstrain follows the order:CoZnO >CuZnO >NiZnO.

    The comparative FTIR graph of CuZnO,CoZnO,and NiZnO are shown in Fig.2,which gives complementary nature of metal oxides[33].All the samples show broad band around ~3400 cm-1in spectra which represents the O—H stretch of hydroxyl group attached on surface of metal oxide.It indicates that adsorbed H2O molecules on metal surface during synthesis process[34,35].The less intensive frequency band noticed at ~1640 cm-1explains bending vibration(H—O—H)of hydrated water[36].In all spectra,the intensive peaks of M-O bond of stretching vibration mode below 1000 cm-1frequency region noticed,which confirms the forming of metal oxide[37,38].The summary of all peaks are described in Supplementary Material Table 2.

    The SEM images of CuZnO,CoZnO,and NiZnO nanoparticles are shown in Fig. 3. These images indicate that the shape and morphology of MONs.The images show that oxides are agglomerated.CuZnO was observed spherical in shape,and other two nanoparticles polygonal shape was observed.The image for MONs(Fig.3)manifests the synthesized nanoparticles with reasonably uniform size distribution with some unspecified reason larger than that of the grain size obtained from XRD analysis as depicted in Table 1.This could be indicant for the formation of secondary particles by aggregation of the primary particles.For the Cu,Co and Ni doped ZnO samples,the particles seem to be more and more agglomerated,and consequently it is hard to say with greater degree about the grain size obtained from the less-resolved SEM images(Fig.3)[39].

    Table 1 Thermal analysis data of AP and AP with MONs(heating rate 10°C min-1).

    3.2. Catalytic activity of MONs

    The thermal performance of AP in the presence of 1%MONs was investigated with 10°C?min-1heating rates by utilizing PerkinElmer STA 8000 instrument.The weight loss in the TG thermograms presented in Fig.4 which has been coordinated with the derivative thermogravimetry(DTG)data revealed in Fig.5.Fig.4 offers the two-step weight loss of virgin AP at 285-425°C temperature range[40—42].In the initial step,16%weight loss of pure AP occurred within the temperature range 285—350°C coincides with the conversation of AP into intermediate products such as NH3and HClO4.In another step,80%of weight loss noticed to complete decomposition of AP with the formation of volatile products at higher temperature in range 350—425°C.While adding MONs in AP,the temperature of decomposition shifted at 285-330°C.Fig.4 clearly depicts that the MONs has a catalytic competency over the AP decomposition.Fig.4 is thermogram of AP with three MONs(CuZnO,CoZnO,and NiZnO)demonstrated weight loss of 98.96%,98.55%,and 98.19%in one-step respectively.The catalytic competency of MONs on the quick oxidation of the AP gives the first step decomposition at a lower temperature.

    Fig.6 displays the DSC graph of virgin AP with three distinct peaks.The one endothermic peak is recognized at 243.12°C that expressed the crystal structural transition from orthorhombic to cubic[43]and another two exothermic peaks demonstrated at 310.30°C and 395.12°C respectively.The peak noticed at 310.30°C denotes the fractional decomposition of AP at lower temperature and another peak appeared at 395.12°C denotes the complete decay of AP at high temperature.The incorporation of MONs with AP leads to change in the thermal decay pattern of the AP as revealed in Fig.6.The DSC graph of MONs with AP have no variation in the endothermic peak but the exothermic peak appeared with one intense peak at 278,290,and 306°C for three different MONs at lower temperature and reported in Table 2.The DTA data also support to DSC data shown in Fig.7.After incorporation of MONs with AP that lower the decomposition temperature around 90-120°C as compared to pure AP.The rapid decomposition of AP occurred at lower temperature in the presence of MONs.CuZnO that exhibits good thermal catalytic competency on AP decomposition, which reduced the decomposition temperature around 117°C.

    Fig.3.SEM images.

    Fig.4.TG thermogram of AP and AP with MONs(heating rate 10°C·min-1).

    Fig.5.DTG thermogram of AP and AP with MONs(heating rate 10°C·min-1).

    Fig.6.DSC thermogram of AP and AP with MONs(heating rate 10°C·min-1).

    Fig.7.DTA thermogram of AP and AP with MONs(heating rate 10°C·min-1).

    DTA curve of virgin AP observes three main events and presented in Fig.7.The endothermic peak is appeared at 244°C for AP and two exothermic peaks around 309 and 394°C.AP with MONs has obvious variation in the exothermic peak listed in Table 1 that also concord DSC results. Furthermore, our results also demonstrate that the effect of CuZnO, CoZnO and NiZnO nanoparticles on thermal decomposition of AP leads high temperature decomposition(HTD)shifts to low temperature decomposition(LTD).Also,it can be concluded that AP with CuZnO,CoZnO,and NiZnO nanoparticles have better catalytic proficiency on the reduction of temperature and enhancement in releasing heat than single MONs in the order of CuZnO ?CoZnO ?NiZnO illuminating the advantage of using MONs as catalyst in reaction process.

    According to data of thermal analysis,these MONs catalysts have competency to reduce decomposition temperature of AP,presented in Table 1,CuZnO was found more proficient catalyst than the others and the decomposition temperature of AP sliding to 117°C.

    3.3. Kinetic studies

    The kinetic studies of catalytic proficiency of MONs onto AP have been scrutinized by three different methods viz FWO,KAS,and Starink methods with different heating rate (5, 10, and 15°C?min-1)[25—27].The plots of lnβ,ln(β/T-2)and ln(β/T-1.92)against 1000/T of all samples-virgin AP and AP with MONs are presented in Fig.8.From Table 2,the calculated values of activation energies of virgin AP are 277.58,276.23,and 276.47 kJ mol-1by FWO,KAS,and Starink respectively.After addition of MONs,activation energy reduces significantly.The results point out that CuZnO has excellent catalytic proficiency in order to increase AP decomposition rate.Table 2 displays the lower in activation energy for AP in compare to MONs.The correlation coefficient(r)is close to one.The activation energy decreases with decreasing the exponential factor inturn the catalytic proficiency increases.

    In the DSC based thermokinetics,activation energy of KAS and Starink techniques are similar to each other and lesser than the FWO method.The equations used in the KAS and Starink techniques have almost same activation energy that is pointed out from the results.These parameters are achieved from the dependence of exothermic peak temperatures established in a role of heating velocity.The Kissinger correlation can be used to define the relationship concerning the decomposition temperature and heating rate[44].The MONs have broad surface area caused by their verysmall size and there are many reactive sites over the surface.The promotions of reactions endorsed by MONs with involvement absorbing the gaseous reactive molecules on their surface in the exothermic decomposition.

    Table 2 Thermokinetics data of AP,AP with MONs by using Ozawa,Kissinger and Starink methods.

    Fig.8.Plot of AP and APwith threeMONs by using FWO,KAS and Starink methods.

    The results stated that the decomposition of AP from intermediate products to gaseous products in presence of CuZnO nanoparticle has a superior catalytic activity in comparison to CoZnO,and NiZnO.The activation energy of decomposition AP with CuZnO nanoparticles reduced,exhibiting distinguishable kinetic parameters of a self-increasing reaction.

    3.4. Mechanism of thermal decomposition of AP

    The thermal decomposition of AP studies by two most significant mechanisms.The first electron shift from perchlorate ion to ammonium ion and second proton shift from ammonium ion to perchlorate ion,but proton transfer is more acceptable as follows[7,45—50]:

    The AP decomposition gives two most important products NH3and HClO4identified in the experiments by the researcher[7,47—49].This postulates that the primary point of AP decomposition process is proton shift. This mechanism includes three important steps:The step-1,includes a pair of ions in AP lattice.The step-2,includes decay or sublimation step that begins with proton movement starting from the cationto the anionthen the molecular complex is formed and decomposes into NH3and HClO4in step-3.The molecules of NH3and HClO4also react in the adsorbed layer on the surface of perchlorate or desorbs and inspiring relating in the gas phase[45]:

    The absorption of gaseous reactive molecules on the surface MONs which enhances reaction rate by the proton transfer mechanism.The increment observed in the thermal decay rate of AP is by virtue of increasing the development of more holes within the ptype semiconducting area.The mechanism of catalytic efficiency of catalyst is in the interest of theion on the exterior part of the catalyst.Theformed throughout decomposition of AP and the surfaceof catalysts are likely the proton traps through the following reaction[50,51]:

    The involvement of catalyst information and gas absorption on its surface are main reasons in the completion of AP thermal decay.The CuZnO nanoparticles surface is able to produce morein comparison with other CoZnO and NiZnO NPs.Therefore,CuZnO nanoparticles are increasing in quick progression of AP thermal decay than others.

    The perfect mechanism of thermal decay of AP has not understood totally yet.The mechanism of AP thermal decay through chain reaction has been proposed by YU Zongxue's[52].The NH3,H2O and a minor quantity of N2O and O2are forming during the low-temperature thermal decay of AP.The HCl,H2O,N2O,NH3,Cl2,NO,O2,NO2and a minor quantity of ClO2have been formed in the high-temperature point of AP decay.

    At low temperature:

    At high temperature:

    The mechanism of AP combustion has been investigated by many research workers and role of condensed phase reaction at a pressure around 10—14 MPa is critical in many types of studies.The decomposition of AP occurs more than 70%in the condensed phase[53—55].

    4. Conclusion

    The three different types of CuZnO2, CoZnO2, and NiZnO2nanoparticles were synthesized via co-precipitation procedure.The study presents a new way to get better thermal decomposition of AP through synthesized MONs. Thermal analysis techniques including TGA-DSC,DTA and DTG were applied to study thermal responses. The CuZnO showed superior catalytic action than CoZnO2,and NiZnO2and shifting decomposition temperature at 117°C in downhill for AP.

    The thermal decomposition temperature was found in the order CuZnO ?CoZnO ?NiZnO nanoparticles and all three MONs have good catalytic activity.The results prove that activation energies of AP with MONs are lower than virgin AP.So,AP with MONs can be promising candidates for solid propellants for energetic materials.

    Acknowledgement

    The authors are grateful to the Department of Chemistry,KSKV Kachch University,Bhuj for laboratory facility and for XRD,SEM and TGA-DSC analysis and also thankful to Chemistry Department,Sardar Patel University,Vallabh Vidyanagar for providing ATR-FTIR instrument facility.

    Appendix A. Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.dt.2019.04.002.

    久久精品夜色国产| 高清午夜精品一区二区三区| 成人黄色视频免费在线看| 亚洲欧洲日产国产| 黄色视频在线播放观看不卡| 成年女人在线观看亚洲视频| 亚洲第一区二区三区不卡| 日韩伦理黄色片| 综合色丁香网| 久久久久久久大尺度免费视频| 80岁老熟妇乱子伦牲交| 男的添女的下面高潮视频| 成人国语在线视频| 亚洲精品国产av成人精品| 三上悠亚av全集在线观看| 亚洲精华国产精华液的使用体验| 大香蕉久久成人网| 国产黄片视频在线免费观看| 久久久久久久大尺度免费视频| 麻豆成人av视频| 婷婷色麻豆天堂久久| 日韩av免费高清视频| 婷婷色综合www| 高清在线视频一区二区三区| 国产av码专区亚洲av| 国产国语露脸激情在线看| 校园人妻丝袜中文字幕| 嘟嘟电影网在线观看| 久久亚洲国产成人精品v| 日韩av不卡免费在线播放| 又粗又硬又长又爽又黄的视频| 日韩免费高清中文字幕av| 久久久久久久国产电影| 免费av不卡在线播放| 国产一区二区在线观看日韩| 久久韩国三级中文字幕| 久久久久久久久久久丰满| 看十八女毛片水多多多| 极品人妻少妇av视频| 免费观看性生交大片5| 亚洲五月色婷婷综合| videos熟女内射| 免费av不卡在线播放| 精品国产一区二区久久| 亚洲综合精品二区| 青春草视频在线免费观看| 国产无遮挡羞羞视频在线观看| 日本欧美视频一区| 母亲3免费完整高清在线观看 | 亚洲人成网站在线观看播放| 亚洲av国产av综合av卡| 精品一区在线观看国产| 超碰97精品在线观看| 99re6热这里在线精品视频| 黄片无遮挡物在线观看| 黄片播放在线免费| 成人二区视频| 人妻制服诱惑在线中文字幕| 国产伦精品一区二区三区视频9| 黄色毛片三级朝国网站| 中文字幕人妻熟人妻熟丝袜美| 亚洲成人av在线免费| 国产伦精品一区二区三区视频9| 亚洲成人手机| 国产精品久久久久久精品古装| 久久av网站| 蜜臀久久99精品久久宅男| 日韩强制内射视频| 特大巨黑吊av在线直播| 人妻一区二区av| 精品熟女少妇av免费看| 人妻夜夜爽99麻豆av| 在线观看免费日韩欧美大片 | 精品一区二区三区视频在线| 亚洲精品成人av观看孕妇| 欧美亚洲日本最大视频资源| 高清毛片免费看| h视频一区二区三区| 欧美激情极品国产一区二区三区 | 汤姆久久久久久久影院中文字幕| 搡女人真爽免费视频火全软件| 欧美另类一区| 亚洲高清免费不卡视频| 亚洲av在线观看美女高潮| 国产精品一区二区在线观看99| 国产一区二区三区av在线| 精品久久久久久久久av| 麻豆精品久久久久久蜜桃| 亚洲精华国产精华液的使用体验| 国产极品粉嫩免费观看在线 | 亚洲,欧美,日韩| 成人黄色视频免费在线看| 国产高清有码在线观看视频| 91成人精品电影| 欧美日韩一区二区视频在线观看视频在线| 丰满乱子伦码专区| 欧美日韩亚洲高清精品| 夜夜看夜夜爽夜夜摸| 精品午夜福利在线看| 曰老女人黄片| 欧美激情国产日韩精品一区| 七月丁香在线播放| 少妇 在线观看| 久久av网站| 美女主播在线视频| videossex国产| 免费黄频网站在线观看国产| 亚洲av中文av极速乱| 欧美少妇被猛烈插入视频| 韩国av在线不卡| 亚洲无线观看免费| 3wmmmm亚洲av在线观看| 国产精品熟女久久久久浪| 80岁老熟妇乱子伦牲交| 人人妻人人澡人人看| 午夜老司机福利剧场| 欧美精品高潮呻吟av久久| 欧美日韩综合久久久久久| 各种免费的搞黄视频| 女性被躁到高潮视频| 在线观看免费视频网站a站| freevideosex欧美| 卡戴珊不雅视频在线播放| 国产乱人偷精品视频| 三级国产精品欧美在线观看| 综合色丁香网| 国产成人精品一,二区| 国产精品 国内视频| 久久综合国产亚洲精品| 涩涩av久久男人的天堂| 在线观看免费日韩欧美大片 | 亚洲欧美一区二区三区黑人 | 中文精品一卡2卡3卡4更新| 水蜜桃什么品种好| 日本黄色日本黄色录像| 五月玫瑰六月丁香| 韩国高清视频一区二区三区| 日本免费在线观看一区| 欧美日韩视频高清一区二区三区二| 亚洲精品国产av蜜桃| 久久国产精品大桥未久av| 亚洲av福利一区| 亚洲欧美日韩另类电影网站| 久久精品人人爽人人爽视色| 欧美另类一区| 十八禁高潮呻吟视频| 黑丝袜美女国产一区| 日韩中字成人| 国产精品国产三级国产av玫瑰| 人妻制服诱惑在线中文字幕| 我的老师免费观看完整版| 桃花免费在线播放| 精品久久久精品久久久| 国产深夜福利视频在线观看| 久久久久国产网址| 国产黄频视频在线观看| 97在线视频观看| 丰满少妇做爰视频| 乱人伦中国视频| 高清午夜精品一区二区三区| 亚洲欧美成人综合另类久久久| 国产亚洲午夜精品一区二区久久| 亚洲av免费高清在线观看| 亚洲国产成人一精品久久久| 黄色配什么色好看| 欧美日韩成人在线一区二区| 日韩中文字幕视频在线看片| 人人妻人人添人人爽欧美一区卜| 国产精品蜜桃在线观看| 22中文网久久字幕| 搡老乐熟女国产| 九九爱精品视频在线观看| 日本黄大片高清| 狂野欧美激情性xxxx在线观看| 国产视频内射| 99精国产麻豆久久婷婷| 观看美女的网站| 丁香六月天网| 亚洲精品日韩av片在线观看| a级毛片黄视频| 熟女av电影| 国产国语露脸激情在线看| 美女cb高潮喷水在线观看| 国产成人午夜福利电影在线观看| 少妇人妻 视频| 精品一区二区三区视频在线| 亚洲中文av在线| 亚洲精品色激情综合| 99热全是精品| 免费高清在线观看日韩| 欧美日韩视频高清一区二区三区二| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品自拍成人| 精品卡一卡二卡四卡免费| 精品一区二区三卡| 少妇人妻 视频| 国产成人aa在线观看| 国产探花极品一区二区| 久久久久视频综合| 欧美成人精品欧美一级黄| 国产毛片在线视频| 五月开心婷婷网| 韩国av在线不卡| 国产日韩欧美在线精品| 麻豆成人av视频| 我的老师免费观看完整版| 九九久久精品国产亚洲av麻豆| 天美传媒精品一区二区| 日本黄色片子视频| 国产av一区二区精品久久| 免费观看av网站的网址| 日韩制服骚丝袜av| 一区二区三区四区激情视频| 蜜桃国产av成人99| 国产不卡av网站在线观看| 91午夜精品亚洲一区二区三区| 一级片'在线观看视频| 91久久精品国产一区二区成人| 婷婷成人精品国产| 亚洲久久久国产精品| av免费观看日本| 美女内射精品一级片tv| 国产午夜精品一二区理论片| 色吧在线观看| 午夜精品国产一区二区电影| 亚洲精品视频女| 精品少妇内射三级| 熟女av电影| 我的女老师完整版在线观看| 91精品国产九色| 国产成人精品无人区| 久久97久久精品| 中文字幕久久专区| 九九久久精品国产亚洲av麻豆| 少妇熟女欧美另类| 我的老师免费观看完整版| 亚洲色图综合在线观看| av视频免费观看在线观看| 国产成人91sexporn| 免费黄色在线免费观看| 免费高清在线观看日韩| 美女xxoo啪啪120秒动态图| videos熟女内射| 国产精品无大码| 免费日韩欧美在线观看| 亚洲经典国产精华液单| 搡老乐熟女国产| 久久久a久久爽久久v久久| 日本与韩国留学比较| 热99国产精品久久久久久7| 九草在线视频观看| 国国产精品蜜臀av免费| 亚洲国产精品国产精品| 日韩伦理黄色片| 99久国产av精品国产电影| 久久av网站| 我的女老师完整版在线观看| 成年av动漫网址| 日韩人妻高清精品专区| 精品久久久精品久久久| 国产白丝娇喘喷水9色精品| 精品一区在线观看国产| 男女无遮挡免费网站观看| 搡女人真爽免费视频火全软件| 在线免费观看不下载黄p国产| 欧美日韩综合久久久久久| 午夜免费鲁丝| 精品一品国产午夜福利视频| 国产精品人妻久久久影院| 亚洲av不卡在线观看| 亚洲精品aⅴ在线观看| 国产精品久久久久久av不卡| 熟女av电影| 日韩三级伦理在线观看| 99久久人妻综合| 亚洲精品久久久久久婷婷小说| 春色校园在线视频观看| 亚洲无线观看免费| 国产国拍精品亚洲av在线观看| 亚洲人成网站在线播| 免费高清在线观看视频在线观看| 亚洲精品日本国产第一区| 亚洲人成77777在线视频| 欧美日韩视频高清一区二区三区二| 精品一品国产午夜福利视频| 国产男人的电影天堂91| 亚洲欧美色中文字幕在线| 最新中文字幕久久久久| 亚洲成人一二三区av| 边亲边吃奶的免费视频| 日本欧美国产在线视频| 成年美女黄网站色视频大全免费 | 在线播放无遮挡| 日韩中文字幕视频在线看片| 在线观看人妻少妇| 亚洲国产av新网站| 久久久久久久大尺度免费视频| 久久久午夜欧美精品| 亚洲av免费高清在线观看| 亚洲人成77777在线视频| 久久久久久久精品精品| 日韩成人伦理影院| 久久ye,这里只有精品| 免费少妇av软件| 亚洲国产精品专区欧美| 中文字幕免费在线视频6| 国产极品天堂在线| 免费日韩欧美在线观看| 亚洲欧美一区二区三区黑人 | av在线播放精品| 国产午夜精品一二区理论片| 激情五月婷婷亚洲| 国产又色又爽无遮挡免| √禁漫天堂资源中文www| 亚洲欧美色中文字幕在线| www.色视频.com| 久久久久久久国产电影| 日韩伦理黄色片| 亚洲精品456在线播放app| 国产高清不卡午夜福利| 亚洲av成人精品一二三区| av播播在线观看一区| 亚洲精品乱久久久久久| 熟女人妻精品中文字幕| a级片在线免费高清观看视频| 两个人的视频大全免费| av女优亚洲男人天堂| 亚洲人成网站在线观看播放| 国产国语露脸激情在线看| 久久国内精品自在自线图片| 久久久精品免费免费高清| 制服诱惑二区| 成人无遮挡网站| 国产不卡av网站在线观看| 搡女人真爽免费视频火全软件| 女性被躁到高潮视频| 人人妻人人爽人人添夜夜欢视频| 亚洲国产av新网站| 国产乱来视频区| 九草在线视频观看| 一本色道久久久久久精品综合| 日韩亚洲欧美综合| 久久av网站| 亚洲av福利一区| tube8黄色片| 精品国产一区二区久久| 精品亚洲乱码少妇综合久久| 亚洲综合色惰| 欧美精品高潮呻吟av久久| 99热网站在线观看| 高清在线视频一区二区三区| 99久久中文字幕三级久久日本| 18禁观看日本| 亚洲怡红院男人天堂| 三上悠亚av全集在线观看| 亚洲天堂av无毛| 超碰97精品在线观看| 精品人妻偷拍中文字幕| 精品国产国语对白av| 99久久人妻综合| 欧美3d第一页| 国产一区二区三区综合在线观看 | av有码第一页| 日韩中文字幕视频在线看片| 妹子高潮喷水视频| 夜夜看夜夜爽夜夜摸| 美女xxoo啪啪120秒动态图| 极品少妇高潮喷水抽搐| 国产极品天堂在线| av电影中文网址| 国产伦理片在线播放av一区| 国产乱人偷精品视频| 男女啪啪激烈高潮av片| 人妻少妇偷人精品九色| 亚洲激情五月婷婷啪啪| 国产亚洲一区二区精品| 边亲边吃奶的免费视频| 男人爽女人下面视频在线观看| 夜夜看夜夜爽夜夜摸| 高清欧美精品videossex| 午夜福利在线观看免费完整高清在| 插阴视频在线观看视频| 亚洲国产精品一区二区三区在线| 欧美精品亚洲一区二区| 亚洲av国产av综合av卡| 蜜桃国产av成人99| 欧美bdsm另类| 中文字幕免费在线视频6| 又大又黄又爽视频免费| 老熟女久久久| 国产精品人妻久久久影院| 日本欧美视频一区| 激情五月婷婷亚洲| 一个人免费看片子| 国产 一区精品| 亚洲婷婷狠狠爱综合网| 久久午夜福利片| 亚洲三级黄色毛片| 美女主播在线视频| 少妇人妻精品综合一区二区| 久久女婷五月综合色啪小说| 亚州av有码| 亚洲成人一二三区av| 一级毛片黄色毛片免费观看视频| 亚洲国产精品一区三区| 青春草视频在线免费观看| 人人妻人人澡人人看| 国产视频内射| 人妻夜夜爽99麻豆av| 国产免费一区二区三区四区乱码| 亚洲精品一二三| 国产一区亚洲一区在线观看| 蜜桃久久精品国产亚洲av| 亚洲av国产av综合av卡| 国语对白做爰xxxⅹ性视频网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 夫妻午夜视频| 国产色爽女视频免费观看| 亚洲精品日韩av片在线观看| 丝袜在线中文字幕| 亚洲欧美成人综合另类久久久| 极品少妇高潮喷水抽搐| 久久久国产一区二区| 99久久精品一区二区三区| 欧美少妇被猛烈插入视频| 亚洲国产精品999| 色视频在线一区二区三区| 亚洲国产日韩一区二区| 卡戴珊不雅视频在线播放| 成人亚洲欧美一区二区av| 精品国产国语对白av| 高清午夜精品一区二区三区| av卡一久久| 十八禁网站网址无遮挡| 精品国产国语对白av| 高清午夜精品一区二区三区| 精品人妻熟女av久视频| 大话2 男鬼变身卡| 久久精品国产亚洲网站| 街头女战士在线观看网站| 精品99又大又爽又粗少妇毛片| 亚洲国产av新网站| 免费少妇av软件| 男女国产视频网站| 欧美日本中文国产一区发布| 国产在视频线精品| 最近中文字幕2019免费版| 青青草视频在线视频观看| 国产白丝娇喘喷水9色精品| 春色校园在线视频观看| 亚洲av国产av综合av卡| 18禁观看日本| 在线观看三级黄色| 久久亚洲国产成人精品v| 亚洲成人一二三区av| 一本久久精品| 成人午夜精彩视频在线观看| 亚洲av综合色区一区| 热99久久久久精品小说推荐| 一区二区av电影网| 另类精品久久| 国产有黄有色有爽视频| 一二三四中文在线观看免费高清| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 精品国产一区二区三区久久久樱花| 一级毛片电影观看| 亚洲第一av免费看| 久久久久久久久大av| videossex国产| 人妻制服诱惑在线中文字幕| 搡老乐熟女国产| 久久久精品免费免费高清| 熟女av电影| 多毛熟女@视频| 欧美97在线视频| 亚洲精品乱久久久久久| 国产乱人偷精品视频| 国产精品秋霞免费鲁丝片| 91成人精品电影| 国产精品欧美亚洲77777| 亚洲久久久国产精品| 午夜91福利影院| 最近中文字幕2019免费版| 欧美日韩av久久| 国产一区二区三区av在线| 精品人妻一区二区三区麻豆| 欧美另类一区| 少妇高潮的动态图| a级毛片黄视频| 91国产中文字幕| 乱人伦中国视频| 国产精品三级大全| 国产在线视频一区二区| 国产精品久久久久成人av| 亚洲精品自拍成人| 久久久久久人妻| 大码成人一级视频| 久久久久久久久久成人| 一区二区三区乱码不卡18| 日韩人妻高清精品专区| 精品99又大又爽又粗少妇毛片| 日韩三级伦理在线观看| 国产伦理片在线播放av一区| 人妻人人澡人人爽人人| 亚洲精品日韩在线中文字幕| 精品99又大又爽又粗少妇毛片| 自拍欧美九色日韩亚洲蝌蚪91| 尾随美女入室| 欧美日韩国产mv在线观看视频| 91午夜精品亚洲一区二区三区| 国产欧美日韩一区二区三区在线 | 亚洲精华国产精华液的使用体验| 日日摸夜夜添夜夜爱| 久久久久久人妻| 亚洲久久久国产精品| 精品久久久久久久久av| 亚洲三级黄色毛片| 菩萨蛮人人尽说江南好唐韦庄| 女的被弄到高潮叫床怎么办| 免费观看a级毛片全部| 久热久热在线精品观看| 哪个播放器可以免费观看大片| 妹子高潮喷水视频| 一区二区三区精品91| 国产精品一二三区在线看| 国产极品天堂在线| 久久精品国产亚洲网站| 汤姆久久久久久久影院中文字幕| 51国产日韩欧美| 亚洲av日韩在线播放| 夜夜骑夜夜射夜夜干| 熟女电影av网| 久久青草综合色| 久久精品国产亚洲av涩爱| 青青草视频在线视频观看| 亚洲久久久国产精品| 国产精品一区二区在线不卡| 国产男女超爽视频在线观看| av不卡在线播放| 成人黄色视频免费在线看| 国产高清三级在线| 国产综合精华液| 高清午夜精品一区二区三区| 在线观看www视频免费| 亚洲国产精品专区欧美| 国产精品不卡视频一区二区| 最近手机中文字幕大全| 国产一区二区三区av在线| 欧美精品高潮呻吟av久久| 日本av手机在线免费观看| 国产有黄有色有爽视频| 免费看av在线观看网站| 国产成人精品婷婷| 久久久久国产网址| 黄色视频在线播放观看不卡| 亚洲国产av新网站| 18+在线观看网站| 国产在视频线精品| 亚洲精品亚洲一区二区| 日日啪夜夜爽| 人人澡人人妻人| 全区人妻精品视频| 久久精品国产亚洲网站| 18禁裸乳无遮挡动漫免费视频| 亚洲,欧美,日韩| 在现免费观看毛片| 观看av在线不卡| 日韩视频在线欧美| 免费观看无遮挡的男女| 午夜日本视频在线| 中文字幕人妻熟人妻熟丝袜美| 一级二级三级毛片免费看| 久久久国产精品麻豆| 最近的中文字幕免费完整| 日本wwww免费看| 在线播放无遮挡| 99久国产av精品国产电影| av免费观看日本| 日韩欧美一区视频在线观看| 久久午夜福利片| 免费人妻精品一区二区三区视频| 在线观看一区二区三区激情| 天美传媒精品一区二区| 男的添女的下面高潮视频| 国产乱人偷精品视频| 狂野欧美激情性xxxx在线观看| 精品国产露脸久久av麻豆| 国产69精品久久久久777片| 最新中文字幕久久久久| 考比视频在线观看| 丝袜美足系列| 插逼视频在线观看| 亚洲欧美日韩另类电影网站| 欧美人与性动交α欧美精品济南到 | 精品熟女少妇av免费看| 久久99热6这里只有精品| 日韩三级伦理在线观看| 人妻制服诱惑在线中文字幕| 国产精品99久久99久久久不卡 | 极品少妇高潮喷水抽搐| 成人漫画全彩无遮挡| 人妻夜夜爽99麻豆av| 久久精品国产a三级三级三级| 99九九线精品视频在线观看视频| 午夜福利网站1000一区二区三区| 自线自在国产av| 久久影院123| 国产精品久久久久久久电影| 韩国高清视频一区二区三区| 午夜激情久久久久久久| 国产免费现黄频在线看| 国产精品国产三级国产专区5o| 国产成人精品婷婷| 夫妻性生交免费视频一级片| 99热这里只有是精品在线观看|