魯顯楷,莫江明,張煒,毛慶功,劉榮臻,2,王聰,2,王森浩,2,鄭棉海,Mori Taiki,毛晉花,2,張勇群,2,王玉芳,2,黃娟
模擬大氣氮沉降對中國森林生態(tài)系統(tǒng)影響的研究進(jìn)展
魯顯楷1,莫江明1,張煒1,毛慶功1,劉榮臻1,2,王聰1,2,王森浩1,2,鄭棉海1,Mori Taiki1,毛晉花1,2,張勇群1,2,王玉芳1,2,黃娟1
(1. 中國科學(xué)院華南植物園, 退化生態(tài)系統(tǒng)植被恢復(fù)與管理重點實驗室, 廣東省應(yīng)用植物學(xué)重點實驗室, 廣州 510650; 2. 中國科學(xué)院大學(xué), 北京 100049)
人類活動加劇了活性氮的生產(chǎn)和排放,并導(dǎo)致氮沉降日益增加并全球化。目前,人類活動對全球氮循環(huán)的干擾已經(jīng)超出了地球系統(tǒng)安全運(yùn)行的界限。中國已成為全球氮沉降的高發(fā)區(qū)域,高氮沉降已經(jīng)威脅到生態(tài)系統(tǒng)的健康和安全,并成為生態(tài)文明建設(shè)過程中亟待理清和解決的熱點問題。對國際上和中國森林生態(tài)系統(tǒng)模擬氮沉降研究的概況進(jìn)行了綜述,并從生物學(xué)和非生物學(xué)兩大過程重點闡述模擬氮沉降增加對中國主要森林生態(tài)系統(tǒng)影響的研究進(jìn)展。中國自2000年以后才開始重視大氣氮沉降產(chǎn)生的生態(tài)環(huán)境問題,中國科學(xué)院華南植物園在國內(nèi)森林生態(tài)系統(tǒng)模擬氮沉降試驗研究上做出了開創(chuàng)性的貢獻(xiàn)。模擬氮沉降研究表明,持續(xù)高氮輸入將會顯著改變森林生態(tài)系統(tǒng)的結(jié)構(gòu)和功能,并威脅生態(tài)系統(tǒng)的健康發(fā)展,特別是處于氮沉降熱點區(qū)域的中國中南部。森林生態(tài)系統(tǒng)的氮沉降效應(yīng)依賴于系統(tǒng)的氮狀態(tài)、土地利用歷史、氣候特征、林型和林齡等。最后,對未來的研究提出了一些建議,包括加強(qiáng)長期跟蹤研究和不同氣候帶站點之間的聯(lián)網(wǎng)研究,特別是在森林生態(tài)系統(tǒng)對長期氮沉降響應(yīng)與適應(yīng)的過程機(jī)制、地下碳氮吸存潛力研究、以及與其他全球變化因子的耦合研究等方面,以期為森林生態(tài)系統(tǒng)的可持續(xù)發(fā)展提供理論基礎(chǔ)和管理依據(jù)。
氮沉降; 全球變化; 森林生態(tài)系統(tǒng); 氮飽和; 氮限制; 氮素生物地球化學(xué)循環(huán); 生物多樣性; 碳吸存
氮素是一種重要的生命元素,是蛋白質(zhì)、維生素和核酸(DNA)的重要組成部分。氮素雖然無處不在,但主要以惰性狀態(tài)(N2)存在,不能被生物直接利用,所以也是陸地生態(tài)系統(tǒng)凈初級生產(chǎn)力最為關(guān)鍵的限制性營養(yǎng)元素[1–2]。然而人類活動改變了氮素的存在形態(tài),即具有生物活性的氮化合物(活性氮)的產(chǎn)生和排放顯著增加?;钚缘饕ㄟ€原態(tài)NHx (包括NH3、RNH2和NH4+)和氧化態(tài)NOx兩種化學(xué)形式。活性氮排放增加誘發(fā)了大氣氮沉降格局的改變。工業(yè)化革命(1860年)前,活性氮主要來自雷電作用和生物固氮,大氣氮沉降量也非常低, 如陸地系統(tǒng)氮沉降量普遍在0.5~1 kg N hm–2a–1,最高不超過10 kg N hm–2a–1。然而,自20世紀(jì)中葉以來,隨著化石燃料的燃燒、化學(xué)氮肥的生產(chǎn)和使用和畜牧業(yè)的迅猛發(fā)展等人類活動向大氣中排放的活性氮化合物激增,大氣氮沉降也呈現(xiàn)出迅猛增加的趨勢,并達(dá)到工業(yè)化革命前的兩倍以上,并且愈來愈呈現(xiàn)出全球化趨勢[3]。目前全球氮沉降的分布中心正在發(fā)生變化:從歐美等發(fā)達(dá)國家轉(zhuǎn)向發(fā)展中國家,從溫帶區(qū)域擴(kuò)展到熱帶亞熱帶區(qū)域。
目前中國已成為世界上活性氮生產(chǎn)和排放量最大的國家[4]。近30年來(1980-2010),中國人為源活性氮產(chǎn)生量增加了近3倍(從1.68×107t增加到4.82×107t),其中主要增長來自于化肥和工業(yè)用氮(從1.14×107t增加到3.71×107t)。如此高的活性氮排放勢必導(dǎo)致陸地和水域大氣氮沉降量的急劇增加[5–7]。Lü等[5]對中國的網(wǎng)絡(luò)監(jiān)測數(shù)據(jù)研究表明,中國中南部是氮沉降的高發(fā)區(qū)域,最高達(dá)到65 kg N hm–2a–1。如今,華南大部分地區(qū)的大氣濕沉降已超過30 kg N hm–2a–1[8],遠(yuǎn)高于嚴(yán)重威脅歐美森林生態(tài)系統(tǒng)健康和安全的氮沉降臨界負(fù)荷值[9]。Yu等[10]通過構(gòu)建1980–2015年間的中國區(qū)域大氣干沉降和濕沉降全組分動態(tài)變化數(shù)據(jù)集,提出了中國大氣氮沉降總量和沉降模式轉(zhuǎn)型變化的三個重要特征:(1)近年來雖然中國區(qū)域的NO3–氮沉降還在持續(xù)增加,但NH4+濕沉降顯著降低,使全國氮沉降總量由快速增長轉(zhuǎn)型為趨穩(wěn)狀態(tài);(2)大氣干沉降增加導(dǎo)致了干濕沉降比的變化,由以濕沉降為主逐步轉(zhuǎn)型為濕沉降與干沉降并重; (3)大氣沉降中的NH4+/NO3–比減小,NO3–氮沉降貢獻(xiàn)在持續(xù)增加,NH4+氮沉降的貢獻(xiàn)則降低,逐漸由以NH4+沉降為主的氮沉降模式轉(zhuǎn)換為NH4+和NO3–氮沉降貢獻(xiàn)并重的新模式。
目前,人類活動干擾下的大氣氮沉降已成為全球氮素生物地球化學(xué)循環(huán)的一個重要組成部分,也是全球變化的重要驅(qū)動因子。大氣氮沉降增加改變了生態(tài)系統(tǒng)氮循環(huán)模式和進(jìn)程,加劇了氮循環(huán)的速率,并通過耦合效應(yīng)驅(qū)動其他元素循環(huán)(如碳、磷等)發(fā)生改變[11–13]。
作為營養(yǎng)源和酸源,大氣氮沉降急劇增加將會威脅到生態(tài)系統(tǒng)的健康和安全,對農(nóng)田、森林、草地等陸地生態(tài)系統(tǒng)以及湖泊和海洋等水域生態(tài)系統(tǒng)都會造成影響。大氣氮沉降的負(fù)面效應(yīng)主要有:導(dǎo)致生態(tài)系統(tǒng)土壤酸化、養(yǎng)分流失,造成水體污染并富營養(yǎng)化,改變生態(tài)系統(tǒng)元素計量化學(xué),降低生物多樣性并改變物種組成,降低生態(tài)系統(tǒng)生產(chǎn)力和削弱生態(tài)系統(tǒng)穩(wěn)定性,加劇溫室氣體(N2O)排放等[3,9,14–19]。大氣氮沉降的持續(xù)增加,最終會導(dǎo)致生態(tài)系統(tǒng)氮飽和(nitrogen saturation),即氮的輸入超過了生物對氮素的需求,從而加劇上述生態(tài)學(xué)效應(yīng),并影響系統(tǒng)的健康發(fā)展[20]。此外,氮沉降還會與其他全球變化驅(qū)動因子(如CO2濃度升高、全球變暖、O3濃度增加等)相耦合,并引發(fā)一系列的連鎖效應(yīng)(cascade effect),相關(guān)的生態(tài)后果還有待于未來深入研究。目前,人類活動對全球氮循環(huán)的干擾已經(jīng)超出了地球系統(tǒng)安全運(yùn)行的界限[21]。因此,氮素在大氣-土壤-植物-水循環(huán)的生物地球化學(xué)過程成為科學(xué)家、公眾和決策者關(guān)注的主要環(huán)境問題之一。
森林是陸地生態(tài)系統(tǒng)的主體。中國陸地系統(tǒng)的氣候復(fù)雜性和空間的變異性產(chǎn)生了豐富森林生態(tài)系統(tǒng)類型,如各類針葉林、針葉闊葉混交林、落葉闊葉林、常綠闊葉林和熱帶雨林等。這些森林在維護(hù)生物多樣性和生態(tài)平衡、并為社會發(fā)展提供各種供給服務(wù)中扮演著重要角色。在氮沉降全球化的背景下,本綜述主要關(guān)注中國森林生態(tài)系統(tǒng)對氮沉降增加的響應(yīng)及其機(jī)制。
在國際上,氮沉降對森林生態(tài)系統(tǒng)結(jié)構(gòu)和功能影響的研究始于20世紀(jì)80年代,到90年代發(fā)展為定位研究,并逐漸形成網(wǎng)絡(luò),研究內(nèi)容也不斷細(xì)化和深化。這些研究主要集中在歐洲和北美,特別是經(jīng)歷高氮沉降輸入的區(qū)域。歐共體委員會于20世紀(jì)80年代末資助了兩大研究項目,即氮飽和試驗項目(Nitrogen saturation experiments, NITREX)和歐洲森林生態(tài)系統(tǒng)試驗控制項目(Experimental manipulation of forest ecosystems in Europe, EXMA)[22]。其中NITREX項目在7個國家的8個試驗點進(jìn)行,主要研究增加或減少大氣氮沉降對歐洲森林生態(tài)系統(tǒng),特別是針葉林生態(tài)系統(tǒng)的影響。而EXMAN項目也涉及4個國家的6個試驗站點,通過實驗改變周邊大氣氮沉降的化學(xué)組成和數(shù)量進(jìn)而探討森林生態(tài)系統(tǒng)的響應(yīng)。在美國,長期試驗研究站點有馬薩諸塞州的哈佛森林長期氮素增加試驗(Chronic nitrogen amendment in Harvard forest)和緬因州Bear brook集水區(qū)和Mt. Ascutney森林的模擬氮沉降試驗[20,23]。這些研究對理解溫帶和北方森林生態(tài)系統(tǒng)對大氣氮沉降的響應(yīng)及其機(jī)理有著重要貢獻(xiàn)。
截至2008年,全球范圍內(nèi)有關(guān)森林生態(tài)系統(tǒng)氮沉降研究的站點共計31個,絕大部分在溫帶區(qū)域,熱帶區(qū)域僅有2個:中美洲巴拿馬和中國廣東鼎湖山(圖1)[24]。
中國氮沉降問題起源于20世紀(jì)80年代初期的酸沉降監(jiān)測研究[25],但自2000年后才逐步受到的重視。為了更好地理解和預(yù)測大氣氮沉降對中國森林生態(tài)系統(tǒng)的影響,中國科學(xué)院華南植物園(以下簡稱華南園)莫江明研究團(tuán)隊于2002年在廣東鼎湖山國家級自然保護(hù)區(qū)確立了我國首批森林生態(tài)系統(tǒng)長期氮沉降研究樣地(圖1);該樣地包含了熱帶亞熱帶區(qū)域代表性的3種森林類型:季風(fēng)常綠闊葉林、針葉闊葉混交林和馬尾松針葉林[13,18,26–27]。此后, 從南到北涌現(xiàn)出更多的模擬氮沉降研究樣地。2010年北京大學(xué)牽頭建立了中國森林生態(tài)系統(tǒng)養(yǎng)分添加試驗網(wǎng)絡(luò)(Nutrient enrichment experiments in China’s forests project, NEECF),擁有從南(海南尖峰嶺的熱帶山地雨林)到北(內(nèi)蒙古根河的寒溫帶針葉林)分布在7個研究站點的10個森林類型[28]。到目前為止,全國范圍森林生態(tài)系統(tǒng)氮沉降研究樣地共有25個,基本上涵蓋了中國的主要森林類型(圖2)。
圖1 氮沉降試驗研究站點國際分布圖[24]
模擬氮沉降研究的技術(shù)方法主要體現(xiàn)在4個方面:氮沉降的種類、數(shù)量、施加頻率和方式。氮沉降的種類主要有4種類型:NH4NO3、NaNO3、(NH4)2SO4和NH4Cl,其中NH4NO3溶液是應(yīng)用最為廣泛的施加方式,硝態(tài)氮(NaNO3)和銨態(tài)氮(NH4Cl)常用來評估氧化態(tài)和還原態(tài)氮沉降帶來的影響。施氮數(shù)量通常在當(dāng)?shù)乇尘暗两祷A(chǔ)上進(jìn)行不同梯度的倍增處理,鼎湖山樣地的氮沉降處理水平分別為0、50、100和150 kg N hm–2a–1[17]。施氮頻率通常為每月1次或每兩月1次,也有少數(shù)為一季度1次或者半年1次。施氮方式主要有林下和林冠施加兩種,目前絕大多數(shù)為林下施氮。2013年,華南園率先在國內(nèi)(廣東石門臺和河南雞公山)開展了林冠模擬氮沉降試驗,并與傳統(tǒng)的林下施氮進(jìn)行對比研究,以期更為真實地反映大氣氮沉降對森林生態(tài)系統(tǒng)的影響、以及氮沉降與林冠的交互作用[35]。
中國自2000年以后才開始重視大氣氮沉降產(chǎn)生的生態(tài)環(huán)境問題。截至2018年12月,森林生態(tài)系統(tǒng)依托模擬氮沉降研究樣地發(fā)表的研究論文共計720篇(圖3)。華南園在模擬氮沉降試驗研究上做出了開創(chuàng)性的貢獻(xiàn),2004-2005年以華南園為第一單位發(fā)表的研究論文占國內(nèi)發(fā)表論文總數(shù)的100%。隨著國內(nèi)科學(xué)家對氮沉降問題關(guān)注度的增加,發(fā)表的研究論文也越來越多,特別是自2010年以后,同期來自華南園的論文發(fā)表數(shù)量相對穩(wěn)定,但質(zhì)量顯著提升。如今,中國社會和經(jīng)濟(jì)高速發(fā)展誘發(fā)的高氮沉降已經(jīng)威脅到了生態(tài)系統(tǒng)的健康和安全,并成為生態(tài)文明建設(shè)過程中亟待理清和解決的熱點問題。
目前,隨著中國氮沉降量的增加和對硫排放的控制,人為氮源對酸沉降的貢獻(xiàn)越來越大[29,36]。據(jù)估計,在我國華南林區(qū)由氮沉降引起的土壤酸化已占沉降因素的36%以上[37]。氮沉降主要通過H+輸入、NH4+硝化和NO3–的淋溶流失、植物吸收等直接或間接過程增加土壤酸度。理論上,1 mol NH4+通過微生物的硝化作用轉(zhuǎn)化成NO3–將釋放2 mol H+[38]。由于H+與土壤膠體具有更強(qiáng)的親和性(相比于其他鹽基離子),因此氮沉降誘導(dǎo)的H+增加會替代膠體顆粒上的鹽基離子(Ca2+和Mg2+等),并使它們隨NO3+的淋溶而流失。當(dāng)?shù)两党掷m(xù)增加,土壤pH進(jìn)一步降低,導(dǎo)致Al3+、Fe3+或Mn2+等離子的移動性增加,威脅生物生長。
圖2 中國森林生態(tài)系統(tǒng)模擬氮沉降研究站點分布[13,29–34]。GH: 根河; WY: 五營; LS: 涼水; MES: 帽兒山; FS: 撫松; CBS: 長白山; SHB: 塞罕壩; DLS:東靈山; TYS: 太岳山; JGS: 雞公山; GNJ: 牯牛降; TTS: 天童山; WYS: 武夷山; SX: 沙縣; QYZ: 千煙洲; SMT: 石門臺; HSD: 黑石頂; DHS: 鼎湖山; HS: 鶴山; JFL: 尖峰嶺; HT: 會同; ALS: 哀牢山; TSP: 鐵山坪; HY: 洪雅; LFA: 涼風(fēng)坳。
圖3 模擬氮沉降試驗研究中以華南植物園(SCBG)為第一單位發(fā)表的論文在全國的比重(a)及其絕對數(shù)量(b)
中國溫帶和亞熱帶森林均面臨著氮沉降升高引起的土壤酸化問題[39]。目前僅有少數(shù)研究報道了氮沉降導(dǎo)致中國溫帶森林土壤酸化,可能是該區(qū)域土壤pH本底值較高,土壤緩沖能力較強(qiáng)[15]。然而,熱帶亞熱帶森林生態(tài)系統(tǒng)土壤緩沖能力普遍較低,且對酸源沉降更加敏感。在珠三角地區(qū),土壤pH值沿著農(nóng)村到城市的氮沉降增加梯度而降低[40]。在南亞熱帶廣東鼎湖山自然保護(hù)區(qū),Lu等[41]報道長期氮添加顯著降低了原始森林土壤的緩沖能力并加劇土壤酸化,但是次生林和人工林響應(yīng)不明顯;不同土地利用歷史導(dǎo)致的氮狀態(tài)不同是響應(yīng)差異的重要原因, “富氮的”成熟林更容易發(fā)生氮素流失和土壤酸化。過量氮輸入將會顯著降低土壤中有效陽離子(如Ca2+和Mg2+)含量,進(jìn)而導(dǎo)致養(yǎng)分失衡[13,42–43]??紤]到這些熱帶亞熱帶生態(tài)系統(tǒng)大多已經(jīng)處于鋁化合物緩沖階段,在未來氮沉降增加背景下應(yīng)更關(guān)注Ca2+和Mg2+的缺乏而非鋁毒效應(yīng)[18]。
大氣氮沉降會直接作用于植物,或者通過改變土壤化學(xué)元素的組成來間接影響植物元素平衡[44–45],并最終導(dǎo)致生態(tài)系統(tǒng)水平上的元素失衡[17,29]。關(guān)于氮沉降對森林植物元素化學(xué)影響的研究主要集中于地上部分,對于植物地下部分的研究十分匱乏。
關(guān)于地上部分,國內(nèi)最先見于李德軍的研究[46],他總結(jié)前人研究認(rèn)為,氮沉降會造成植物體內(nèi)養(yǎng)分元素比例的失衡;對南亞熱帶3種喬木幼苗的研究表明,氮施肥增加了植物N含量,增加了N與P、K、Ca、Mg和Mn等元素的比值。除N/P比外, N/K比也可以作為植物對氮沉降響應(yīng)的敏感指標(biāo)[47]。對溫帶森林的研究表明,氮素輸入普遍增加了植物N含量[48],進(jìn)一步驗證了溫帶區(qū)域的氮素限制性[49]。但也有研究報道5年的N添加對溫帶落葉松()各器官N、P、K、Ca和Mg含量的影響不明顯[50]。最近的整合分析(meta-analysis)表明,在中國隨著氮沉降的增加,木本和草本植物的葉氮含量增加,但是葉磷絕對含量變化不顯著[51–52]。對元素比值的整合分析表明,氮沉降普遍降低了中國各生態(tài)系統(tǒng)植物的C/N比,增加了N/P比,但是對C/P的效應(yīng)不顯著,根本原因是氮沉降增加了植物內(nèi)氮含量[53–55]。然而,Lu等[13]在“富氮”的熱帶成熟林的研究表明,為期10年的高氮輸入并沒有顯著改變喬木植物葉片N、K、Ca、Mg和Al等元素的含量,這主要是由于該生態(tài)系統(tǒng)已經(jīng)達(dá)到氮飽和以及植物產(chǎn)生的自我適應(yīng)性調(diào)整;并由此提出了植物適應(yīng)性新假說:即“富氮”生態(tài)系統(tǒng)植物可以通過提升自身蒸騰能力適應(yīng)高氮沉降來維持養(yǎng)分平衡。這更新了有關(guān)氮沉降增加植物葉氮含量的普遍觀點,因此在未來相關(guān)研究中應(yīng)當(dāng)充分考慮到生態(tài)系統(tǒng)的氮狀態(tài)和植物的適應(yīng)性。
關(guān)于地下部分,主要是針對植物細(xì)根,但研究數(shù)量遠(yuǎn)少于對植物葉片的研究,且研究結(jié)論不統(tǒng)一。Mo等[56]對熱帶次生林的研究表明,氮添加增加了細(xì)根氮素含量,但對磷含量沒有影響,進(jìn)而導(dǎo)致了N/P比降低。Zhu等[57]在南亞熱帶成熟林、混交林和馬尾松林的研究表明,為期5年的氮添加并沒有改變細(xì)根氮和磷的含量。整合分析進(jìn)一步表明,全球尺度上氮沉降顯著增加了植物總根的生物量(20.2%),但是減少了細(xì)根的生物量(–12.8%),顯著增加了植物細(xì)根的N含量(17.6%),降低了細(xì)根的C/N比,但事實沒有顯著改變細(xì)根的C含量[58]。
可以看出,不同生態(tài)系統(tǒng)植物元素化學(xué)對氮沉降的響應(yīng)不同,主要原因有兩個方面:首先,植物在長期生存進(jìn)化過程中形成了不同的系統(tǒng)發(fā)育特征,導(dǎo)致其對于氮沉降響應(yīng)的敏感程度因種而異, 此外,植物自我調(diào)整的適應(yīng)性(acclimation),也會改變氮沉降對植物化學(xué)元素影響的方向[13]。其次,影響植物發(fā)育的外部環(huán)境(如氣候、土壤發(fā)育特點等)會進(jìn)一步?jīng)Q定植物的響應(yīng)方式。中國北方溫帶地區(qū)生態(tài)系統(tǒng)一般認(rèn)為氮限制,而南方熱帶亞熱帶生態(tài)系統(tǒng)相對更加富氮,常受磷或其他陽離子限制,這些特點決定了森林植物對氮沉降響應(yīng)方式可能存在差異。
從全球尺度來看,氮添加對不同植物物種生長通常表現(xiàn)出刺激效應(yīng)[59]。不同生態(tài)系統(tǒng)和功能類群對氮沉降響應(yīng)的敏感程度不同,次生林樹木的生長一般比原始林敏感[60],而草本植物比木本植物敏感[59,61]。同時,氮沉降對森林凈初級生產(chǎn)力(NPP)或植物生長的影響也因氮沉降量而異,具有生態(tài)學(xué)中普遍的非線性關(guān)系[62]。中國東北地區(qū)森林中, 較低的氮添加(25 kg N hm–2a–1)導(dǎo)致最大的凈生產(chǎn)力, 隨著氮添加的增加(50 kg N hm–2a–1)正面效應(yīng)降低,氮添加量最大時(75 kg N hm–2a–1)正面效應(yīng)消失[63]。
目前,樹木徑向生長對氮沉降的響應(yīng)在中國僅有少量研究報道。樹木的生長響應(yīng)因個體大小(如胸徑和樹高)或生長階段而不同[64–66]。劉修元等[64]研究了模擬氮沉降對落葉松原始林樹木胸徑生長的影響,認(rèn)為不同高度的樹木對氮添加的響應(yīng)有很大差異, 較低樹木(樹高<16.5 m)的生長對氮添加無顯著響應(yīng),而較高(樹高>16.5 m)的樹木在中氮和高氮(50和100 kg N hm–2a–1)處理下胸徑生長顯著加速,但隨著樹木高度的進(jìn)一步增加, 這種加速作用明顯下降。在亞熱帶闊葉林,Tian等[65]報道3年的氮添加(50和100 kg N hm–2a–1)使甜栲()幼樹和林下幼苗生長顯著降低,但是大樹的生長沒有受到影響。7年的氮添加(40 kg N hm–2a–1)導(dǎo)致重慶馬尾松()林土壤酸化和氮飽和,并使馬尾松生長顯著下降[42]。從長遠(yuǎn)看,氮沉降對森林群落樹木結(jié)構(gòu)的改變可能會引起物種組成和碳吸存能力的改變。
大氣氮沉降升高已成為全球多樣性喪失的第三大驅(qū)動因素[67]。然而,中國僅有少量相關(guān)研究報道。與林下層植物相比,喬木植物對環(huán)境因素的響應(yīng)較慢,所以已有研究主要集中在林下層植物多樣性的響應(yīng)上。長期氮沉降會改變林下層物種組成, 但改變的程度依賴于森林類型、功能類群以及氮狀態(tài)等因素。在溫帶地區(qū),Du[68]報道3年的氮添加試驗對北方原始森林林下層植物的物種豐富度沒有影響,但顯著增加了禾草類植物的蓋度,并降低了矮小灌木植物的蓋度。在熱帶/亞熱帶原始林,Lu等[17]報道5年的高氮添加(>100 kg N hm–2a–1)顯著降低了林下植物多樣性(豐富度和多度),并首次提出負(fù)面效應(yīng)主要與土壤酸化機(jī)制有關(guān)而不是傳統(tǒng)上的競爭機(jī)制。Wu等[69]研究表明8年的高氮添加(>120 kg N hm–2a–1)可能通過降低土壤pH值和菌根真菌豐度來削弱亞熱帶森林林下植物豐富度。Huang等[42]通過對比NH4NO3和NaNO3處理在亞熱帶馬尾松林的效應(yīng),認(rèn)為林下主要物種多度的降低可能是氮飽和與土壤酸化共同作用的結(jié)果。與模擬氮沉降控制試驗的結(jié)果基本一致,Huang等[70]報道在廣州城鄉(xiāng)氮沉降梯度上(30.1~43.3 kg N hm–2a–1),成熟林林下草本層植物多樣性與氮沉降量呈負(fù)相關(guān), 與土壤中的有效Ca2+和K+濃度呈正相關(guān)。此外,氮沉降效應(yīng)也與土地利用方式有關(guān),與原始林相比, 人工林或次生林中植物多樣性對氮沉降的響應(yīng)相對不敏感[71–72]。
土壤微生物群落在森林生態(tài)系統(tǒng)中扮演著核心角色,其生長代謝能調(diào)控森林生態(tài)系統(tǒng)的物質(zhì)循環(huán)和能量流動,影響土壤養(yǎng)分狀態(tài)、有機(jī)質(zhì)的數(shù)量及穩(wěn)定性和土壤溫室氣體的排放等。氮沉降加劇會對土壤微生物群落的數(shù)量、組成和功能活性產(chǎn)生影響。
5.5.1 土壤微生物群落
野外試驗表明,氮添加通常會減少微生物的生物量[30,51]。氮添加引起的土壤pH降低、可利用碳降低、土壤溶液毒害等是導(dǎo)致微生物量減少的主要原因[73–75]。但也有研究報道氮添加對土壤微生物量沒有顯著影響[76]。
氮添加對微生物量的影響還與添加量、氮添加類型、季節(jié)、微生物種類及林型有關(guān)。低氮添加(50 kg N hm–2a–1)沒有顯著改變溫帶油松()林土壤微生物生物量,但中氮和高氮添加(>100 kg N hm–2a–1)則顯著降低了微生物生物量[77]。氨態(tài)氮添加(20~80 kg N hm–2a–1)增加了亞熱帶的冷杉()種植園細(xì)菌生物量,但硝態(tài)氮添加(20~80 kg N hm–2a–1)則降低了細(xì)菌生物量[78]。Wang等[79]報道氨態(tài)氮添加(120 kg N hm–2a–1)在非生長季顯著降低了亞熱帶冷杉和松樹種植園真菌生物量,在生長季則對真菌生物量影響不顯著,但在兩個季節(jié)對細(xì)菌生物量都沒有顯著影響。對鼎湖山3個南亞熱帶森林的研究表明,氮添加降低了季風(fēng)常綠闊葉林的土壤微生物量,但對針闊混交林和針葉林的土壤微生物量則沒有顯著影響[80]。
氮添加可以改變土壤微生物的群落組成。首先,氮添加會改變真菌群落(真菌、叢枝菌根真菌和外生菌根真菌)的組成, 氮添加(70 kg N hm–2a–1)在春季會增加北方落葉松森林擔(dān)子菌門的相對豐度, 但在夏季則會減少擔(dān)子菌門的相對豐度[81]。氮添加(50~ 100 kg N hm–2a–1)會降低武夷山的亞熱帶常綠闊葉林叢枝菌根真菌的比例,但氮添加(150 kg N hm–2a–1)增加了鼎湖山季風(fēng)常綠闊葉林叢枝菌根真菌的相對豐度[74,82]。氮添加(50~300 kg N hm–2a–1)能使亞熱帶濕地松()林對氮敏感的外生菌根真菌缺失[83]。其次,氮添加會影響細(xì)菌群落的組成, 基于磷脂脂肪酸分析技術(shù),氮添加會降低革蘭氏陰性細(xì)菌的相對豐度,增加革蘭氏陽性細(xì)菌/革蘭氏陰性細(xì)菌比[74]。基于高通量焦磷酸測序的研究也表明,氮添加會影響細(xì)菌群落的組成[81,84–85]。Nie等[85]報道,氮添加(105 kg N hm–2a–1)在干季會降低鼎湖山南亞熱帶常綠闊葉林酸桿菌門的相對豐度,但會增加變形菌門及放線菌門的相對豐度。第三,氮添加會影響真菌與細(xì)菌的比例。如氮添加增加了中國南部亞熱帶森林真菌的相對豐度,減少細(xì)菌的相對豐度,從而提高真菌/細(xì)菌比[74,86]。然而,氮添加降低了千煙洲的亞熱帶森林真菌/細(xì)菌比[73,79,87]。還有研究表明氮添加對真菌/細(xì)菌比沒有顯著影響[69,88]。
5.5.2 土壤酶活性
根據(jù)資源分配模型[89],氮添加可通過影響土壤養(yǎng)分的有效性來改變土壤酶活性。通常,氮添加會增加土壤有效氮的含量從而降低與微生物氮獲取相關(guān)的酶活性(乙酰氨基葡糖酶、亮氨酸氨基肽酶、蛋白酶、脲酶等),但會增加與微生物碳(纖維素二糖水解酶、葡萄糖苷酶、木糖苷酶等)和磷(堿性磷酸酶、酸性磷酸單酯酶、酸性磷酸二酯酶等)獲取相關(guān)的酶活性。然而,針對中國森林的研究表明,氮添加對酶活性的影響并不完全符合該理論框架[74,79,90]。如氮添加(100 kg N hm–2a–1)降低了北方落葉松森林土壤蛋白酶和脫氫酶活性,但對葡萄糖苷酶與酸性磷酸單酯酶的活性沒有顯著影響[76]。氮添加(50和100 kg N hm–2a–1)增加了千煙洲的亞熱帶冷杉種植園土壤乙酰氨基轉(zhuǎn)移酶、葡萄糖苷酶和酸性磷酸單酯酶活性[91],但氨態(tài)氮和硝態(tài)氮添加(40 kg N hm–2a–1)降低了當(dāng)?shù)貪竦厮闪滞寥琅c微生物碳、氮、磷獲取相關(guān)酶活性[73]。Fan等[76]報道氮添加(40和80 kg N hm–2a–1)增加了亞熱帶米櫧()林表層土壤的乙酰氨基葡糖酶和酸性磷酸單酯酶活性,但降低了下層土壤氮乙酰氨基轉(zhuǎn)移酶的活性。還有研究表明,氮添加對各類土壤酶活性都沒有顯著影響[92–93]。因此,氮添加對土壤酶活性的影響取決于氮添加的量、氮添加的類型、林型、酶的種類和土層等因素。
土壤動物是指土壤中和落葉下生存的各種動物的總稱。土壤動物作為生態(tài)系統(tǒng)中重要的分解者和消費者,對凋落物的分解、養(yǎng)分周轉(zhuǎn)、微生物群落調(diào)控、以及生態(tài)系統(tǒng)結(jié)構(gòu)和功能的維持均有重要作用。氮沉降的增加會對土壤動物的生物量、多樣性和組成產(chǎn)生影響。
在中國,氮沉降對土壤動物的研究最早開展于鼎湖山自然保護(hù)區(qū)[94–95]。氮沉降對森林土壤動物影響的結(jié)論并不一致,施氮量和林型都是重要的影響因素。首先,施氮量可能存在閾值效應(yīng)。Xu等[94]對南亞熱帶3種典型森林(季風(fēng)常綠林、針闊混交林和針葉林)的研究表明,1年的氮處理并未對土壤動物生物量產(chǎn)生顯著影響,但低氮處理(50 kg N hm–2a–1)各林分生物量都有不同程度的上升,而高氮處理(100 kg N hm–2a–1)均出現(xiàn)下降。Xu等[96]對鼎湖山森林苗圃地的研究進(jìn)一步表明,氮沉降對土壤動物群落多樣性的影響存在閾值效應(yīng)(100 kg N hm–2a–1)。在北亞熱帶楊樹人工林進(jìn)行2年氮添加試驗表明,中等濃度的氮添加對土壤動物群落有促進(jìn)作用,高濃度則有抑制作用[97];氮添加4年后,低氮和高氮水平分別顯著增加和降低了土壤動物總密度和植食性土壤動物密度,均表明氮添加對土壤動物的影響存在閾值作用[98]。其次,不同林型的氮沉降響應(yīng)可能不同。南亞熱帶成熟林土壤動物密度、類群數(shù)等多樣性指數(shù)隨氮輸入增加而降低,針葉林則相反,而針葉闊葉混交林則無明顯響應(yīng)[95]。亞熱帶人工林土壤線蟲對氮輸入的響應(yīng)均不顯著[99–101]。氮添加增加了溫帶針葉林土壤動物(跳蟲和螨蟲)的豐度[102]。
此外,不同類型的土壤動物對氮沉降的響應(yīng)也可能不一致。對溫帶人工林[落葉松和水曲柳()]的研究表明,施肥改變了兩林分不同食性土壤動物的密度,導(dǎo)致腐食性土壤動物數(shù)量降低,植食性土壤動物數(shù)量增加,但捕食性土壤動物數(shù)量變化不明顯;這表明不同食性土壤動物對氮沉降的響應(yīng)也不一致[103]。此外, 也有研究表明加氮對植食性線蟲密度無顯著影響,但可以改變外來生物(如蚯蚓)和植食性線蟲之間的相互作用關(guān)系,從而潛在影響生態(tài)系統(tǒng)的功能[104]。
5.7.1 氮沉降對CO2排放的影響
森林土壤呼吸是CO2進(jìn)入大氣的重要過程,了解氮沉降對森林土壤呼吸及其組分(自養(yǎng)呼吸和異氧呼吸)的影響,對于理解森林碳源/匯功能和穩(wěn)定性碳庫改變、以及預(yù)測未來氣候變化均非常重要。由于森林類型、環(huán)境條件和施氮持續(xù)時間不同,森林土壤呼吸對氮沉降的響應(yīng)包括促進(jìn)作用[74,105–106]、抑制作用[29,107]和無影響[108–110]。
國內(nèi)最早見于鼎湖山的研究報道,氮沉降顯著抑制了我國南亞熱帶成熟森林土壤呼吸能力[27], 但對該區(qū)域內(nèi)混交林和馬尾松林土壤呼吸速率沒有影響[108]。氮添加引起的細(xì)根生物量減少是抑制森林土壤自養(yǎng)呼吸(Ra)的直接原因,而氮添加導(dǎo)致的土壤酸化將減少微生物量及降低其活性是引起異氧呼吸(Rh)能力下降的根本原因[27,75]。一般而言,氮沉降引起的微生物生物量、凋落物量和土壤有機(jī)碳庫的變化更易引起土壤異氧呼吸速率的改變[106]。整合分析表明,氮沉降總體降低了森林土壤呼吸速率的1.44%[106],其響應(yīng)程度與氮添加的持續(xù)時間有關(guān)。試驗早期,外源氮通過改變參與凋落物分解的微生物基因表達(dá)、改變其群落結(jié)構(gòu)和活性,顯著改變土壤異氧呼吸[79,111–112]。氮沉降對土壤自養(yǎng)呼吸的影響程度取決于其對細(xì)根生物量的影響,在“富氮”森林中,外源氮素輸入可顯著降低細(xì)根生物量,從而顯著抑制森林土壤自養(yǎng)呼吸能力[27];而在相對“貧氮”系統(tǒng)中,氮添加刺激植物光合作用,增加細(xì)根生物量以獲取更多的營養(yǎng)元素(如磷等)和水分,從而顯著提高了該森林土壤自養(yǎng)呼吸能力[74]。此外,氮輸入形式不同對森林土壤呼吸的影響也不相同,通常情況下,NH4NO3為氮源的模擬試驗響應(yīng)程度比較顯著[113–114]。氮添加減少根際碳的輸入,同時降低微生物量及活性,減少土壤有機(jī)質(zhì)的分解速率[115],根系可能通過改變形態(tài)和分泌物來減輕氮輸入對根際的影響。氮沉降可通過對細(xì)根生長和微生物結(jié)構(gòu)及活性的影響來改變土壤呼吸的溫度敏感性(Q10值)[27,116]。
5.7.2 氮沉降對N2O排放的影響
森林土壤是N2O的源,含氮底物(NH4+-N和NO3–-N)通過硝化及反硝化細(xì)菌等,將NH4+-N和NO3–-N在不同條件下(好氧或厭氧)發(fā)生硝化或反硝化作用[117],產(chǎn)生N2O并排放至大氣中,其排放過程主要受土壤溫度和濕度的調(diào)節(jié)。氮沉降背景下,森林土壤N2O排放量增加,尤其在熱帶/亞熱帶森林中(約增加739%)[118]。近年來國內(nèi)雖相繼開展了一系列研究,由于區(qū)域和林型不同,仍沒有統(tǒng)一的響應(yīng)結(jié)論報道。
國內(nèi)最早的控制試驗報道見于在我國鼎湖山(南亞熱帶)森林的研究[16],氮添加顯著增加了南亞熱帶成熟林土壤無機(jī)氮(DON)含量,進(jìn)而刺激了N2O排放[16,119–120],但對該區(qū)域的針闊混交林和馬尾松林土壤N2O排放沒有影響,人為干擾程度導(dǎo)致森林本身“氮狀態(tài)”的不同引起響應(yīng)差異性[16,120]。同一樣地土壤進(jìn)行室內(nèi)培養(yǎng)試驗也表明,外源氮輸入顯著降低了成熟林土壤15N自然豐度,增加其N2O排放,而對混交林和馬尾松林土壤的N2O排放速率影響不明顯[121]。南亞熱帶豆科固氮樹種[大葉相思()]人工林土壤N2O排放速率在氮添加處理后顯著增加,而非固氮樹種[桉樹(sp.)林]的響應(yīng)不明顯[122]。對亞熱帶千煙洲人工杉木林的研究表明,氮沉降顯著促進(jìn)了N2O排放速率, 提高了4~7倍[123],而且NH4+-N添加對土壤N2O排放的促進(jìn)作用高于NO3–-N[124],可能是氮添加改變了氨氧化細(xì)菌的豐度(增加AOA、減少AOB)引起的[125]。來自重慶鐵山坪(西南地區(qū))森林的研究(15N示蹤)表明,NH4NO3添加顯著增加土壤N2O排放量,NH4+-N和NO3–-N對N2O的貢獻(xiàn)率沒有差異[126];然而對同一地區(qū)森林土壤15N示蹤室內(nèi)培養(yǎng)6 d,土壤N2O排放的71%~100%來源于NO3–-15N[127]。對海南尖峰嶺長期氮添加森林土壤進(jìn)行室內(nèi)培養(yǎng),結(jié)果表明N2O、N2排放及N2O/N2比例均沒有明顯改變(與對照比較)。在厭氧條件下,隨著氮素輸入,熱帶次生林土壤N2O排放量減少、N2排放量增加,隨氮添加N2O/N2比例降低[128],進(jìn)一步驗證了反硝化過程可能是調(diào)控我國熱帶/亞熱帶森林土壤N2O產(chǎn)生的主要過程。
對我國北方溫帶森林的研究表明,氮添加引起長白山森林地表可溶性無機(jī)氮(DON)增加,加快土壤氮素循環(huán)速率,并增加土壤N2O的排放[129–130],這些促進(jìn)作用主要集中在春季(凍融)和夏季(生長季節(jié))[110]。氮沉降可明顯增加反硝化速率,進(jìn)而增加土壤N2O排放量[131];尿素添加增加了凋落物層和礦質(zhì)土壤NO3–-N含量,從而引起N2O排放量呈指數(shù)增加[132]。與紅松()林相比,北方闊葉林土壤中的有機(jī)質(zhì)在氮添加下更容易被微生物分解、有機(jī)氮被礦化成無機(jī)氮,增加了硝化和反硝化作用底物,從而有更多的N2O排出[133]。對黑龍江涼水國家級自然保護(hù)區(qū)森林的研究也表明,隨著氮處理水平的增加,早期高氮添加顯著增加N2O排放能力[134],且對N2O排放促進(jìn)作用主要發(fā)生在生長季節(jié)[135]。在北京西山林場的試驗表明,模擬添加NH4NO3、(NH4)2SO4、NaNO3對N2O排放速率分別增加了356%、266%和188%[136]。這表明氮沉降對我國森林土壤N2O排放的影響取決于系統(tǒng)本身的氮狀態(tài)、施氮量、施氮形態(tài)和實驗周期等因素。
5.7.3 氮沉降對CH4吸收的影響
森林土壤一般認(rèn)為是大氣CH4的匯(CH4氧化與產(chǎn)生過程的綜合)。已有研究表明,氮沉降對我國森林土壤CH4氧化及產(chǎn)生過程均有不同程度的影響。
國內(nèi)有關(guān)森林土壤CH4吸收通量對氮沉降的響應(yīng)研究最早見于南亞熱帶森林(鼎湖山)的報道[137],氮添加引起的土壤NH4+與CH4氧化菌的競爭以及酸化環(huán)境下Al3+的毒害作用可能是引起CH4吸收通量減少的主要原因[118,137]。不同N素形態(tài)(NH4+-N和NO3–-N)對CH4吸收能力的影響程度不同[125,138]。早期氮添加顯著降低了我國南亞熱帶固氮樹種(大葉相思)人工林土壤CH4吸收能力,而對非固氮樹種(桉樹林)人工林沒有影響[139];氮添加對鼎湖山成熟林和次生林(針闊葉混交林)土壤CH4吸收通量顯著抑制,但對該區(qū)域馬尾松林沒有顯著影響[140], 氮沉降抑制森林土壤CH4吸收速率的程度與系統(tǒng)本身的“氮狀態(tài)”呈正相關(guān)關(guān)系[139]。另外,氮沉降對土壤CH4吸收的影響與森林類型密切相關(guān)[132,141],闊葉林比針葉林更為敏感,原因是闊葉林中凋落物分解速率較快、土壤中留存了更多的有效氮[142]。
截止目前,氮沉降對我國森林土壤主要溫室氣體通量影響的微生物機(jī)制仍不清晰,亟需借助于基因(DNA)芯片技術(shù)及高通量測序等手段,解析調(diào)控不同溫室氣體通量的微生物豐度、群落結(jié)構(gòu)及活性對氮沉降的響應(yīng),并綜合考慮CO2、N2O及CH4溫室效應(yīng)潛能,才能更好地理解未來氮沉降增加背景下,森林生態(tài)系統(tǒng)對區(qū)域乃至全球氣候變化的調(diào)控作用。
生物固氮是自然生態(tài)系統(tǒng)重要的氮素來源之一。在工業(yè)化革命以前,生物固氮作為生態(tài)系統(tǒng)主要的氮素來源,在生態(tài)系統(tǒng)養(yǎng)分循環(huán)和生產(chǎn)力方面發(fā)揮不可替代的作用[143–144]。然而,隨著工業(yè)的發(fā)展、人口增加和化石燃料的過度使用,大氣氮沉降逐年加劇[145]。氮沉降的加劇已經(jīng)對自然生態(tài)系統(tǒng)的固氮能力產(chǎn)生了影響。據(jù)估計,在過去15年間,陸地自然生態(tài)系統(tǒng)固氮速率已從100~290 Tg N a–1降低為44 Tg N a–1[145],而導(dǎo)致該現(xiàn)象的主要原因是人為活動排放的活性氮沉降[146]。
森林是固氮微生物分布比較廣泛的生態(tài)系統(tǒng),森林土壤、凋落物層、附生植物(苔蘚和地衣)、豆科植物根瘤和植物葉片等都具有固氮微生物的分布[147]。美洲和歐洲等地區(qū)已開展了氮沉降(或氮添加處理)對森林固氮的影響研究,多數(shù)結(jié)果表明外源氮輸入對森林固氮產(chǎn)生抑制作用[148–151]。由于經(jīng)濟(jì)的快速發(fā)展,中國已成為大氣氮沉降較為嚴(yán)重的地區(qū)之一[152],但當(dāng)前有關(guān)氮沉降對我國森林固氮影響的研究相對較少。Zheng等[153]的研究表明,氮添加降低了我國南亞熱帶鶴山大葉相思林土壤、凋落物和根瘤的固氮速率,但僅降低尾葉桉()林土壤的固氮速率。氮沉降對鶴山人工林固氮速率的抑制效應(yīng)可以通過人為管理方式(如施加磷肥)得以緩解[90]。在我國南亞熱帶鼎湖山森林中,Zheng等[154]比較了不同演替階段森林,表明氮沉降抑制了干擾林的固氮速率,但對恢復(fù)林的沒有顯著影響,這暗示加強(qiáng)森林保護(hù)可以有效增加森林的固氮潛力。此外,Zheng等[32]的研究表明,在鼎湖山土壤“氮飽和”成熟林中長期氮添加處理對森林總固氮速率的影響很小,這一定程度上驗證了Hedin等[155]提出的熱帶森林“氮悖論”假設(shè)。Wang等[156]報道氮添加顯著降低了江西杉木人工林土壤固氮微生物豐度和固氮速率。Tang等[157]報道鼎湖山和長白山森林土壤固氮菌對氮添加的響應(yīng)存在差異,即長白山森林土壤固氮菌豐度對氮添加較為敏感(固氮菌豐度顯著降低),而鼎湖山森林土壤固氮菌對氮添加的敏感性較低(固氮菌豐度沒有顯著變化)。因此,氮添加降低森林固氮的潛在機(jī)理是:(1)通過增加森林土壤有效氮的含量而減弱固氮菌的競爭優(yōu)勢[147]; (2)通過加劇土壤其他養(yǎng)分(如磷等)的流失進(jìn)而制約生物固氮的過程[90]; (3)通過改變固氮附生植物和結(jié)瘤植物的氮素獲取方式,從而減少對固氮菌的能量分配,進(jìn)一步降低森林的固氮量[158]。
氮循環(huán)直接影響著土壤氮狀況和土壤中氮的去向,是森林生態(tài)系統(tǒng)最重要的功能之一。森林生態(tài)系統(tǒng)氮循環(huán)可以分成外循環(huán)與內(nèi)循環(huán)。外循環(huán)包括氮的輸入(生物固氮、氮沉降)和氮的輸出(淋溶、徑流流失、反硝化與氨的揮發(fā)),內(nèi)循環(huán)則是指氮在生態(tài)系統(tǒng)內(nèi)部各氮庫之間的周轉(zhuǎn),包括氮的礦化、硝化、植物和微生物對氮的固持等。氮沉降加劇會顯著影響森林生態(tài)系統(tǒng)氮的輸入和輸出,還會改變氮在生態(tài)系統(tǒng)內(nèi)部的周轉(zhuǎn)[159]。
氮沉降加劇會增加中國森林生態(tài)系統(tǒng)氮的輸入。在中國南部亞熱帶森林中,隨著氮沉降量的增加,森林穿透雨中的氮含量也隨之增加[40]。由于目前大部分氮沉降模擬實驗都是在林下施加氮肥,因而氮添加對森林穿透雨中氮含量的影響并不能模擬氮沉降對穿透雨氮輸入的影響。華南園在廣東石門臺和河南雞公山開展的林冠模擬氮沉降的試驗可能讓我們更準(zhǔn)確地了解氮沉降對森林穿透雨氮動態(tài)的影響[35]。
氮輸入的增加還會加劇森林土壤氮素的淋失。氮是陸地生態(tài)系統(tǒng)最普遍的限制性元素之一。氮添加使土壤總氮在熱帶、亞熱帶、溫帶和北方森林分別增加26.9%、5.4%、4.5%和17.3%[51]。但是,過量的氮輸入會改變森林生態(tài)系統(tǒng)的氮狀況,使森林生態(tài)系統(tǒng)由“氮限制”狀態(tài)變成“氮飽和”狀態(tài),導(dǎo)致氮的淋溶[20]。在重慶鐵山坪亞熱帶混交林中,氨態(tài)氮(43 kg N hm–2a–1)和硝態(tài)氮(40 kg N hm–2a–1)添加都顯著增加了土壤硝態(tài)氮的淋溶[160]。在鼎湖山南亞熱帶常綠闊葉林、針闊葉混交林、針葉林中,氮添加顯著加劇了土壤無機(jī)氮和有機(jī)氮的淋溶[18,41,161]。最近的原位氮同位素示蹤研究則表明,即使在“氮飽和”的森林土壤,新輸入土壤的氮也不是直接從土壤中流失,而是先在生態(tài)系統(tǒng)內(nèi)部進(jìn)行重新分配和周轉(zhuǎn)[162]。
氮輸入增加可以改變土壤氮素轉(zhuǎn)化過程,包括氮的礦化、硝化和氮固持。氮添加對我國溫帶和北方森林土壤氮的礦化和硝化過程通常表現(xiàn)為促進(jìn)或不影響[88,163–165]。Gao等[164]報道氮添加(40 kg N hm–2a–1)增加了溫帶混交林土壤氮的凈礦化速率,但對凈硝化速率沒有顯著影響。氮添加則對賽罕烏拉的白樺()次生林同時增加了氮的凈礦化速率和凈硝化速率[163]。氮添加促進(jìn)了長白山溫帶混交林總氮礦化速率,但對總硝化速率沒有顯著影響[166]。對中國熱帶和亞熱帶森林,氮添加對氮的礦化及硝化有促進(jìn)和不影響[122]、或抑制作用[167]。氮添加降低了鼎湖山自然保護(hù)區(qū)和查灣自然保護(hù)區(qū)的常綠闊葉林土壤氮的凈礦化和凈硝化速率[167–168], 也降低了千煙洲亞熱帶混交林和松林土壤氮的總礦化速率[169–170]。總之,氮添加對中國森林土壤氮素轉(zhuǎn)化過程的影響取決于氮添加的數(shù)量、種類和持續(xù)時間以及林型等因素。
目前,關(guān)于氮沉降對土壤氮素轉(zhuǎn)化過程的了解大多基于凈氮素轉(zhuǎn)化速率,還鮮有研究揭示氮沉降背景下,土壤氮素轉(zhuǎn)化速率的變化與相關(guān)的微生物群落變化之間的聯(lián)系。未來需要更多地將總氮素轉(zhuǎn)化速率與土壤微生物群落及酶活性綜合考慮,以更加準(zhǔn)確地揭示氮沉降影響土壤氮素轉(zhuǎn)化速率機(jī)理。
森林磷循環(huán)包括磷素的輸入(巖石風(fēng)化或沉降輸入)和輸出(淋溶)、在生態(tài)系統(tǒng)各磷庫中的固持(土壤磷的有效性、植物體的固持和微生物的固持)及在各磷庫間的流轉(zhuǎn)(如凋落物的分解和回收利用)等。目前國內(nèi)有關(guān)氮沉降對對磷循環(huán)的研究極少。Zhou等[171]在鼎湖山長期高氮沉降背景下的淋溶試驗表明,氮沉降顯著降低了冠層穿透雨中的磷素,但對地表徑流及土壤溶液的磷素淋溶沒有顯著影響,這可能與植物磷吸收、凋落物分解的抑制作用、土壤有效磷低和較強(qiáng)的生物固持作用有關(guān)。
作為磷素循環(huán)的一部分,土壤有效磷對氮沉降響應(yīng)的報道最常見,但相關(guān)結(jié)果并不一致。有研究表明,氮沉降降低了土壤磷的有效性,如中國東北帽兒山落葉林[172]。近年來的一些研究卻表明,氮添加并沒有降低甚至增加了土壤磷的有效性[173–175], Wang等[174]對桉樹進(jìn)行短期氮磷添加處理,高氮添加降低了亞熱帶森林土壤可溶性有機(jī)磷,同時有效磷含量上升,這些差異可能與地域間氮沉降量、土壤磷素含量、土壤鈣鐵鋁離子含量、土壤pH、森林物種組成和土地利用方式不同有關(guān)[175]。
對生態(tài)系統(tǒng)而言,氮添加導(dǎo)致生態(tài)系統(tǒng)氮磷計量化學(xué)失衡(增加植物氮/磷比),并可能導(dǎo)致系統(tǒng)磷限制的發(fā)生[176–177]。然而,植物在磷限制壓力下可以通過一系列的生理生態(tài)過程來緩解磷素的相對不足。首先,氮沉降促進(jìn)植物對磷的吸收[49,178]。Deng等對華北落葉松的研究表明,氮添加通過改變叢枝菌根真菌與外生菌根的比例來促進(jìn)對磷素的吸收,以保持體內(nèi)氮磷比的穩(wěn)定[49]。第二,氮輸入會促進(jìn)植物體對磷的重吸收[179–180],See等[181]對英國不同養(yǎng)分狀態(tài)森林氮磷重吸收的研究表明,隨著土壤總氮含量的上升,磷素的重吸收率隨之升高。氮沉降還可以通過改變微生物學(xué)過程(如磷素的固持、酶的分泌等)來影響土壤磷素周轉(zhuǎn)[54,74]。鄭棉海等的研究表明,施加氮肥顯著提高了鼎湖山季風(fēng)林土壤的酸性磷酸酶活性[182]。此外,在氮/磷比較高的熱帶地區(qū),森林生態(tài)系統(tǒng)傾向于閉合型循環(huán),降低磷素的淋溶[171,183]。
凋落物是植物產(chǎn)生的枯落物或有機(jī)碎屑,植物體以產(chǎn)生凋落物的形式將營養(yǎng)返還到土壤表面,而凋落物在微生物分解的作用下,向環(huán)境中釋放植物可吸收利用的營養(yǎng)。陸地生態(tài)系統(tǒng)中約90%的凈初級生產(chǎn)量以凋落物的形式歸還給土壤[184],養(yǎng)分再循環(huán)供給植物生長發(fā)育。因而,凋落物分解過程受環(huán)境因子、凋落物質(zhì)量和生物因子等多因素共同調(diào)控。華南園率先開展了氮沉降增加對森林凋落物分解方面的研究,國內(nèi)代表性的長期氮沉降樣地有鼎湖山、長白山、大小興安嶺等,研究內(nèi)容涵蓋了凋落物的產(chǎn)量動態(tài)、分布、分解過程和影響因素等。
目前,氮沉降對凋落物分解速率的研究結(jié)果尚不一致,有促進(jìn)[185–187]、抑制[188–189]和無顯著影響[190–191]。同時也有學(xué)者提出,氮沉降對凋落物分解的影響具有階段性[192–193],在初期促進(jìn)其分解, 而后期反而受到高氮量的抑制作用。此外,凋落物分解過程還受到演替進(jìn)程的影響。莫江明等[194]的研究表明,氮沉降對凋落物分解的影響隨亞熱帶森林演替從正效應(yīng)轉(zhuǎn)向負(fù)效應(yīng)。
中國學(xué)者對氮沉降與凋落物分解的研究多采用人工施加硝酸銨氮肥,其他無機(jī)氮或有機(jī)氮使用頻次相對降低,且施氮研究時間都比較短,大都關(guān)注1、2年的凋落物動態(tài),鮮少關(guān)注長期凋落物動態(tài)的研究。氮沉降對凋落物分解影響的研究結(jié)果雖然存在很大差異,但中國西南和南方等的亞熱帶森林,大多都表現(xiàn)出抑制凋落物分解的趨勢[133,188–189,195]。然而北方溫帶闊葉林和針葉林等對氮添加的響應(yīng)更為多樣,氮添加對凋落物分解多具正負(fù)效應(yīng),且很多表現(xiàn)出階段性的效應(yīng)[185,187,193]。
植物源揮發(fā)性有機(jī)物(biogenic volatile organic compounds, BVOCs)是指植物直接排放的沸點為50℃~260℃,室溫下飽和蒸汽壓超過133.322 Pa的易揮發(fā)性碳?xì)浠衔铮饕ǚ羌淄闊N類(烷烴、烯烴、芳香烴)和含氧原子的醛、酮、酚、醇、醚、酯等揮發(fā)性有機(jī)物。BVOCs來源于植物的光合碳同化物,是碳(C)素循環(huán)的一個重要組成部分,其排放與環(huán)境因子息息相關(guān),并對脅迫環(huán)境有顯著響應(yīng)[196–197]。
國內(nèi)氮沉降對森林植物BVOCs排放影響的報道極少,僅見于鼎湖山。黃娟等[198]提出了氮沉降對植物BVOCs影響的假說模型:在氮限制系統(tǒng)中,氮沉降的增加補(bǔ)充了系統(tǒng)所需的氮素,有利于植物的生長,大量BVOCs的排放會受到抑制;在氮素豐富或飽和的系統(tǒng)中,氮沉降導(dǎo)致系統(tǒng)氮素過飽和或富營養(yǎng)化,不利于植物的生長, 刺激BVOCs的排放增加。該假說模型在相對“氮限制”的鼎湖山苗圃地得到了驗證,即為期一年半的氮添加(100 kg N hm–2a–1)顯著抑制了海南紅豆()和陰香()幼苗甲醛和乙醛的排放[199–200]。
氮沉降通過影響森林生態(tài)系統(tǒng)主要碳庫(植物生物量和土壤有機(jī)碳庫)對生態(tài)系統(tǒng)碳吸存產(chǎn)生影響(圖4)。氮沉降對生態(tài)系統(tǒng)碳吸存的影響包括對植被碳庫(vegetation carbon pool)和土壤碳庫(soil carbon pool)的影響。氮沉降通過改變植物的光合作用和呼吸作用的強(qiáng)弱來調(diào)節(jié)植物體作為生物碳庫的凈碳固存,同時又通過影響植物體產(chǎn)生凋落物的生物量大小及凋落物質(zhì)量(包括地上部分凋落物及根系凋落物)來調(diào)節(jié)進(jìn)入土壤碳庫的碳輸入量,此外,氮沉降還影響微生物群落與活性,從而控制著土壤碳庫中各種碳組分間的轉(zhuǎn)化(如有機(jī)碳的分解礦化與土壤呼吸),并與淋溶等其他生態(tài)過程共同調(diào)節(jié)著土壤碳庫的碳儲量。陸地生態(tài)系統(tǒng)通常受到氮素的限制[5],所以外源性氮添加會促進(jìn)生態(tài)系統(tǒng)初級生產(chǎn)力[1–2,53]。Yue等[53]報道,氮添加后全球尺度上的陸地生態(tài)系統(tǒng)地上部分與地下部分的碳含量分別增加了25.65%和15.93%。Chen等[201]通過收集中國陸地生態(tài)系統(tǒng)數(shù)據(jù)并進(jìn)行整合分析,義為中國的模擬氮沉降試驗增加了地上植物碳庫,但地下植物碳庫顯著減少。這種地上生物量的增加趨勢與全球尺度上的變化趨勢相似[2,53],而地下生物量的響應(yīng)與全球尺度上的變化模式不同。Lu等[71]通過全球陸地生態(tài)系統(tǒng)土壤碳儲存對氮沉降響應(yīng)的Meta分析表明,盡管不同地區(qū)的地上植物碳庫對氮沉降的響應(yīng)強(qiáng)度不同,但總體上呈現(xiàn)正響應(yīng),氮添加處理下地上植物碳庫增加了35.7%[71]。中國地上與地下生物量對氮沉降的響應(yīng)與全球模式不同的原因可能在于中國氮沉降量非常高,因此氮沉降對根系的負(fù)效應(yīng)可能更為強(qiáng)烈。模擬氮沉降處理降低了鼎湖山季風(fēng)林的根系生物量,同時增加了死亡根系的生物量[57];這可能是氮添加通過影響土壤酸化而對根系產(chǎn)生了毒副作用。此外,過多的氮可以通過影響初級生產(chǎn)力來抑制碳的吸收。氮添加對森林植被,尤其是林下植被有顯著的負(fù)效應(yīng),而對大樹的影響還需要長期研究[17,65,202]。通常認(rèn)為,“富氮”森林生態(tài)系統(tǒng)中的植物生長和生產(chǎn)力對長期氮添加沒有明顯響應(yīng)[13]。
圖4 森林生態(tài)系統(tǒng)碳吸存過程框架圖
土壤碳庫是陸地生態(tài)系統(tǒng)中重要的碳庫。土壤碳庫是碳通過枯葉(如葉,根和枝)輸入和通過分解、淋溶輸出的凈儲量。因此,土壤碳的分解過程是控制森林生態(tài)系統(tǒng)中土壤碳庫量的關(guān)鍵,而包括底物質(zhì)量、氣候、水分及土壤化學(xué)性質(zhì)等各種因素控制著底物的分解過程[203]。氮是控制有機(jī)物分解的重要因素。近幾十年來由于人類活動的影響, 氮沉降量急劇增加,預(yù)計在熱帶亞熱帶地區(qū)將進(jìn)一步增加[3]。因此,了解土壤有機(jī)質(zhì)分解對高氮輸入的響應(yīng)是預(yù)測未來全球碳動態(tài)變化的關(guān)鍵。
許多研究表明,除分解的早期階段外氮添加會降低有機(jī)物的分解,所以氮沉降可以提高森林生態(tài)系統(tǒng)中的土壤碳庫[204]。在“氮飽和”的南亞熱帶原始森林,氮添加抑制了凋落物分解[1,26]。同時氮添加早期促進(jìn)了人工林中的凋落物分解,這與氮相對較貧乏時的原因相同[26]。隨后進(jìn)行的凋落物分解研究與這一趨勢相反,隨著時間的推移,更多的氮輸入生態(tài)系統(tǒng)中,導(dǎo)致凋落物分解受到抑制[205]。相應(yīng)地,對鼎湖山成熟林的研究也表明,氮肥施加抑制了土壤呼吸[27]。因此,未來持續(xù)高氮沉降輸入可能會通過抑制有機(jī)質(zhì)分解來促進(jìn)土壤碳吸存。
沉降到生態(tài)系統(tǒng)中的氮經(jīng)過一系列的循環(huán)周轉(zhuǎn)一般有4個去向:存留到植物和土壤的各個組分中,以氣體形式(含N化合物的排放)或液體形式(淋溶流失)離開生態(tài)系統(tǒng)。15N示蹤技術(shù)被認(rèn)為是氮沉降背景下研究氮循環(huán)的有力工具,Templer等[206]對溫帶和北方森林生態(tài)系統(tǒng)的研究表明,15N添加后短期內(nèi)(約1年),森林生態(tài)系統(tǒng)總的15N回收率維持在75%左右,且土壤(有機(jī)質(zhì)層和表層礦質(zhì))是最大的氮匯,其次是植物。
近年來,我國陸續(xù)開展了基于15N示蹤手段研究生態(tài)系統(tǒng)氮去向的相關(guān)試驗。在熱帶(亞熱帶)區(qū)域的鼎湖山成熟林、重慶鐵山坪的亞熱帶森林、海南熱帶山地原始林的研究(15NH415NO3、15NH4NO3或NH415NO3)表明,15N添加1年后生態(tài)系統(tǒng)15N回收率高達(dá)50%~70%以上,而土壤溶液中15N回收率為14%~33%[162,207–208]。因此,以NH4NO3為主要氮沉降形式的土壤和植物是最大的氮匯。然而,在鐵山坪亞熱帶森林進(jìn)行的Na15NO3示蹤研究表明, 18個月內(nèi)土壤溶液中15N回收率高達(dá)74%,這反映了生態(tài)系統(tǒng)在氮飽和情境下難以保持過量硝態(tài)氮的輸入[160]。在長白山溫帶森林進(jìn)行的15NH4NO3和NH415NO3示蹤研究表明,1年后仍有80%15N存留在植物和土壤中,高于熱帶森林[207]。在亞熱帶常綠闊葉林和北方針葉林,Sheng等[209]利用(15NH4)2SO4和K15NO3兩種15N進(jìn)行示蹤研究,15NH4+的回收率在兩個森林中相差不大,15NO3–的回收率在針葉林高于亞熱帶闊葉林;和NH4+相比, NO3–更容易從生態(tài)系統(tǒng)中流失。這些表明,熱帶亞熱帶森林仍具有不可忽視的氮匯,而且沉降氮的形態(tài)將進(jìn)一步?jīng)Q定氮素在生態(tài)系統(tǒng)中的命運(yùn)。
通過上面綜述,我們可以得出兩個重要結(jié)論:首先,中國近三十年來大氣氮沉降總量顯著增加, 特別是NO3–氮沉降;其次,模擬氮沉降研究表明,持續(xù)高氮輸入將會顯著改變森林生態(tài)系統(tǒng)的結(jié)構(gòu)和功能,特別是處于氮沉降熱點區(qū)域的中國中南部。主要表現(xiàn)如下:(1)北方和溫帶森林仍存在氮素施肥效應(yīng),熱帶森林則趨向氮飽和、無明顯的正生長效應(yīng);(2)過量氮沉降將會導(dǎo)致土壤酸化和養(yǎng)分失衡;(3)氮沉降增加促進(jìn)了氮循環(huán)速率及其轉(zhuǎn)化過程,但抑制了森林的固氮速率,并影響到了碳、磷等其他元素循環(huán)、凋落物分解進(jìn)程和溫室氣體排放;(4)氮沉降降低了林下層植物,并改變了土壤微生物群落結(jié)構(gòu);(5)高氮沉降背景下熱帶亞熱帶森林仍具有不可忽視的氮匯;(6)森林生態(tài)系統(tǒng)的氮沉降效應(yīng)依賴于系統(tǒng)的氮狀態(tài)、土地利用歷史、氣候特征、林型和林齡等。
盡管目前的研究對深入理解和評估大氣氮沉降增加對中國森林生態(tài)系統(tǒng)健康的影響做出了積極貢獻(xiàn),但是在全球變化背景下未來仍有以下幾個方面值得深入探討。
首先,在研究方式上應(yīng)兼顧到以下3點:(1)需要追蹤研究森林生態(tài)系統(tǒng)的長期氮沉降效應(yīng)。目前的大部分氮沉降試驗研究期限較短(<10年),研究結(jié)果的有效性和可靠性還有待于長期驗證。(2)要加強(qiáng)各站點之間的聯(lián)網(wǎng)研究,以更好地探究生態(tài)系統(tǒng)現(xiàn)象背后運(yùn)轉(zhuǎn)的規(guī)律,以期為森林生態(tài)系統(tǒng)的可持續(xù)發(fā)展提供理論基礎(chǔ)和管理依據(jù)。(3)加強(qiáng)對我國不同氣候和植被類型生態(tài)系統(tǒng)響應(yīng)研究的評估,這主要是考慮到不同氣候帶的水、土、氣、生等各方面均存在差異。
其次,在研究內(nèi)容上有以下3個方面需要強(qiáng)化:(1)森林生態(tài)系統(tǒng)對長期氮沉降響應(yīng)與適應(yīng)的過程機(jī)制有待于深入研究,因為目前的研究更偏重于格局。(2)長期氮沉降對中國森林碳吸存與固氮潛力的影響,主要是考慮到地下碳氮循環(huán)過程仍存在巨大的不確定性。(3)需要加強(qiáng)與其他全球變化因子(如全球變暖、CO2濃度升高、降雨格局改變等)的耦合研究,以更好的評估生態(tài)系統(tǒng)未來的發(fā)展趨勢。
[1] VITOUSEK P M, HOWARTH R W. Nitrogen limitation on land and in the sea: How can it occur? [J]. Biogeochemistry, 1991, 13(2): 87–115. doi: 10.1007/BF00002772.
[2] LEBAUER D S, TRESEDER K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed [J]. Ecology, 2008, 89(2): 371–379. doi: 10.1890/06-2057.1.
[3] GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles: Past, present, and future [J]. Biogeochemistry, 2004, 70(2): 153–226. doi: 10.1007/s10533-004-0370-0.
[4] CUI S H, SHI Y L, GROFFMAN P M, et al. Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910–2010) [J]. Proc Natl Acad Sci USA, 2013, 110(6): 2052–2057. doi: 10.1073/pnas. 1221638110.
[5] Lü C Q, TIAN H Q. Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data [J]. J Geophys Res-Atmos, 2007, 112(D22): D22S05. doi: 10.1029/2006JD007990.
[6] GU B J, JU X T, CHANG J, et al. Integrated reactive nitrogen budgets and future trends in China [J]. Proc Natl Acad Sci USA, 2015, 112(28): 8792–8797. doi: 10.1073/pnas.1510211112.
[7] XU W, LUO X S, PAN Y P, et al. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China [J]. Atmos Chem Phys, 2015, 15(21): 12345–12360. doi: 10.5194/acp-15- 12345-2015.
[8] JIA Y L, YU G R, HE N P, et al. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity [J]. Sci Rep, 2014, 4: 3763. doi: 10.1038/srep03763.
[9] BOBBINK R, HICKS K, GALLOWAY J, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis [J]. Ecol Appl, 2010, 20(1): 30–59. doi: 10.1890/08-1140.1.
[10] YU G R, JIA Y L, HE N P, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade [J]. Nat Geosci, 2019, 12(6): 424–429. doi: 10.1038/s41561-019-0352-4.
[11] YU G R, GAO Y, WANG Q F et al. Discussion on the key processes of carbon-nitrogen-water coupling cycles and biological regulation mechanisms in terrestrial ecosystem [J]. Chin J Eco-Agric, 2013, 21(1): 1–13. doi: 10.3724/SP.J.1011.2013.00001.于貴瑞, 高揚(yáng), 王秋鳳, 等. 陸地生態(tài)系統(tǒng)碳-氮-水循環(huán)的關(guān)鍵耦合過程及其生物調(diào)控機(jī)制探討 [J]. 中國生態(tài)農(nóng)業(yè)學(xué)報, 2013, 21(1): 1–13. doi: 10.3724/SP.J.1011.2013.00001.
[12] GRUBER N, GALLOWAY J N. An Earth-system perspective of the global nitrogen cycle [J]. Nature, 2008, 451(7176): 293–296. doi: 10. 1038/nature06592.
[13] LU X K, VITOUSEK P M, MAO Q G, et al. Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest [J]. Proc Natl Acad Sci USA, 2018, 115(20): 5187–5192. doi: 10.1073/pnas. 1720777115.
[14] PHOENIX G K, HICKS W K, CINDERBY S, et al. Atmospheric nitrogen deposition in world biodiversity hotspots: The need for a greater global perspective in assessing N deposition impacts [J]. Glob Change Biol, 2006, 12(3): 470–476. doi: 10.1111/j.1365-2486.2006. 01104.x.
[15] BOWMAN W D, CLEVELAND C C, HALADA ?, et al. Negative impact of nitrogen deposition on soil buffering capacity [J]. Nat Geosci, 2008, 1(11): 767–770. doi: 10.1038/ngeo339.
[16] ZHANG W, MO J M, YU G R, et al. Emissions of nitrous oxide from three tropical forests in southern China in response to simulated nitrogen deposition [J]. Plant Soil, 2008, 306(1/2): 221–236. doi: 10.1007/ s11104-008-9575-7.
[17] LU X K, MO J M, GILLIAM F S, et al. Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest [J]. Glob Change Biol, 2010, 16(10): 2688–2700. doi: 10.1111/j.1365- 2486.2010.02174.x.
[18] LU X K, MAO Q G, GILLIAM F S, et al. Nitrogen deposition contri- butes to soil acidification in tropical ecosystems [J]. Glob Change Biol, 2014, 20(12): 3790–3801. doi: 10.1111/gcb.12665.
[19] MIDOLO G, ALKEMADE R, SCHIPPER A M, et al. Impacts of nitrogen addition on plant species richness and abundance: A global meta-analysis [J]. Glob Ecol Biogeogr, 2019, 28(3): 398–413. doi: 10. 1111/geb.12856.
[20] ABER J, McDOWELL W, NADELHOFFER K, et al. Nitrogen satu- ration in temperate forest ecosystems [J]. BioScience, 1998, 48(11): 921–934. doi: 10.2307/1313296.
[21] ROCKSTR?M J, STEFFEN W, NOONE K, et al. A safe operating space for humanity [J]. Nature, 2009, 461(7263): 472–475. doi: 10.1038/ 461472a.
[22] WRIGHT R F, RASMUSSEN L. Introduction to the NITREX and EXMAN projects [J]. For Ecol Manage, 1998, 101(1/2/3): 1–7. doi: 10. 1016/S0378-1127(97)00120-5.
[23] MAGILL A H, ABER J D, CURRIE W S, et al. Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA [J]. For Ecol Manage, 2004, 196(1): 7–28. doi: 10. 1016/j.foreco.2004.03.033.
[24] RUSTAD L E. The response of terrestrial ecosystems to global climate change: Towards an integrated approach [J]. Sci Total Environ, 2008, 404(2/3): 222–235. doi: 10.1016/j.scitotenv.2008.04.050.
[25] ZHAO D W, SUN B Z. Air pollution and acid rain in China [J]. Ambio, 1986, 15(1): 2–5.
[26] MO J M, BROWN S, XUE J H, et al. Response of litter decomposition to simulated N deposition in disturbed, rehabilitated and mature forests in subtropical China [J]. Plant Soil, 2006, 282(1/2): 135–151. doi: 10. 1007/s11104-005-5446-7.
[27] MO J M, ZHANG W, ZHU W X, et al. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China [J]. Glob Change Biol, 2008, 14(2): 403–412. doi: 10.1111/j.1365-2486.2007. 01503.x.
[28] DU E Z, ZHOU Z, LI P, et al. NEECF: A project of nutrient enrichment experiments in China’s forests [J]. J Plant Ecol, 2013, 6(5): 428–435. doi: 10.1093/jpe/rtt008.
[29] LIU X J, DUAN L, MO J M, et al. Nitrogen deposition and its ecological impact in China: An overview [J]. Environ Pollut, 2011, 159(10): 2251–2264. doi: 10.1016/j.envpol.2010.08.002.
[30] FU Z, NIU S L, DUKES J S. What have we learned from global change manipulative experiments in China? A meta-analysis [J]. Sci Rep, 2015, 5: 12344. doi: 10.1038/srep12344.
[31] ZHU J X, WANG Q F, HE N P, et al. Imbalanced atmospheric nitrogen and phosphorus depositions in China: Implications for nutrient limitation [J]. J Geophys Res-Biogeosci, 2016, 121(6): 1605–1616. doi: 10.1002/ 2016JG003393.
[32] ZHENG M H, ZHANG W, LUO Y Q, et al. Stoichiometry controls asymbiotic nitrogen fixation and its response to nitrogen inputs in a nitrogen-saturated forest [J]. Ecology, 2018, 99(9): 2037–2046. doi: 10. 1002/ecy.2416.
[33] KOU L, LI S G, WANG H M, et al. Unaltered phenology but increased production of ectomycorrhizal roots ofunder 4 years of nitrogen addition [J]. New Phytol, 2019, 221(4): 2228–2238. doi: 10. 1111/nph.15542.
[34] XING A J, XU L C, SHEN H H, et al. Long term effect of nitrogen addition on understory community in a Chinese boreal forest [J]. Sci Total Environ, 2019, 646: 989–995. doi: 10.1016/j.scitotenv.2018.07. 350.
[35] ZHANG W, SHEN W J, ZHU S D, et al. Can canopy addition of nitrogen better illustrate the effect of atmospheric nitrogen deposition on forest ecosystem? [J]. Sci Rep, 2015, 5(1): 11245. doi: 10.1038/srep 11245.
[36] FANG Y T, WANG X M, ZHU F F, et al. Three-decade changes in chemical composition of precipitation in Guangzhou City, southern China: Has precipitation recovered from acidification following sulphur dioxide emission control? [J]. Tellus B, 2013, 65: 20213. doi: 10.3402/tellusb.v65i0.20213.
[37] DU E, BE VRIES W, LIU X, et al. Spatial boundary of urban ‘a(chǎn)cid islands’ in China [J]. Sci Rep, 2015, 5: 12625. doi: 10. 1038/srep12625.
[38] ULRICH B. Natural and anthropogenic components of soil acidify- cation [J]. Z Pflanz Bodenkunde, 1986, 149(6): 702–717. doi: 10.1002/ jpln.19861490607.
[39] DU E Z, JIANG Y, FANG J Y, et al. Inorganic nitrogen deposition in China’s forests: Status and characteristics [J]. Atmos Environ, 2014, 98: 474–482. doi: 10.1016/j.atmosenv.2014.09.005.
[40] FANG Y T, YOH M, KOBA K, et al. Nitrogen deposition and forest nitrogen cycling along an urban-rural transect in southern China [J]. Global Change Biol, 2011, 17(2): 872–885. doi: 10.1111/j.1365-2486. 2010.02283.x.
[41] LU X K, MAO Q G, MO J M, et al. Divergent responses of soil buffering capacity to long-term N deposition in three typical tropical forests with different land-use history [J]. Environ Sci Technol, 2015, 49(7): 4072–4080. doi: 10.1021/es5047233.
[42] HUANG Y M, KANG R H, MULDER J, et al. Nitrogen saturation, soil acidification, and ecological effects in a subtropical pine forest on acid soil in southwest China [J]. J Geophys Res-Biogeo, 2015, 120(11): 2457–2472. doi: 10.1002/2015JG003048.
[43] MAO Q G, LU X K, MO H, et al. Effects of simulated N deposition on foliar nutrient status, N metabolism and photosynthetic capacity of three dominant understory plant species in a mature tropical forest [J]. Sci Total Environ, 2018, 610–611: 555–562. doi: 10.1016/j.scitotenv. 2017.08.087.
[44] HE X J, HOU E Q, LIU Y, et al. Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China [J]. Sci Rep, 2016, 6: 24261. doi: 10.1038/srep24261.
[45] GILLIAM F S, MAY J D, ADAMS M B. Response of foliar nutrients ofto nutrient amendments in a central Appala- chian hardwood forest [J]. For Ecol Manage, 2018, 411: 101–107. doi: 10.1016/j.foreco.2018.01.022.
[46] LI D J, MO J M, FANG Y T, et al. Effects of simulated nitrogen deposition on biomass production and allocation inandseedlings in subtropical China [J]. Acta Phytoecol Sin, 2005, 29(4): 543–549. doi: 10.17521/cjpe.2005.0073. 李德軍, 莫江明, 方運(yùn)霆, 等. 模擬氮沉降對南亞熱帶兩種喬木幼苗生物量及其分配的影響 [J]. 植物生態(tài)學(xué)報, 2005, 29(4): 543–549. doi: 10.17521/cjpe.2005.0073.
[47] MO J M, LI D J, GUNDERSEN P. Seedling growth response of two tropical tree species to nitrogen deposition in southern China [J]. Eur J For Res, 2008, 127(4): 275–283. doi: 10.1007/s10342-008-0203-0.
[48] YUAN Z Y, CHEN H Y H. Negative effects of fertilization on plant nutrient resorption [J]. Ecology, 2015, 96(2): 373–380. doi: 10.1890/ 14-0140.1.
[49] DENG M F, LIU L L, SUN Z Z, et al. Increased phosphate uptake but not resorption alleviates phosphorus deficiency induced by nitrogen deposition in temperateplantations [J]. New Phytol, 2016, 212(4): 1019–1029. doi: 10.1111/nph.14083.
[50] ZHAO Q, LIU X Y, HU Y L, et al. Effects of nitrogen addition on nutrient allocation and nutrient resorption efficiency in[J]. Sci Silv Sin, 2010, 46(5): 14–19. doi: 10.11707/j.1001-7488.2010 0503.趙瓊, 劉興宇, 胡亞林, 等. 氮添加對興安落葉松養(yǎng)分分配和再吸收效率的影響[J]. 林業(yè)科學(xué), 2010, 46(5): 14–19. doi: 10.11707/j. 1001-7488.20100503.
[51] TIAN D, DU E Z, JIANG L, et al. Responses of forest ecosystems to increasing N deposition in China: A critical review [J]. Environ Pollut, 2018, 243: 75–86. doi: 10.1016/j.envpol.2018.08.010.
[52] YUE K, YANG W Q, PENG Y, et al. Individual and combined effects of multiple global change drivers on terrestrial phosphorus pools: A meta-analysis [J]. Sci Total Environ, 2018, 630: 181–188. doi: 10. 1016/j.scitotenv.2018.02.213.
[53] YUE K, Peng Y, PENG C H, et al. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: A meta-analysis [J]. Sci Rep, 2016, 6: 19895. doi: 10.1038/srep19895.
[54] DENG Q, HUI D F, DENNIS S, et al. Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: A meta-analysis [J]. Glob Ecol Biogeogr, 2017, 26(6): 713–728. doi: 10.1111/geb.12576.
[55] YUE K, FORNARA D A, YANG W Q, et al. Effects of three global change drivers on terrestrial C∶N∶P stoichiometry: A global synthesis [J]. Glob Change Biol, 2017, 23(6): 2450–2463. doi: 10.1111/gcb. 13569.
[56] MO Q F, ZOU B, LI Y W, et al. Response of plant nutrient stoichio- metry to fertilization varied with plant tissues in a tropical forest [J]. Sci Rep, 2015, 5: 14605. doi: 10.1038/srep14605.
[57] ZHU F F, YOH M, GILLIAM F S, et al. Nutrient limitation in three lowland tropical forests in southern China receiving high nitrogen deposition: Insights from fine root responses to nutrient additions [J]. PLoS One, 2013, 8(12): e82661. doi: 10.1371/journal.pone.0082661.
[58] LI W B, JIN C J, GUAN D X, et al. The effects of simulated nitrogen deposition on plant root traits: A meta-analysis [J]. Soil Biol Biochem, 2015, 82: 112–118. doi: 10.1016/j.soilbio.2015.01.001.
[59] XIA J Y, WAN S Q. Global response patterns of terrestrial plant species to nitrogen addition [J]. New Phytol, 2008, 179(2): 428–439. doi: 10. 1111/j.1469-8137.2008.02488.x.
[60] WRIGHT S J, TURNER B L, YAVITT J B, et al. Plant responses to fertilization experiments in lowland, species-rich, tropical forests [J]. Ecology, 2018, 99(5): 1129–1138. doi: 10.1002/ecy.2193.
[61] SIDDIQUE I, VIEIRA I C G, SCHMIDT S, et al. Nitrogen and phosphorus additions negatively affect tree species diversity in tropical forest regrowth trajectories [J]. Ecology, 2010, 91(7): 2121–2131. doi: 10.1890/09-0636.1.
[62] de VRIES W, DU E Z, BUTTERBACH-BAHL K. Short and long-term impacts of nitrogen deposition on carbon sequestration by forest eco- systems [J]. Curr Opin Environ Sust, 2014, 9–10: 90–104. doi: 10. 1016/j.cosust.2014.09.001.
[63] YAN G Y, XING Y J, WANG J Y, et al. Sequestration of atmospheric CO2in boreal forest carbon pools in northeastern China: Effects of nitrogen deposition [J]. Agric For Meteorol, 2018, 248: 70–81. doi: 10. 1016/j.agrformet.2017.09.015.
[64] LIU X Y, DU E Z, XU L C, et al. Response of tree growth to nitrogen addition in aprimitive forest [J]. Chin J Plant Ecol, 2015, 39(5): 433–441. doi: 10.17521/cjpe.2015.0042.劉修元, 杜恩在, 徐龍超, 等. 落葉松原始林樹木生長對氮添加的響應(yīng) [J]. 植物生態(tài)學(xué)報, 2015, 39(5): 433–441. doi: 10.17521/cjpe. 2015.0042.
[65] TIAN D, LI P, FANG W J, et al. Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China [J]. Biogeosciences, 2017, 14: 3461–3469. doi: 10.5194/bg-14- 3461-2017.
[66] JIANG L, TIAN D, MA S H, et al. The response of tree growth to nitrogen and phosphorus additions in a tropical montane rainforest [J]. Sci Total Environ, 2018, 618: 1064–1070. doi: 10.1016/j.scitotenv.2017. 09.099.
[67] SALA O E, CHAPIN F S III, ARMESTO J J, et al. Global biodiversity scenarios for the year 2100 [J]. Science, 2000, 287(5459): 1770–1774. doi: 10.1126/science.287.5459.1770.
[68] DU E Z. Integrating species composition and leaf nitrogen content to indicate effects of nitrogen deposition [J]. Environ Pollut, 2017, 221: 392–397. doi: 10.1016/j.envpol.2016.12.001.
[69] WU J P, LIU W F, FAN H B, et al. Asynchronous responses of soil microbial community and understory plant community to simulated nitrogen deposition in a subtropical forest [J]. Ecol Evol, 2013, 3(11): 3895–3905. doi: 10.1002/ece3.750.
[70] HUANG L J, ZHU W X, REN H, et al. Impact of atmospheric nitrogen deposition on soil properties and herb-layer diversity in remnant forests along an urban-rural gradient in Guangzhou, southern China [J]. Plant Ecol, 2012, 213(7): 1187–1202. doi: 10.1007/s11258-012-0080-y.
[71] LU X K, MO J M, GILLIAM F S, et al. Effects of experimental nitrogen additions on plant diversity in tropical forests of contrasting disturbance regimes in southern China [J]. Environ Pollut, 2011, 159: 2228–2235. doi: 10.1016/j.envpol.2010.10.037.
[72] LI H S, WANG J S, LIU X, et al. Effect of simulation N deposition on herbaceous vegetation community in the plantation and natural forests ofin the Taiyue Mountain [J]. Acta Ecol Sin, 2015, 35(11): 3910–3721. doi: 10.5846/stxb201307141892.李化山, 汪金松, 劉星, 等. 模擬N沉降對太岳山油松人工林和天然林草本群落的影響 [J]. 生態(tài)學(xué)報, 2015, 35(11): 3910–3721. doi: 10. 5846/stxb201307141892.
[73] ZHANG C, ZHANG X Y, ZOU H T, et al. Contrasting effects of ammonium and nitrate additions on the biomass of soil microbial communities and enzyme activities in subtropical China [J]. Biogeo- sciences, 2017, 14: 4815–4827. doi: 10.5194/bg-14-4815-2017.
[74] WANG C, LU X K, MORI T, et al. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest [J]. Soil Biol Biochem, 2018, 121: 103–112. doi: 10.1016/j.soilbio.2018.03.009.
[75] LIANG L Z, CHEN F, HAN H R, et al. Pathways regulating decreased soil respiration with nitrogen addition in a subtropical forest in China [J]. Water Air Soil Pollut, 2019, 230: 91. doi: 10.1007/s11270-019- 4144-7.
[76] FAN Y X, LIN F, YANG L M, et al. Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem [J]. Biol Fert Soils, 2018, 54(1): 149–161. doi: 10.1007/s00374-017-1251-8.
[77] ZHAO B, GENG Y, CAO J, et al. Contrasting responses of soil respi- ration components in response to five-year nitrogen addition in aforest in northern China [J]. Forests, 2018, 9: 544. doi: 10.3390/f9090544.
[78] LIU C X, DONG Y H, SUN Q W, et al. Soil bacterial community response to short-term manipulation of the nitrogen deposition form and dose in a Chinese fir plantation in southern China [J]. Water Air Soil Pollut, 2016, 227: 447. doi: 10.1007/s11270-016-3152-0.
[79] WANG Y S, CHENG S L, FANG H J, et al. Contrasting effects of ammonium and nitrate inputs on soil CO2emission in a subtropical coniferous plantation of southern China [J]. Biol Fert Soils, 2015, 51(7): 815–825. doi: 10.1007/s00374-015-1028-x.
[80] CHEN X M, LI Y L, MO J M, et al. Effects of nitrogen deposition on soil organic carbon fractions in the subtropical forest ecosystems of S China [J]. J Plant Nutr Soil Sci, 2012, 175(6): 947–953. doi: 10.1002/ jpln.201100059.
[81] YAN G Y, XING Y J, Xu L J, et al. Effects of different nitrogen additions on soil microbial communities in different seasons in a boreal forest [J]. Ecosphere, 2017, 8(7): e01879. doi: 10.1002/ecs2.1879.
[82] TIAN D, JIANG L, MA S H, et al. Effects of nitrogen deposition on soil microbial communities in temperate and subtropical forests in China [J]. Sci Total Environ, 2017, 607–608: 1367–1375. doi: 10.1016/ j.scitotenv.2017.06.057.
[83] NING C, MUELLER G M, EGERTON-WARBURTON L M, et al. Diversity and enzyme activity of ectomycorrhizal fungal communities following nitrogen fertilization in an urban-adjacent pine plantation [J]. Forests, 2018, 9(3): 99. doi: 10.3390/f9030099.
[84] CUI J, WANG J J, XU J, et al. Changes in soil bacterial communities in an evergreen broad-leaved forest in east China following 4 years of nitrogen addition [J]. J Soil Sediment, 2017, 17(8): 2156–2164. doi: 10.1007/s11368-017-1671-y.
[85] NIE Y X, WANG M C, ZHANG W, et al. Ammonium nitrogen content is a dominant predictor of bacterial community composition in an acidic forest soil with exogenous nitrogen enrichment [J]. Sci Total Environ, 2018, 624: 407–415. doi: 10.1016/j.scitotenv.2017.12.142.
[86] LIU L, ZHANG T, GILLIAM F S, et al. Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest [J]. PLoS One, 2013, 8(4): e61188. doi: 10.1371/journal.pone.0061188.
[87] KOU L, ZHANG X Y, WANG H M, et al. Nitrogen additions inhibit nitrification in acidic soils in a subtropical pine plantation: Effects of soil pH and compositional shifts in microbial groups [J]. J For Res, 2019, 30(2): 669–678. doi: 10.1007/s11676-018-0645-2.
[88] WANG X Y, WEN T. Effects of simulated nitrogen deposition on soil nitrogen transformation in artificial Korean pine of Xiaoxing’anling region [J]. Chin J Soil Sci, 2017, 48(3): 604–610. doi: 10.19336/j.cnki. trtb.2017.03.14.王小云, 溫騰. 模擬氮沉降對小興安嶺地區(qū)人工紅松林土壤氮轉(zhuǎn)化的影響 [J]. 土壤通報, 2017, 48(3): 604–610. doi: 10.19336/j.cnki. trtb.2017.03.14.
[89] ALLISON S D, VITOUSEK P M. Responses of extracellular enzymes to simple and complex nutrient inputs [J]. Soil Biol Biochem, 2005, 37(5): 937–944. doi: 10.1016/j.soilbio.2004.09.014.
[90] ZHENG M H, LI D J, LU X, et al. Effects of phosphorus addition with and without nitrogen addition on biological nitrogen fixation in tropical legume and non-legume tree plantations [J]. Biogeochemistry, 2016, 131: 65–76. doi: 10.1007/s10533-016-0265-x.
[91] DONG W Y, ZHANG X Y, LIU X Y, et al. Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China [J]. Biogeosciences, 2015, 12: 5537–5546. doi: 10.5194/bg-12-5537-2015.
[92] JING X, CHEN X, TANG M, et al. Nitrogen deposition has minor effect on soil extracellular enzyme activities in six Chinese forests [J]. Sci Total Environ, 2017, 607–608: 806–815. doi: 10.1016/j.scitotenv. 2017.07.060.
[93] WANG S H, MORI T, MO J M, et al. The responses of carbon- and nitrogen-acquiring enzymes to nitrogen and phosphorus additions in two plantations in southern China [J]. J For Res, 2019. doi: 10.1007/ s11676-019-00905-0.
[94] XU G L, MO J M, ZHOU G Y. Responses of soil fauna biomass to N deposition in three forests in subtropical China [J]. Zool Res, 2005, 26 (6): 609–615. doi: 10.3321/j.issn:0254-5853.2005.06.006.徐國良, 莫江明, 周國逸. 氮沉降對三種林型土壤動物群落生物量的影響 [J]. 動物學(xué)研究, 2005, 26(6): 609–615. doi: 10.3321/j.issn: 0254-5853.2005.06.006.
[95] XU G L, MO J M, ZHOU G Y, et al. Preliminary response of soil fauna to simulated N deposition in three typical subtropical forests [J]. Pedo- sphere, 2006, 16(5): 596–601. doi: 10.1016/S1002-0160(06)60093-3.
[96] XU G L, MO J M, FU S L, et al. Response of soil fauna to simulated nitrogen deposition: A nursery experiment in subtropical China [J]. J Environ Sci, 2007, 19(5): 603–609. doi: 10.1016/S1001-0742(07)60 100-4.
[97] ZHOU D Y, BU D R, GE Z W, et al. Effects of nitrogen addition on soil fauna in poplar plantation with different ages in a coastal area of eastern China [J]. Chin J Ecol, 2015, 34(9): 2553–2560. 周丹燕, 卜丹蓉, 葛之葳, 等. 氮添加對沿海不同林齡楊樹人工林土壤動物群落的影響 [J]. 生態(tài)學(xué)雜志, 2015, 34(9): 2553–2560.
[98] BIAN H X, GENG Q H, XIAO H R, et al. Fine root biomass mediates soil fauna community in response to nitrogen addition in poplar planta- tions () on the east coast of China [J]. Forests, 2019, 10: 122. doi: 10.3390/f10020122.
[99] ZHAO J, WANG F M, LI J, et al. Effects of experimental nitrogen and/ or phosphorus additions on soil nematode communities in a secondary tropical forest [J]. Soil Biol Biochem, 2014, 75: 1–10. doi: 10.1016/j. soilbio.2014.03.019.
[100] FU X L, GUO D L, WANG H M, et al. Differentiating between root- and leaf-litter controls on the structure and stability of soil micro- food webs [J]. Soil Biol Biochem, 2017, 113: 192–200. doi: 10.1016/j. soilbio.2017.06.013.
[101] CHENG Y Y, SUN T, WANG Q K, et al. Effects of simulated nitrogen deposition on temperate forest soil nematode communities and their metabolic footprints [J]. Acta Ecol Sin, 2018, 38(2): 475– 484. doi: 10. 5846/stxb201606231225.程云云, 孫濤, 王清奎, 等. 模擬氮沉降對溫帶森林土壤線蟲群落組成和代謝足跡的影響 [J]. 生態(tài)學(xué)報, 2018, 38(2): 475–484. doi: 10.5846/stxb201606231225.
[102] LIN H, HE Z H, HAO J W, et al. Effect of N addition on home-field advantage of litter decomposition in subtropical forests [J]. For Ecol Manage, 2017, 398: 216–225. doi: 10.1016/j.foreco.2017.05.015.
[103] ZHUANG H F, SUN Y, GU J C, et al. Effects of nitrogen addition on soil fauna communities inandplantations [J]. Biodiv Sci, 2010, 18(4): 390–397. doi: 10.3724/SP.J. 1003.2010.390.莊海峰, 孫玥, 谷加存, 等. 施氮肥對落葉松和水曲柳人工林土壤動物群落的影響 [J]. 生物多樣性, 2010, 18(4): 390–397. doi: 10. 3724/SP.J.1003.2010.390.
[104] SHAO Y H, ZHANG W X, EISENHAUER N, et al. Nitrogen depo- sition cancels out exotic earthworm effects on plant-feeding nematode communities [J]. J Anim Ecol, 2017, 86(4): 708–717. doi: 10.1111/ 1365-2656.12660.
[105] GAO Q, HASSELQUIST N J, PALMROTH S, et al. Short-term response of soil respiration to nitrogen fertilization in a subtropical evergreen forest [J]. Soil Biol Biochem, 2014, 76: 297–300. doi: 10. 1016/j.soilbio.2014.04.020.
[106] ZHOU L Y, ZHOU X H, ZHANG B C, et al. Different responses of soil respiration and its components to nitrogen addition among biomes: A meta-analysis [J]. Glob Change Biol, 2014, 20(7): 2332–2343. doi: 10.1111/gcb.12490.
[107] FAN H B, WU J P, LIU W F, et al. Nitrogen deposition promotes ecosystem carbon accumulation by reducing soil carbon emission in a subtropical forest [J]. Plant Soil, 2014, 379(1/2): 361–371. doi: 10. 1007/s11104-014-2076-y.
[108] MO J M, ZHANG W, ZHU W X, et al. Response of soil respiration to simulated N deposition in a disturbed and a rehabilitated tropical forest in southern China [J]. Plant Soil, 2007, 296(1/2): 125–135. doi: 10. 1007/s11104-007-9303-8.
[109] ZHONG Y Q W, YAN W M, SHANGGUAN Z P. The effects of nitrogen enrichment on soil CO2fluxes depending on temperature and soil properties [J]. Glob Ecol Biogeogr, 2016, 25(4): 475–488. doi: 10.1111/geb.12430.
[110] TIAN P, ZHANG J B, CAI Z C, et al. Different response of CO2and N2O fluxes to N deposition with seasons in a temperate forest in northeastern China [J]. J Soil Sediment, 2018, 18(5): 1821–1831. doi: 10.1007/s11368-018-1919-1.
[111] LU M, ZHOU X H, LUO Y Q, et al. Minor stimulation of soil carbon storage by nitrogen addition: A meta-analysis [J]. Agric Ecosyst Environ, 2011, 140(1/2): 234–244. doi: 10.1016/j.agee.2010.12.010.
[112] WANG Q K, ZHANG W D, SUN T, et al. N and P fertilization reduced soil autotrophic and heterotrophic respiration in a youngforest [J]. Agric For Meteorol, 2017, 232: 66–73. doi: 10.1016/j.agrformet.2016.08.007.
[113] SUN Z Z, LIU L L, MA Y C, et al. The effect of nitrogen addition on soil respiration from a nitrogen-limited forest soil [J]. Agric For Meteorol, 2014, 197: 103–110. doi: 10.1016/j.agrformet.2014.06.010.
[114] DU Y H, GUO P, LIU J Q, et al. Different types of nitrogen deposi- tion show variable effects on the soil carbon cycle process of temperate forests [J]. Glob Change Biol, 2014, 20(10): 3222–3228. doi: 10.1111/ gcb.12555.
[115] PENG Y, CHEN G S, CHEN G T, et al. Soil biochemical responses to nitrogen addition in a secondary evergreen broad-leaved forest ecosystem [J]. Sci Rep, 2017, 7: 2783. doi: 10.1038/s41598-017-03 044-w.
[116] DENG Q, ZHOU G, LIU J, et al. Responses of soil respiration to elevated carbon dioxide and nitrogen addition in young subtropical forest ecosystems in China [J]. Biogeosciences, 2010, 7: 315–328. doi: 10.5194/bg-7-315-2010.
[117] DALAL R C, WANG W J, ROBERTSON G P, et al. Nitrous oxide emission from Australian agricultural lands and mitigation options: A review [J]. Aust J Soil Res, 2003, 41(2): 165–195. doi: 10.1071/SR02 064.
[118] LIU L L, GREAVER T L. A review of nitrogen enrichment effects on three biogenic GHGs: The CO2sink may be largely offset by stimu- lated N2O and CH4emission [J]. Ecol Lett, 2009, 12(10): 1103–1117. doi: 10.1111/j.1461-0248.2009.01351.x.
[119] CHEN H, GURMESA G A, ZHANG W, et al. Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition: Hypothesis testing [J]. Funct Ecol, 2016, 30(2): 305–313. doi: 10.1111/1365-2435.12475.
[120] ZHENG M H, ZHANG T, LIU L, et al. Effects of nitrogen and phosphorus additions on nitrous oxide emission in a nitrogen-rich and two nitrogen-limited tropical forests [J]. Biogeosciences, 2016, 13: 3503–3517. doi: 10.5194/bg-13-3503-2016.
[121] FANG H J, YU G R, CHENG S L, et al. Nitrogen-15 signals of leaf- litter-soil continuum as a possible indicator of ecosystem nitrogen saturation by forest succession and N loads [J]. Biogeochemistry, 2011, 102(1/2/3): 251–263. doi: 10.1007/s10533-010-9438-1.
[122] ZHANG W, ZHU X, LUO Y, et al. Responses of nitrous oxide emissions to nitrogen and phosphorus additions in two tropical plantations with N-fixing vs. non-N-fixing tree species [J]. Biogeo- sciences, 2014, 11: 4941–4951. doi: 10.5194/bg-11-4941-2014.
[123] WANG Y S, CHENG S L, FANG H J, et al. Simulated nitrogen deposition reduces CH4uptake and increases N2O emission from a subtropical plantation forest soil in southern China [J]. PLoS One, 2014, 9(4): e93571. doi: 10.1371/journal.pone.0093571.
[124] LI X Y, CHENG S L, FANG H J, et al. The contrasting effects of deposited NH4+and NO3–on soil CO2, CH4and N2O fluxes in a sub- tropical plantation, southern China [J]. Ecol Eng, 2015, 85: 317–327. doi: 10.1016/j.ecoleng.2015.10.003.
[125] ZHANG W, ZHU X M, LIU L, et al. Large difference of inhibitive effect of nitrogen deposition on soil methane oxidation between plantations with N-fixing tree species and non-N-fixing tree species [J]. J Geophys Res: Biogeosci, 2012, 117: G00N16. doi: 10.1029/2012JG 002094.
[126] XIE D N, SI G Y, ZHANG T, et al. Nitrogen deposition increases N2O emission from an N-saturated subtropical forest in southwest China [J]. Environ Pollut, 2018, 243: 1818–1824. doi: 10.1016/j.envpol.2018.09. 113.
[127] ZHU J, MULDER J, BAKKEN L, et al. The importance of denitri- fication for N2O emissions from an N-saturated forest in SW China: Results from in situ15N labeling experiments [J]. Biogeochemistry, 2013, 116(1/2/3): 103–117. doi: 10.1007/s10533-013-9883-8.
[128] TANG W G, CHEN D X, Phillips O L, et al. Effects of long-term increased N deposition on tropical montane forest soil N2and N2O emissions [J]. Soil Biol Biochem, 2018, 126: 194–203. doi: 10.1016/j. soilbio.2018.08.027.
[129] XU X K, HAN L, LUO X B, et al. Effects of nitrogen addition on dissolved N2O and CO2, dissolved organic matter, and inorganic nitrogen in soil solution under a temperate old-growth forest [J]. Geoderma, 2009, 151(3/4): 370–377. doi: 10.1016/j.geoderma.2009. 05.008.
[130] GENG S C, CHEN Z J, HAN S J, et al. Rainfall reduction amplifies the stimulatory effect of nitrogen addition on N2O emissions from a temperate forest soil [J]. Sci Rep, 2017, 7: 43329. doi: 10.1038/srep 43329.
[131] BAI E, LI W, LI S L, et al. Pulse increase of soil N2O emission in response to N addition in a temperate forest on Mt Changbai, north- east China [J]. PLoS One, 2014, 9(7): e102765. doi: 10.1371/journal. one.0102765.
[132] CHENG S L, WANG L, FANG H J, et al. Nonlinear responses of soil nitrous oxide emission to multi-level nitrogen enrichment in a tempe- rate needle-broadleaved mixed forest in northeast China [J]. Catena, 2016, 147: 556–563. doi:10.1016/j.catena.2016.08.010.
[133] CHEN Z J, SET?L? H, GENG S C, et al. Nitrogen addition impacts on the emissions of greenhouse gases depending on the forest type: A case study in Changbai Mountain, northeast China [J]. J Soil Sedi- ment, 2017, 17(1): 23–34.doi: 10.1007/s11368-016-1481-7.
[134] SONG L, TIAN P, ZHANG J B, et al. Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and green- house gas emissions in a Korean pine plantation of northeast China [J]. Sci Total Environ, 2017, 609: 1303–1311. doi: 10.1016/j.scitotenv. 2017.08.017.
[135] SONG L, ZHANG J B, MüLLER C, et al. Responses of soil N trans- formations and N loss to three years of simulated N deposition in a temperate Korean pine plantation in northeast China [J]. Appl Soil Ecol, 2019, 137: 49–56. doi: 10.1016/j.apsoil.2019.01.008.
[136] XU K, WANG C M, YANG X T. Five-year study of the effects of simulated nitrogen deposition levels and forms on soil nitrous oxide emissions from a temperate forest in northern China [J]. PLoS One, 2017, 12(12): e0189831. doi: 10.1371/journal.pone.0189831.
[137] ZHANG W, MO J M, ZHOU G Y, et al. Methane uptake responses to nitrogen deposition in three tropical forests in southern China [J]. J Geophys Res Atmos, 2008, 113: D11116. Doi: 10.1029/2007JD009195.
[138] XU X K, HAN L, LUO X B, et al. Synergistic effects of nitrogen amendments and ethylene on atmospheric methane uptake under a temperate old-growth forest [J]. Adv Atmos Sci, 2011, 28(4): 843– 854. doi: 10.1007/s00376-010-0071-7.
[139] WANG Y S, CHENG S L, FANG H J, et al. Relationships between ammonia-oxidizing communities, soil methane uptake and nitrous oxide fluxes in a subtropical plantation soil with nitrogen enrichment [J]. Eur J Soil Biol, 2016, 73: 84–92. doi: 10.1016/j.ejsobi.2016.01.008.
[140] ZHENG M H, ZHANG T, LIU L, et al. Effects of nitrogen and phosphorus additions on soil methane uptake in disturbed forests [J]. J Geophys Res Biogeosci, 2016, 121(12): 3089–3100. doi: 10.1002/ 2016JG003476.
[141] YANG X T, WANG C M, XU K. Response of soil CH4fluxes to stimulated nitrogen deposition in a temperate deciduous forest in northern China: A 5-year nitrogen addition experiment [J]. Eur J Soil Biol, 2017, 82: 43–49. doi: 10.1016/j.ejsobi.2017.08.004.
[142] GENG J, CHENG S L, FANG H J, et al. Soil nitrate accumulation explains the nonlinear responses of soil CO2and CH4fluxes to nitrogen addition in a temperate needle-broadleaved mixed forest [J]. Ecol Indic, 2017, 79: 28–36. doi: 10.1016/j.ecolind.2017.03.054.
[143] CLEVELAND C C, TOWNSEND A R, SCHIMEL D S, et al. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems [J]. Glob Biogeochem Cy, 1999, 13(2): 623–645. doi: 10. 1029/1999GB900014.
[144] VITOUSEK P M, MENGE D N L, REED S C, et al. Biological nitrogen fixation: Rates, patterns and ecological controls in terrestrial ecosystems [J]. Philos Trans R Soc Lond B Biol Sci, 2013, 368 (1621): 20130119. doi: 10.1098/rstb.2013.0119.
[145] GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Trans- formation of the nitrogen cycle: Recent trends, questions, and potential solutions [J]. Science, 2008, 320(5878): 889–892. doi: 10.1126/ science.1136674.
[146] SULLIVAN B W, SMITH W K, TOWNSEND A R, et al. Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle [J]. Proc Natl Acad Sci USA, 2014, 111(22): 8101–8106. doi: 10.1073/pnas.1320646111.
[147] REED S C, CLEVELAND C C, TOWNSEND A R. Functional ecology of free-living nitrogen fixation: A contemporary perspective [J]. Annu Rev Ecol Evol Syst, 2011, 42(1): 489–512. doi: 10.1146/annurev- ecolsys-102710-145034.
[148] CREW T E, FARRIONTON H, VITOUSEK P M. Changes in asymbiotic, heterotrophic nitrogen fixation on leaf litter of metrosi- deros polymorpha with long-term ecosystem development in Hawaii [J]. Ecosystems, 2000, 3(4): 386–395. doi: 10.1007/s100210000034.
[149] ZECKRISSON O, DELUCA T H, NILSSON M C, et al. Nitrogen fixation increases with successional age in boreal forests [J]. Ecology, 2004, 85(12): 3327–3334. doi: 10.1890/04-0461.
[150] BARRON A R, WURZBURGER N, BELLENGER J P, et al. Molyb- denum limitation of asymbiotic nitrogen fixation in tropical forest soils [J]. Nat Geosci, 2009, 2(1): 42–45. doi: 10.1038/ngeo366.
[151] CUSACK D F, SILVER W, MICOWELL W H. Biological nitrogen fixation in two tropical forests: Ecosystem-level patterns and effects of nitrogen fertilization [J]. Ecosystems, 2009, 12(8): 1299–1315. doi: 10. 1007/s10021-009-9290-0.
[152] LIU X J, ZHANG Y, HAN W X, et al. Enhanced nitrogen deposition over China [J]. Nature, 2013, 494(7438): 459–462. doi: 10.1038/ nature11917.
[153] ZHENG M H, CHEN H, LI D J, et al. Biological nitrogen fixation and its response to nitrogen input in two mature tropical plantations with and without legume trees [J]. Biol Fert Soils, 2016, 52(5): 665–674. doi: 10.1007/s00374-016-1109-5.
[154] ZHENG M H, ZHANG W, LUO Y Q, et al. Different responses of asymbiotic nitrogen fixation to nitrogen addition between disturbed and rehabilitated subtropical forests [J]. Sci Total Environ, 2017, 601– 602: 1505–1512. doi: 10.1016/j.scitotenv.2017.06.036.
[155] HEDIN L O, BROOKSHIRE E N J, MENGE D N L, et al. The nitrogen paradox in tropical forest ecosystems [J]. Annu Rev Ecol Evol Syst, 2009, 40(1): 613–635. doi: 10.1146/annurev.ecolsys.37.091305.110246.
[156] WANG Q, WANG J L, LI Y Z, et al. Influence of nitrogen and pho- sphorus additions on N2-fixation activity, abundance, and composition of diazotrophic communities in a Chinese fir plantation [J]. Sci Total Environ, 2018, 619–620: 1530–1537. doi: 10.1016/j.scitotenv.2017. 10.064.
[157] TANG Y Q, YU G R, ZHANG X Y, et al. Different strategies for regulating free-living N2fixation in nutrient-amended subtropical and temperate forest soils [J]. Appl Soil Ecol, 2019, 136: 21–29. doi: 10. 1016/j.apsoil.2018.12.014.
[158] MARKHAM J H, ZEKVELD C. Nitrogen fixation makes biomass allocation to roots independent of soil nitrogen supply [J]. Can J Bot, 2007, 85(9): 787–793. doi: 10.1139/B07-075.
[159] LU M, YANG Y H, LUO Y Q, et al. Responses of ecosystem nitrogen cycle to nitrogen addition: A meta-analysis [J]. New Phytol, 2011, 189 (4): 1040–1050. doi: 10.1111/j.1469-8137.2010.03563.x.
[160] LIU W J, YU L F, ZHANG T, et al.15N labeling experiment reveals different long-term responses to ammonium and nitrate inputs in N-saturated subtropical forest [J]. J Geophys Res Biogeosci, 2017, 122(9): 2251–2264. doi: 10.1002/2017JG003963.
[161] FANG Y T, ZHU W X, GUNDERSEN P, et al. Large loss of dissolved organic nitrogen from nitrogen-saturated forests in subtropical China [J]. Ecosystems, 2009, 12(1): 33–45. doi: 10.1007/s10021-008-9203-7.
[162] GURMESA G A, LU X K, GUNDERSEN P, et al. High retention of15N-labeled nitrogen deposition in a nitrogen saturated old-growth tropical forest [J]. Glob Change Biol, 2016, 22(11): 3608–3620. doi: 10.1111/gcb.13327.
[163] BAO X, BAO X X, LIU X C. Effects of nitrogen deposition on soil nitrogen mineralization offorest in Daxing’an Mountains [J]. J NE For Univ, 2015, 43(7): 78–83. doi: 10.3969/j.issn. 1000-5382.2015.07.018.包翔, 包秀霞, 劉星岑. 施氮量對大興安嶺白樺次生林土壤氮礦化的影響[J]. 東北林業(yè)大學(xué)學(xué)報, 2015, 43(7): 78–83. doi: 10.3969/j. issn.1000-5382.2015.07.018.
[164] GAO W L, KOU L, ZHANG J B, et al. Ammonium fertilization causes a decoupling of ammonium cycling in a boreal forest [J]. Soil Biol Biochem, 2016, 101: 114–123. doi: 10.1016/j.soilbio.2016.07.007.
[165] TIAN P, ZHANG J B, MüLLER C, et al. Effects of six years of simulated N deposition on gross soil N transformation rates in an old- growth temperate forest [J]. J For Res, 2018, 29(3): 647–656. doi: 10. 1007/s11676-017-0484-6.
[166] SUN J F, PENG B, LI W, et al. Effects of nitrogen addition on potential soil nitrogen-cycling processes in a temperate forest eco- system [J]. Soil Sci, 2016, 181(1): 29–38. doi: 10.1097/SS.00000000 00000134.
[167] ZHAO Y, ZHANG C, ZHAO H F, et al. Effects of N and P addition on soil nitrogen mineralization in a subtropical evergreen broad-leaved forest [J]. Chin J Ecol, 2013, 32(7): 1690–1697. 趙陽, 張馳, 趙竑緋, 等. 氮磷添加對亞熱帶常綠闊葉林土壤氮素礦化的影響 [J]. 生態(tài)學(xué)雜志, 2013, 32(7): 1690–1697.
[168] CHEN H, ZHANG W, GURMESA G A, et al. Phosphorus addition affects soil nitrogen dynamics in a nitrogen-saturated and two nitrogen- limited forests [J]. Eur J Soil Sci, 2017, 68(4): 472–479. doi: 10.1111/ ejss.12428.
[169] GAO W L, KOU L, YANG H, et al. Are nitrate production and retention processes in subtropical acidic forest soils responsive to ammonium deposition? [J]. Soil Biol Biochem, 2016, 100: 102–109. doi: 10.1016/j.soilbio.2016.06.002.
[170] GAO W L, KOU L, ZHANG J B, et al. Enhanced deposition of nitrate alters microbial cycling of N in a subtropical forest soil [J]. Biol Fert Soils, 2016, 52(7): 977–986. doi: 10.1007/s00374-016-1134-4.
[171] ZHOU K J, LU X K, MORI T, et al. Effects of long-term nitrogen deposition on phosphorus leaching dynamics in a mature tropical forest [J]. Biogeochemistry, 2018, 138(2): 215–224. doi: 10.1007/ s10533-018-0442-1.
[172] YANG K, ZHU J J, GU J C, et al. Changes in soil phosphorus fractions after 9 years of continuous nitrogen addition in aplantation [J]. Ann For Sci, 2015, 72(4): 435–442. doi: 10. 1007/s13595-014-0444-7.
[173] FAN Y X, ZHONG X J, LIN F, et al. Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: Insights from decreased Fe and Al oxides and increased plant roots [J]. Geoderma, 2019, 337: 246–255. doi: 10.1016/j.geoderma.2018.09.028.
[174] WANG Q K, WANG S L, LIU Y X. Responses to N and P fertili- zation in a youngplantation: Microbial properties, enzyme activities and dissolved organic matter [J]. Appl Soil Ecol, 2008, 40(3): 484–490. doi: 10.1016/j.apsoil.2008.07.003.
[175] LU X K, MO J M, GILLIAM F S, et al. Nitrogen addition shapes soil phosphorus availability in two reforested tropical forests in southern China [J]. Biotropica, 2012, 44(3): 302–311. doi: 10.1111/j.1744-7429. 2011.00831.x.
[176] LI Y, NIU S L, YU G R. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: A meta-analysis [J]. Glob Change Biol, 2016, 22(2): 934–943. doi: 10.1111/gcb.13125.
[177] BRAUN S, THOMAS V F D, QUIRING R, et al. Does nitrogen deposition increase forest production? The role of phosphorus [J]. Environ Pollut, 2010, 158(6): 2043–2052. doi: 10.1016/j.envpol.2009. 11.030.
[178] LONG M, WU H H, SMITH M D, et al. Nitrogen deposition promotes phosphorus uptake of plants in a semi-arid temperate grassland [J]. Plant Soil, 2016, 408(1/2): 475–484. doi: 10.1007/s11104-016-3022-y.
[179] WANG M, MEAGHAN T M, MOORE T R. Nutrient resorption of two evergreen shrubs in response to long-term fertilization in a bog [J]. Oecologia, 2014, 174(2): 365–377. doi: 10.1007/s00442-013-2784-7.
[180] GONZALES K, RUTH Y. Nitrogen-phosphorous interactions in young northern hardwoods indicate P limitation: Foliar concentrations and resorption in a factorial N by P addition experiment [J]. Oecologia, 2019, 189(3): 829–840. doi: 10.1007/s00442-019-04350-y.
[181] SEE C R, YANAI R D, FISK M C, et al. Soil nitrogen affects phosphorus recycling: Foliar resorption and plant-soil feedbacks in a northern hardwood forest [J]. Ecology, 2015, 96(9): 2488–2498. doi: 10.1890/15-0188.1.
[182] ZHENG M H, HUANG J, CHEN H, et al. Effects of nitrogen and phosphorus addition on soil phosphatase activity in different forest types [J]. Acta Ecol Sin, 2015, 35(20): 6703–6710. doi: 10.5846/stxb 201405120970.鄭棉海, 黃娟, 陳浩, 等. 氮、磷添加對不同林型土壤磷酸酶活性的影響 [J]. 生態(tài)學(xué)報, 2015, 35(20): 6703–6710. doi: 10.5846/stxb 201405120970.
[183] PARRON L M, BUSTAMANTE M M C, MARKEWITZ D. Fluxes of nitrogen and phosphorus in a gallery forest in the Cerrado of central Brazil [J]. Biogeochemistry, 2011, 105(1/2/3): 89–104. doi: 10.1007/ s10533-010-9537-z.
[184] SMITH S W, WOODIN S J, PAKEMAN R J, et al. Root traits predict decomposition across a landscape-scale grazing experiment [J]. New Phytol, 2014, 203(3): 851–862. doi: 10.1111/nph.12845.
[185] ZHANG Y T, LI J M, LI X, et al. Effects of simulated nitrogen deposition on decomposition and nutrient release of leaf litter of[J]. Arid Zone Res, 2016, 33(5): 966–973. doi: 10.13866/ j.azr.2016.05.08.張毓?jié)? 李吉玫, 李翔, 等. 模擬氮沉降對天山云杉凋落葉分解及其養(yǎng)分釋放的影響 [J]. 干旱區(qū)研究, 2016, 33(5): 966–973. doi: 10. 13866/j.azr.2016.05.08.
[186] YAO X. Effects of nitrogen addition on litter decomposition in artificialforests [D]. Yangling: Northwest Agriculture and Forest University, 2017: 8. 姚旭. 氮添加對人工油松林葉凋落物分解的影響 [D]. 楊凌: 西北農(nóng)林科技大學(xué), 2017: 8.
[187] LI X F, ZHENG X B, HAN S J, et al. Effects of nitrogen additions on nitrogen resorption and use efficiencies and foliar litterfall of six tree species in a mixed birch and poplar forest, northeastern China [J]. Can J For Res, 2010, 40(11): 2256–2261. doi: 10.1139/X10-167.
[188] ZHOU S X, XIAO Y X, XIANG Y B, et al. Effects of simulated nitrogen deposition on the substrate quality of foliar litter in a natural evergreen broad-leaved forest in the Rainy Area of western China [J]. Acta Ecol Sin, 2016, 36(22): 7428–7435. doi: 10.5846/stxb2016010 80054.周世興, 肖永翔, 向元彬, 等. 模擬氮沉降對華西雨屏區(qū)天然常綠闊葉林凋落葉分解過程中基質(zhì)質(zhì)量的影響 [J]. 生態(tài)學(xué)報, 2016, 36(22): 7428–7435. doi: 10.5846/stxb201601080054.
[189] ZHANG W D, CHAO L, YANG Q P, et al. Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence [J]. Ecology, 2016, 97(10): 2834–2843. doi: 10.1002/ecy. 1515.
[190] FANG X, LIU J X, ZHANG D Q, et al. Effects of precipitation change and nitrogen addition on organic carbon mineralization and soil microbial carbon of the forest soils in Dinghushan, southeastern China [J]. Chin J Appl Environ Biol, 2012, 18(4): 531–538. doi: 10. 3724/SP.J.1145.2012.00531.方熊, 劉菊秀, 張德強(qiáng), 等. 降水變化、氮添加對鼎湖山主要森林土壤有機(jī)碳礦化和土壤微生物碳的影響 [J]. 應(yīng)用與環(huán)境生物學(xué)報, 2012, 18(4): 531–538. doi: 10.3724/SP.J.1145.2012.00531.
[191] TIE L H, FU R, ZHANG S B, et al. Effects of simulated nitrogen and sulfur deposition on litter decomposition rate in an evergreen broad- leaved forest in the rainy area of western China [J]. Chin J Appl Ecol, 2018, 29(7): 2243–2250. doi: 10.13287/j.1001-9332.201807.012.鐵烈華, 符饒, 張仕斌, 等. 模擬氮、硫沉降對華西雨屏區(qū)常綠闊葉林凋落葉分解速率的影響 [J]. 應(yīng)用生態(tài)學(xué)報, 2018, 29(7): 2243–2250. doi: 10.13287/j.1001-9332.201807.012.
[192] LI Y Y, WANG Z W, SUN T. Response of fine root decomposition to long-term nitrogen addition in the temperate forest [J]. Bull Bot Res, 2017, 37(6): 848–854. doi: 10.7525/j.issn.1673-5102.2017.06.007.李媛媛, 王正文, 孫濤. 氮添加對溫帶森林細(xì)根長期分解的影響 [J]. 植物研究, 2017, 37(6): 848–854. doi: 10.7525/j.issn.1673-5102. 2017.06.007.
[193] CHEN X, ZHOU M, WEI J S, et al. Effects of simulated nitrogen deposition on litter decomposition inforest [J]. Ecol Environ Sci, 2013, 22(9): 1496–1503. doi: 10.3969/j.issn.1674-5906. 2013.09.007.陳翔, 周梅, 魏江生, 等. 模擬氮沉降對興安落葉松林凋落物分解的影響 [J]. 生態(tài)環(huán)境學(xué)報, 2013, 22(9): 1496–1503. doi: 10.3969/ j.issn.1674-5906.2013.09.007.
[194] MO J M, XUE J H, FANG Y T. Litter decomposition and its responses to simulated N deposition for the major plants of Dinghushan forests in subtropical China [J]. Acta Ecol Sin, 2004, 24 (7): 1413–1420. doi: 10.3321/j.issn:1000-0933.2004.07.015.莫江明, 薛璟花, 方運(yùn)霆. 鼎湖山主要森林植物凋落物分解及其對N沉降的響應(yīng) [J]. 生態(tài)學(xué)報, 2004, 24(7): 1413–1420. doi: 10.3321/ j.issn:1000-0933.2004.07.015.
[195] ZHOU S X, HUANG C D, XIANG Y B, et al. Effects of simulated nitrogen deposition on lignin and cellulose degradation of foliar litter in natural evergreen broad-leaved forest in Rainy Area of western China [J]. Chin J Appl Ecol, 2016, 27(5): 1368–1374. doi: 10.13287/j. 1001-9332.201605.004.周世興, 黃從德, 向元彬, 等. 模擬氮沉降對華西雨屏區(qū)天然常綠闊葉林凋落物木質(zhì)素和纖維素降解的影響 [J]. 應(yīng)用生態(tài)學(xué)報, 2016, 27(5): 1368–1374. doi: 10.13287/j.1001-9332.201605.004.
[196] HOLOPAINEN J K, GERSHENZON J. Multiple stress factors and the emission of plant VOCs [J]. Trends Plant Sci, 2010, 15(3): 176– 184. doi: 10.1016/j.tplants.2010.01.006.
[197] LORETO F, SCHNITZLER J P. Abiotic stresses and induced BVOCs [J]. Trends Plant Sci, 2010, 15(3): 154–166. doi: 10.1016/j.tplants. 2009.12.006.
[198] HUANG J, MO J M, KONG G H, et al. Research perspective for the effects of nitrogen deposition on biogenic volatile organic compounds [J]. Acta Ecol Sin, 2011, 31(21): 6616–6623. 黃娟, 莫江明, 孔國輝, 等. 植物源揮發(fā)性有機(jī)物對氮沉降響應(yīng)研究展望 [J]. 生態(tài)學(xué)報, 2011, 31(21), 6616–6623.
[199] HUANG J, LU X K, MO J M, et al. Effects of simulated N deposition on carbonyl compounds released by nursery plants [C]// Proceedings of the Annual Conference of Chinese Society of Environmental Sciences. Chengdu: China Environment Press, 2014: 6867–6873. 黃娟, 魯顯楷, 莫江明, 等. 模擬N沉降對苗圃植物排放羰基化合物的影響 [C]// 中國環(huán)境科學(xué)學(xué)會學(xué)術(shù)年會論文集. 成都: 中國環(huán)境出版社, 2014: 6867–6873.
[200] HUANG J, MO J M, LU X K, et al. The effect of simulated nitrogen deposition on the emission of carbonyl compounds fromand[J/OL]. Expert Opin Environ Biol, 2016(S1): 1–7. doi: 10.4172/2325-9655.S1-004.
[201] CHEN H, LI D J, GURMESA G A, et al. Effects of nitrogen deposi- tion on carbon cycle in terrestrial ecosystems of China: A meta-analysis [J]. Environ Pollut, 2015, 206: 352–360. doi: 10.1016/j.envpol.2015. 07.033.
[202] RAINEY S M, NADELHOFFER K J, SILVER W L, et al. Effects of chronic nitrogen additions on understory species in a red pine plantation [J]. Ecol Appl, 1999, 9(3): 949–957. doi: 10.1890/1051-0761(1999) 009[0949:EOCNAO]2.0.CO;2.
[203] BERG B, MATZNER E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems [J]. Environ Rev, 1997, 5(1): 1–25. doi: 10.1139/a96-017.
[204] JANSSENS I A, DIELEMAN W, LUYSSAERT S, et al. Reduction of forest soil respiration in response to nitrogen deposition [J]. Nat Geosci, 2010, 3(5): 315–322. doi: 10.1038/ngeo844.
[205] FANG H, MO J M, PENG S L, et al. Cumulative effects of nitrogen additions on litter decomposition in three tropical forests in southern China [J]. Plant Soil, 2007, 297(1/2): 233–242. doi: 10.1007/s11104- 007-9339-9.
[206] TEMPLER P H, MACK M C, CHAPIN F S III, et al. Sinks for nitrogen inputs in terrestrial ecosystems: A meta-analysis of15N tracer field studies [J]. Ecology, 2012, 93(8): 1816–1829. doi: 10.1890/11- 1146.1.
[207] LIU J, PENG B, XIA Z W, et al. Different fates of deposited NH4+and NO3–in a temperate forest in northeast China: A15N tracer study [J]. Glob Change Biol, 2017, 23(6): 2441–2449. doi: 10.1111/gcb.13533.
[208] WANG A, ZHU W X, GUNDERSEN P, et al. Fates of atmospheric deposited nitrogen in an Asian tropical primary forest [J]. For Ecol Manage, 2018, 411: 213–222. doi: 10.1016/j.foreco.2018.01.029.
[209] SHENG W P, YU G R, FANG H J, et al. Sinks for inorganic nitrogen deposition in forest ecosystems with low and high nitrogen deposition in China [J]. PLoS One, 2014, 9(2): e89322. doi: 10.1371/journal.pone. 0089322.
Effects of Simulated Atmospheric Nitrogen Deposition on Forest Ecosystems in China: An Overview
LU Xian-kai1, MO Jiang-ming1, ZHANG Wei1, MAO Qing-gong1, LIU Rong-zhen1,2, WANG Cong1,2, ZHENG Mian-hai1, WANG Sen-hao1,2, MORI Taiki1, MAO Jin-hua1,2, ZHANG Yong-qun1,2, WANG Yu-fang1,2, HUANG Juan1
(1. Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystem, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)
Human activities, such as combustion of fossil fuel, production and application of nitrogenous fertilizer, and intensive livestock production, have been accelerating the production and emission of reactive nitrogen (e.g., NH4+, NO3–), leading to elevated nitrogen (N) deposition at regional and global scales. Human interference with N cycle has gone beyond the safe operating space for humanity. China is one of the three regions with the highest N deposition in the world. High N deposition has threatened the health and safety of terrestrial ecosystems, which should be addressed urgently during the process of ecological civilization construction. The research history on simulated N deposition in China and world was reviewed, focused on how simulated N deposition affects forest ecosystems in China, including soil acidification, plant element chemistry, plant growth and diversity, soil microbial community and enzyme activities, soil fauna, greenhouse gas emissions, ecosystem N and phosphorus cycles, soil N transformation, ecosystem N fixation, litter decomposition, and ecosystem carbon sequestration. The atmospheric N deposition has been concerned since 2000s. In 2002, the first long-term forest ecosystem N manipulative experiments were established by South China Botanical Garden (SCBG) of the Chinese Academy of Sciences, which is playing a leading role in the field of nitrogen deposition and forest ecosystems in China. In 2013, SCBG, for the first time, designed a novel experiment with canopy addition of N (CAN) vs. understory addition of N (UAN) in China. Results from N manipulative experiments across China showed that continuing high N deposition greatly altered forest structure and functioning, threatening ecosystem health, especially in the south-central China. The main results are as follows: (1) There is a fertilization effect of N deposition in temperate and boreal forests, but there seem no positive effects on plant growth in N-rich tropical forests because of N saturation. (2) Excess N deposition can lead to soil acidification and nutrient imbalance. (3) Elevated N deposition has accelerated N cycling rate and its transformation process, but depressed ecosystem N fixation rate, and altered ecosystem P availability and cycling, litter decomposition process and greenhouse gas emissions. (4) High N deposition reduced understory plants diversity and changed the structure of soil microbial community. (5) Nitrogen deposition generally simulates aboveground vegetation C sequestration across China, but there remains uncertain on belowground soil C sequestration. (6) Tropical and subtropical forest ecosystems are non-ignorable N sinks, depending on the forms and fates of added N. (7) The effects of N deposition on forest ecosystems are variable, depending on ecosystem N status, land-use history, climate, and forest types and ages. Considering that there remain uncertainties on the long-term effects of N deposition in China, it is suggested that it is necessary to continue the present studies in a longer term, and to expand ajointly consider multiple global change factors (e.g., climate warming, CO2enrichment, changes in precipitation patterns), all of which are important for forest management and sustainable development in the future.
Nitrogen deposition; Global change; Forest ecosystem; Nitrogen saturation; Nitrogen limitation; Nitrogen biogeochemical cycle; Biodiversity; Carbon sequestration
10.11926/jtsb.4113
2019–06–21
2019–08–20
國家自然科學(xué)基金項目(41731176, 31700422); 中國科學(xué)院青年創(chuàng)新促會基金項目(2015287)資助
This work was supported by the National Natural Science Foundation of China (Grant No. 41731176, 31700422); and the Project for Youth Innovation Promotion of Chinese Academy of Science (Grant No. 2015287).
魯顯楷, 研究員, 主要研究方向為全球變化生態(tài)學(xué),氮素生物地球化學(xué)。E-mail: luxiankai@scbg.ac.cn