張明澤, 何春梅, 王浩斌, 俞振明, 司燦, 趙聰慧, 段俊*
蘭科藥用植物活性多糖研究進(jìn)展
張明澤1,2, 何春梅1, 王浩斌1,2, 俞振明1, 司燦1,2, 趙聰慧1,2, 段俊1*
(1. 中國科學(xué)院華南植物園, 廣東省應(yīng)用植物學(xué)重點(diǎn)實(shí)驗(yàn)室, 中國科學(xué)院華南農(nóng)業(yè)植物分子分析與遺傳改良重點(diǎn)實(shí)驗(yàn)室, 廣州 510650; 2. 中國科學(xué)院大學(xué), 北京 100049)
蘭科(Orchidaceae)是有花植物中第二大科,目前已確認(rèn)的蘭科植物有736屬28 000種,其中有82屬343種可作藥用。常見的蘭科藥用植物有鐵皮石斛、天麻、白及和金線蓮等。蘭科藥用植物功效成分主要為糖類、茋類、酚類、萜類、生物堿類、黃酮類和甾醇等,其中主要由甘露糖和葡萄糖等單糖構(gòu)成的水溶性多糖是其重要活性成分之一,具有增強(qiáng)免疫力、抗腫瘤、抗氧化、降血糖和改善記憶等多種藥理功能。對蘭科藥用植物活性多糖的結(jié)構(gòu)、藥理作用和生物合成等方面的研究進(jìn)展進(jìn)行了綜述,并提出今后需要重點(diǎn)研究的方向,為進(jìn)一步推動蘭科藥用植物資源保護(hù)及合理開發(fā)利用提供參考。
蘭科;多糖;藥理活性;生物合成
蘭科(Orchidaceae)植物是開花植物中除菊科(Asteraceae)外最興盛且生態(tài)型最豐富的類群,主要生長于熱帶和亞熱帶地區(qū),目前已確認(rèn)的有736屬28 000種[1]。蘭科植物中有82屬343種可作為藥用[2]。2015年版《中華人民共和國藥典》中收載的蘭科藥用植物有鐵皮石斛()、金釵石斛()、鼓槌石斛()或流蘇石斛()的栽培品及其同屬植物近似種、天麻()、白及()、杜鵑蘭()、獨(dú)蒜蘭()[3]。蘭科藥用植物功效成分較為豐富,主要包括糖類、茋類、酚類、萜類、生物堿類、黃酮類和甾醇等[4],其中水溶性多糖是其重要活性成分之一,具有增強(qiáng)免疫力、抗腫瘤、抗氧化、降血糖和改善記憶等多種藥理功能。近年來,國內(nèi)外對植物活性多糖的結(jié)構(gòu)與藥理功能研究較為深入和廣泛,在活性多糖生物合成方面的研究也相繼報道,本文主要對蘭科藥用植物活性多糖的單糖組分、藥理作用和生物合成方面的研究進(jìn)展進(jìn)行綜述。
多糖是指由10個以上單糖分子通過糖苷鍵連接形成的多聚體[5]。多糖生物活性與其分子量、單糖組分密切相關(guān)[6]。目前關(guān)于石斛、白及、金線蓮()、天麻、毛唇芋蘭()、石仙桃()、杜鵑蘭、手參()等蘭科藥用植物活性多糖的研究報道較多。
石斛屬為蘭科第二大屬,種類超過1 500種[7],據(jù)統(tǒng)計(jì)我國有80種[8],其中大約30種作為藥用和功能性食品[9]。石斛多糖的結(jié)構(gòu)類型主要有-乙?;细事毒厶?、-乙?;肴楦事镀暇厶?、甘露葡聚糖、半乳甘露葡聚糖、鼠李阿拉伯半乳聚糖、半乳木葡聚糖等[10]。目前對金釵石斛、鐵皮石斛、霍山石斛()等少數(shù)種的多糖結(jié)構(gòu)有研究報道(表1),石斛屬不同種多糖的單糖組分有所差異, 但甘露糖和葡萄糖是多數(shù)種的共同組分,此外還含有阿拉伯糖、半乳糖醛酸、木糖、鼠李糖、半乳糖等。
蘭科其他藥用植物活性多糖結(jié)構(gòu)也有報道(表1),白及塊莖富含豐富的多糖膠,白及多糖是一種由甘露糖和葡萄糖組成的水溶性葡甘露聚糖。金線蓮全草含有豐富的多糖,且具有多種生物活性,是一種高價值的食療原料,對人體健康起著重要作用。天麻藥用部位為塊莖,天麻多糖主要由葡萄糖組成。石仙桃屬植物石仙桃多糖存在于假鱗莖或全草,主要由甘露糖、木糖和巖藻糖組成。手參多糖主要由葡萄糖、阿拉伯糖、甘露糖和半乳糖組成。杜鵑蘭多糖主要由甘露糖和葡萄糖組成。文心蘭()多糖主要是一種水溶性的中性線性甘露聚糖。毛唇芋蘭的莖葉具有藥用和食用價值,其多糖主要由半乳糖、阿拉伯糖、鼠李糖和半乳糖醛酸組成。萼足蘭屬植物的多糖是一種具有抗炎功效的葡甘露聚糖。
表1 石斛屬植物的活性多糖組分
續(xù)表(Continued)
Glc: 葡萄糖; Man: 甘露糖; Gal: 半乳糖; Rha: 鼠李糖; Ara: 阿拉伯糖; Xyl: 木糖; R: 核糖; GalA: 半乳糖醛酸; GluA: 葡萄糖醛酸; F: 巖藻糖。
Glc: Glucose; Man: Mannose; Gal: Galactose; Rha: Rhamnose; Ara: Arabinose; Xyl: Xylose; R: Ribose; GalA: Galacturonic acid; GluA: Glucuronic acid; F: Fucose.
綜上所述,蘭科藥用植物活性多糖多為中性多糖,由于部分結(jié)構(gòu)中含有糖醛酸殘基,因此也有少數(shù)酸性多糖存在。甘露糖和葡萄糖是蘭科藥用植物活性多糖的主要單糖組分,如鐵皮石斛中的高分子水溶性多糖主要由甘露糖和葡萄糖構(gòu)成的葡萄甘露聚糖[11]。不同屬植物間的單糖組分有所差異,除甘露糖和葡萄糖外,部分蘭科藥用植物還含有半乳糖、鼠李糖、阿拉伯糖、木糖、核糖、巖藻糖等單糖組分?;钚远嗵侵懈事短菤埢暮臀灰装l(fā)生乙酰化取代,這可能與增加多糖溶解度和生物活性有關(guān)[12–13]。蘭科藥用植物活性多糖的組成與其他科植物,如百合科(Liliaceae)植物蘆薈(var.)[14]及天南星科(Araceae)植物魔芋()[15]的活性多糖結(jié)構(gòu)極為相似,但蘭科植物活性多糖中甘露糖與葡萄糖的比例較大,大于魔芋多糖和百合多糖中甘露糖與葡萄糖之比[16],而且甘露糖含量也較高,甘小娜等[17]的研究表明,鐵皮石斛的甘露糖平均含量為32.33%,齒瓣石斛()為37.88%。此外,有研究表明,植物活性多糖的重要功能是調(diào)節(jié)機(jī)體的免疫功能,改善機(jī)體微循環(huán),甘露糖具有抑制腫瘤生長的作用,甘露糖治療癌癥是一種簡單、安全、有選擇性的方法,適用于多種腫瘤類型[18]。因此,深入開展蘭科藥用植物活性多糖的研究在進(jìn)一步推動蘭科藥用植物資源保護(hù)及合理開發(fā)利用等方面具有重要的意義。
鐵皮石斛多糖具有免疫調(diào)節(jié)功能,可以作為新型功能性食品的原料[74]。藥理試驗(yàn)表明,鐵皮石斛與金釵石斛雜交植株的石斛多糖(DTTPS)能顯著增加脾臟自然殺傷細(xì)胞(NK)的數(shù)量、NK細(xì)胞毒性、巨噬細(xì)胞吞噬和細(xì)胞因子誘導(dǎo),從而具有強(qiáng)烈的免疫調(diào)節(jié)作用[38]。鐵皮石斛-乙酰化葡甘露聚糖DOP-1-1在低pH溶液中較為穩(wěn)定,可通過TLR4介導(dǎo)的核轉(zhuǎn)錄因子κB (NF-κB)信號通路誘導(dǎo)免疫應(yīng)答,巨噬細(xì)胞炎性蛋白-1(MIP-1/CCL4)和干擾素誘導(dǎo)蛋白-10 (IP10)可能是-乙酰化葡甘露聚糖刺激免疫應(yīng)答的新靶點(diǎn)[75]。鐵皮石斛多糖通過改變腸粘膜結(jié)構(gòu),促進(jìn)腸道淋巴集結(jié)和腸系膜淋巴結(jié)分泌細(xì)胞因子,增加固有層分泌性免疫球蛋白A,調(diào)節(jié)腸粘膜免疫活性[76],還可以顯著提高胃腸道傳輸率,恢復(fù)糞便排出特性,有助于緩解便秘[77]。鐵皮石斛多糖(GXG)還可以改變腸道的生理狀態(tài),通過調(diào)節(jié)粘膜結(jié)構(gòu)以及上調(diào)緊密連接蛋白的表達(dá)從而改善腸道的物理屏障,通過提升黏膜蛋白-2、-防御素和分泌型免疫球蛋白A的分泌而增強(qiáng)腸道生物屏障,并通過刺激產(chǎn)生細(xì)胞因子和促進(jìn)免疫細(xì)胞發(fā)育來調(diào)節(jié)腸道免疫屏障[78]。鼓槌石斛多糖在免疫調(diào)節(jié)方面具有刺激小鼠脾臟細(xì)胞增殖的功效[79]。金釵石斛多糖增強(qiáng)T-淋巴細(xì)胞和B-淋巴細(xì)胞活性[22],提高機(jī)體免疫指數(shù),促進(jìn)小鼠體內(nèi)細(xì)胞因子分泌[80]。齒瓣石斛多糖可促進(jìn)巨噬細(xì)胞NO釋放和吞噬等免疫功能,因此,可作為一種天然的免疫刺激劑[9]。白及多糖可促進(jìn)藥物輸送和創(chuàng)傷修復(fù)[81],因其在巨噬細(xì)胞發(fā)炎和增生時期的調(diào)控作用而具有促進(jìn)口腔潰瘍愈合的功效[50,82]。研究表明,天麻多糖能顯著刺激巨噬細(xì)胞釋放NO,并以劑量依賴的方式增強(qiáng)細(xì)胞吞噬作用,表現(xiàn)免疫功能[83]。手參多糖具有免疫調(diào)節(jié)功能,其活性大小與其結(jié)構(gòu)和組成有關(guān)[67]。體外研究表明,毛唇芋蘭多糖(NFP-1)具有調(diào)節(jié)巨噬細(xì)胞的免疫功能[71]。巨噬細(xì)胞和樹突細(xì)胞質(zhì)膜上存在一些特定識別受體,如清道夫受體(SRs)、-d-葡聚糖受體樹突細(xì)胞相關(guān)性C型植物血凝素1 (Dectin-1)、甘露糖受體(MR)、補(bǔ)體受體三型分子(CR3)及Toll樣受體4 (TLR4)等,當(dāng)多糖與這些受體結(jié)合后,觸發(fā)多種信號通路,產(chǎn)生免疫應(yīng)答[84]。從蘭科植物中分離的多糖大部分是甘露聚糖,且可以調(diào)節(jié)人體免疫力。說明蘭科植物中的甘露聚糖與巨噬細(xì)胞和樹突細(xì)胞質(zhì)膜上的甘露糖受體結(jié)合,刺激了人體內(nèi)的免疫應(yīng)答,從而具有提高人體免疫力的功效。
鐵皮石斛多糖具有抗癌活性,通過Bcl-2和Bax依賴途徑誘導(dǎo)人肝癌HepG2細(xì)胞凋亡[30],其活性與分子量和單糖組成有關(guān),鐵皮石斛粗多糖在HeLa細(xì)胞中均無明顯活性,只有在降解為分子量較小的多糖后才表現(xiàn)出明顯的抗腫瘤作用,降解的多糖通過絲裂原活化蛋白激酶(MAPK)信號通路誘導(dǎo)HeLa細(xì)胞凋亡,多糖中甘露糖相關(guān)組分含量越高,抗腫瘤活性越強(qiáng)[39]。白及多糖BSP-1能提高免疫缺陷模型小鼠的胸腺和脾臟指數(shù),具有免疫調(diào)節(jié)作用[49]。從人工栽培的金線蓮中提取的多糖(AC-ARPS)對體外肺癌A549、骨肉瘤143B、大鼠腎上腺嗜鉻細(xì)胞瘤PC12、乳腺癌MCF-7、急性白血病HL60、慢性白血病K562、結(jié)腸癌SW620、食管癌OE19、肝癌HepG2和神經(jīng)膠質(zhì)瘤U251等腫瘤細(xì)胞具有抑制作用, AC-ARPS誘導(dǎo)OE19細(xì)胞凋亡和G2/M期阻滯[56]。從杜鵑蘭假鱗莖中提取的多糖PRP具有明顯的抗腫瘤特性,可以作為一種新的腫瘤治療藥物[68]。此外,天麻多糖也具有抗癌活性[65]。
研究表明,鐵皮石斛多糖(DOP)對金屬螯合活性較高[85],具有明顯的1,1-二苯基-2-苦基肼(DPPH)自由基、2?-聯(lián)氨-雙-3-乙基苯并噻唑啉-6-磺酸(ABTS)自由基和羥基自由基清除能力和還原能力,可作為天然抗氧化劑運(yùn)用在食品或醫(yī)藥行業(yè)[11]。鐵皮石斛多糖對脾臟細(xì)胞、T-淋巴細(xì)胞和B-淋巴細(xì)胞有刺激作用,能促進(jìn)細(xì)胞活力,抑制凋亡,保護(hù)巨噬細(xì)胞免受過氧化氫誘導(dǎo)的氧化損傷[32]。天麻多糖具有較高的抗氧化活性,可以延緩因自由基引起的人體衰老[64]。石仙桃多糖具有抗氧化功能,對超氧陰離子和羥基自由基具有劑量依賴性的清除作用[69–70]。金線蓮多糖(ARP)通過清除自由基從而對CCl4誘導(dǎo)的小鼠氧化性肝損傷具有保護(hù)作用[63,86]。
鐵皮石斛葉多糖具有保護(hù)THP-1細(xì)胞免受脂多糖激活的細(xì)胞毒性作用,抑制活性氧的形成,以及抑制脂多糖激活的THP-1細(xì)胞的受體蛋白(TLR- 4)、骨髓分化因子(MyD88)以及腫瘤壞死因子受體相關(guān)因子(TRAF-6)的mRNA和蛋白表達(dá),因而具有抗炎功效[26]。通過研究鐵皮石斛多糖(cDHP)對香煙煙霧(CS)誘導(dǎo)的小鼠肺炎的抑制作用,認(rèn)為cDHP可增加肺泡數(shù)量,增厚肺泡壁,抑制肺大泡形成,減少炎癥細(xì)胞浸潤,還可以抑制CS誘導(dǎo)的血清和肺中TNF-、IL-1分泌,cDHP的抗炎作用是通過調(diào)節(jié)NF-κB和MAPK信號而介導(dǎo)的[28]。白及多糖通過在體外下調(diào)轉(zhuǎn)化生長因子(TGF-RI、TGF-RII)及其下游-平滑肌肌動蛋白(SMA)的量,緩解腎臟炎癥和纖維化[46]。
研究表明,從鼓槌石斛、霍山石斛和金釵石斛莖中提取的多糖能抑制血糖上升[87],具有抗糖化活性[24]和降血糖作用[88]。鐵皮石斛多糖具有保護(hù)神經(jīng)的作用,通過調(diào)節(jié)小膠質(zhì)細(xì)胞的活性從而預(yù)防與阿爾茨海默病(AD)相關(guān)的認(rèn)知衰退[89]。天麻多糖也具有保護(hù)神經(jīng)的作用,能有效抑制皮質(zhì)酮(CORT)誘導(dǎo)的PC12細(xì)胞凋亡[90]。
多糖是一類非常重要的生物大分子,但由于結(jié)構(gòu)復(fù)雜和研究技術(shù)的滯后,造成多糖代謝研究較為緩慢。目前研究較為深入的是細(xì)胞壁多糖的合成。植物細(xì)胞壁由纖維素微纖絲組成,一些復(fù)雜的非纖維素多糖嵌入微纖絲中,非纖維素多糖通常大部分為果膠、木葡聚糖和非均一性木聚糖,少部分為非均一性甘露聚糖[91]。非均一性甘露聚糖類群因在一些藻類細(xì)胞壁中發(fā)現(xiàn)而被認(rèn)為是一種最古老的植物細(xì)胞壁多糖[92],根據(jù)其主鏈組成和側(cè)鏈取代基類型可分為4類:甘露聚糖、葡甘露聚糖、半乳甘露聚糖和半乳葡甘露聚糖。其中葡甘露聚糖與從石斛屬植物中分離鑒定到的葡甘露聚糖結(jié)構(gòu)較為相似,且研究最為深入。而蘭科植物中鑒定的大部分為葡萄甘露聚糖,也是主要的活性多糖,其生物合成的研究主要集中在石斛葡甘露聚糖上。
植物細(xì)胞在一定生理發(fā)育階段合成一些水溶性多糖,通常稱為貯藏多糖,以固態(tài)、液態(tài)或溶膠狀暫時貯存在細(xì)胞質(zhì)體或液泡中,當(dāng)生長需要時轉(zhuǎn)化為單體重新進(jìn)入細(xì)胞進(jìn)行代謝。一些單子葉植物如蘭科植物的營養(yǎng)器官就貯存了甘露聚糖這樣的貯藏多糖[93],據(jù)早期研究報道,蘭科紅門蘭屬()植物塊莖中含有由甘露糖和葡萄糖組成的葡甘露聚糖,具有很高的黏性[94],蘭科其他藥用植物水溶性多糖也主要是葡甘露聚糖。葡甘露聚糖主鏈由甘露糖殘基和葡萄糖殘基通過-1,4糖苷鍵連接[12]。葡甘露聚糖在植物進(jìn)化過程中高度保守,經(jīng)過多次獨(dú)立進(jìn)化后主要作為種子或莖等器官的儲能物質(zhì)[95–96]。葡甘露聚糖在高爾基體中合成后以水合態(tài)貯存于特化的薄壁細(xì)胞液泡中[97]。薄壁細(xì)胞是一種由初生細(xì)胞壁包圍且具有分裂能力以及代謝活躍的細(xì)胞,典型的草本種子植物中90%的細(xì)胞是薄壁細(xì)胞[98],鐵皮石斛莖中合成的多糖顆粒主要貯存于薄壁細(xì)胞的質(zhì)體中[99]。
多糖合成過程包括核苷酸糖的合成,糖鏈的起始、延伸和終止[100]。合成非均一甘露聚糖的底物為活化的核苷酸糖,包括GDP-甘露糖、GDP-葡萄糖和UDP-半乳糖[101],在細(xì)胞質(zhì)基質(zhì)中,這些活化的核苷酸糖的合成途徑為:蔗糖(蔗糖合酶或蔗糖轉(zhuǎn)化酶和UDP-葡萄糖焦磷酸化酶催化)→UDP-葡萄糖(UDP-葡萄糖-4-差向異構(gòu)酶催化)→UDP-半乳糖; 蔗糖(蔗糖轉(zhuǎn)化酶催化)→果糖(果糖激酶催)→6-磷酸果糖(6-磷酸甘露糖異構(gòu)酶催化)→6-磷酸甘露糖(甘露糖磷酸變位酶催化)→1-磷酸甘露糖(甘露糖- 1-磷酸尿苷轉(zhuǎn)移酶催化)→GDP-甘露糖[102],但GDP-葡萄糖的合成途徑尚不清楚。高爾基體膜上不同的核苷酸糖轉(zhuǎn)運(yùn)蛋白(nucleotide sugar transporters, NSTs)將細(xì)胞質(zhì)基質(zhì)中的核苷酸糖轉(zhuǎn)運(yùn)到高爾基體腔中[103],之后高爾基體中特異的糖基轉(zhuǎn)移酶(GTs)催化核苷酸糖形成糖苷鍵,進(jìn)而合成多糖[104],合成的多糖主要通過分泌面高爾基體網(wǎng)上的復(fù)合蛋白介導(dǎo)和隨后的分泌囊泡穿梭這種常規(guī)分泌途徑轉(zhuǎn)運(yùn)到貯存部位[102]。
GT2家族中纖維素合成酶類似物A (CslA), 如AtCslA9的活性域面向高爾基體腔[105],把GDP-甘露糖或GDP-葡萄糖添加到甘露聚糖主鏈上而延伸多糖[96]。合成核苷酸糖如UDP-半乳糖和GDP-葡萄糖轉(zhuǎn)運(yùn)蛋白基因已經(jīng)鑒定[103]。在擬南芥() CslA家族基因中,已經(jīng)證明多個基因, 如、、和具有調(diào)控合成-1,4-甘露聚糖的功能[106–107],參與了花序梗細(xì)胞壁大部分葡甘露聚糖的合成[108]。從瓜爾豆()種子中分離的-甘露聚糖合酶(ManS),與擬南芥AtCslA9同源[109]。從魔芋球莖中分離了AkCslA3,能利用GDP-甘露糖和GDP-葡萄糖合成葡甘露聚糖[110]。有研究表明, CslD (AtCslD2,3,5)在擬南芥根毛中也催化甘露聚糖的生物合成[111]。還有一些位于高爾基體上的酶輔助合成甘露聚糖,如敲除后突變體莖中葡甘露聚糖含量顯著降低[112]。
石斛多糖合成的相關(guān)基因,如堿性/中性轉(zhuǎn)化酶基因()[113],UDP-葡萄糖焦磷酸化酶基因()[114],GDP-甘露糖焦磷酸化酶基因()[115], 磷酸甘露糖合成酶基因()[116], UDP-葡萄糖-4-差向異構(gòu)酶()基因[117]以及8種糖基轉(zhuǎn)移酶基因()[118–119]已經(jīng)克隆,部分基因的功能已被研究。結(jié)果表明,鐵皮石斛基因組中涉及葡甘露聚糖合酶活性基因大量重復(fù),可能與多糖的合成有關(guān)[120]。多糖生物合成相關(guān)候選基因的鑒定和克隆,為闡明多糖生物合成的分子機(jī)理奠定了基礎(chǔ)[121],進(jìn)一步可通過轉(zhuǎn)基因等生物技術(shù)手段增加蘭科藥用植物活性多糖的含量[122–123]。
我國擁有豐富的蘭科植物資源,其藥用價值還需進(jìn)一步挖掘。蘭科藥用植物活性多糖的單糖組成不盡相同,但甘露糖和葡萄糖是多數(shù)蘭科藥用植物活性多糖的主要成分,多糖中甘露糖含量較高是多數(shù)蘭科藥用植物的一大特點(diǎn)。蘭科藥用植物是一種很好的葡甘露聚糖來源,據(jù)國外研究報道,用蘭科植物塊莖磨成的粉中葡甘露聚糖含量可達(dá)61.00%[124],而另一種重要的葡甘露聚糖來源植物——魔芋,其葡甘露聚糖含量為42.75%[125]。就商業(yè)用途而言,蘭科植物活性多糖在國外已經(jīng)用于制作飲料、可食用膜及冰淇淋等[126]。近年來,國內(nèi)外學(xué)者對其結(jié)構(gòu)和藥理作用機(jī)制的研究越來越廣泛,研究表明多糖具有增強(qiáng)免疫力、抗腫瘤、抗氧化、降血糖和改善記憶等多種藥理作用,特別是甘露糖的藥理作用研究報道較多,而且毒副作用較小甚至沒有毒副作用,因此,蘭科藥用植物活性多糖在疾病預(yù)防及保健品開發(fā)等方面有廣闊的應(yīng)用前景。
在蘭科藥用植物活性多糖高級結(jié)構(gòu)及其作用機(jī)理、生物合成等方面有待進(jìn)一步深入研究。如多糖藥理功能是由多糖中的某單一組分起作用還是由多種組分共同起作用尚不清楚。此外多糖支鏈的取代如乙?;仁欠裼绊懫渌幚砘钚砸残枰M(jìn)一步明確。由于蘭科藥用植物活性多糖生物合成方面的研究起步較晚,功能基因的相關(guān)研究報道大多僅限于基因的克隆和表達(dá)模式分析,基因功能驗(yàn)證方面的工作開展較少。因此,利用新一代高通量測序技術(shù)結(jié)合生物信息學(xué)解析蘭科藥用植物基因組和轉(zhuǎn)錄組信息,大規(guī)模發(fā)掘與活性多糖合成相關(guān)的基因,在全面揭示這些活性多糖在細(xì)胞中合成、運(yùn)輸和貯存的詳細(xì)過程以及代謝調(diào)控分子機(jī)制的基礎(chǔ)上,通過轉(zhuǎn)基因或基因沉默等技術(shù),對候選基因功能進(jìn)行分析、驗(yàn)證,鑒定出一批在生產(chǎn)上能夠提高多糖含量的關(guān)鍵調(diào)控基因。這些工作可促進(jìn)蘭科藥用植物資源保護(hù)和可持續(xù)利用,因此將是未來研究的重要方向。
[1] CHASE M W, CAMERON K M, FREUDENSTEIN J V, et alAn updated classification of Orchidaceae [J]. Bot J Linn Soc, 2015, 177(2): 151–174. doi: 10.1111/boj.12234.
[2] LI J H, ZHANG L H. Application of tissue culture and mycorrhizal technology of medicinal orchid plants for seedling production [J]. Seed, 2015, 34(8): 133–134. doi: 10.16590/j.cnki.1001-4705.2015.08.133.李景蕻, 張麗華. 藥用蘭科植物組培苗菌根化技術(shù)在種苗生產(chǎn)中的應(yīng)用[J]. 種子, 2015, 34(8): 133–134. doi: 10.16590/j.cnki.1001-4705. 2015.08.133.
[3] TANG H. DNA barcoding identification and ecological suitability of important medicinal plants of Orchidaceae [D]. Yaan: Sichuan Agricul- tural University, 2016: 9. 湯歡. 蘭科重要藥用植物DNA條形碼鑒定及其生態(tài)適宜性 [D].雅安: 四川農(nóng)業(yè)大學(xué), 2016: 9.
[4] LIU H D, PAN L L, ZHOU X, et al. Research progress on chemical constituents and pharmacological activities of alkaloids in Orchidaceae plants [J]. Chin Trad Herb Drugs, 2019, 50(3): 731–744. doi: 10.7501/ j.issn.0253-2670.2019.03.029.劉宏棟, 潘玲玲, 周翔, 等. 蘭科植物生物堿類化學(xué)成分及藥理活性研究進(jìn)展 [J]. 中草藥, 2019, 50(3): 731–744. doi: 10.7501/j.issn. 0253-2670.2019.03.029.
[5] PRAJAPATI V D, JANI G K, MORADIYA N G, et alGalactomannan: A versatile biodegradable seed polysaccharide [J]. Int J Biol Macromol, 2013, 60: 83–92. doi: 10.1016/j.ijbiomac.2013.05.017.
[6] MA L S, CHEN H X, ZHU W C, et alEffect of different drying methods on physicochemical properties and antioxidant activities of polysaccharides extracted from mushroom[J]. Food Res Int, 2013, 50(2): 633–640. doi: 10.1016/j.foodres.2011.05.005.
[7] CAKOVA V, BONTE F, LOBSTEIN A.: Sources of active ingredients to treat age-related pathologies [J]. Aging Dis, 2017, 8(6): 827–849. doi: 10.14336/AD.2017.0214.
[8] DUAN J, DUAN Y P. High-efficient Cultivation Techniques for[M]. Fujian: Fujian Science and Technology Press, 2013: 1. 段俊, 段毅平. 鐵皮石斛高效栽培技術(shù) [M]. 福建: 福建科學(xué)技術(shù)出版社, 2013: 1.
[9] DENG Y, LI M, CHEN L X, et alChemical characterization and immunomodulatory activity of acetylated polysaccharides from[J]. Carbohydr Polym, 2018, 180: 238–245. doi: 10.1016/j.carbpol.2017.10.026.
[10] XING X H, CUI S W, NIE S P, et alA review of isolation process, structural characteristics, and bioactivities of water-soluble polysac- charides fromplants [J]. Bioact Carbohydr Diet Fibre, 2013, 1(2): 131–147. doi: 10.1016/j.bcdf.2013.04.001.
[11] FAN H R, MENG Q R, XIAO T C, et alPartial characterization and antioxidant activities of polysaccharides sequentially extracted from[J]. J Food Meas Charact, 2018, 12(2): 1054– 1064. doi: 10.1007/s11694-018-9721-8.
[12] PAULY M, GILLE S, LIU L F, et alHemicellulose biosynthesis [J]. Planta, 2013, 238(4): 627–642. doi: 10.1007/s00425-013-1921-1.
[13] HSIEH Y S Y, CHIEN C, LIAO S K S, et alStructure and bioactivity of the polysaccharides in medicinal plant[J]. Bioorg Med Chem, 2008, 16(11): 6054–6068. doi: 10.1016/j.bmc.2008. 04.042.
[14] YAN C Q, ZOU K. Advances in research on plant polysaccharides of Liliaceae [J]. J China Three Gorges Univ (Nat Sci), 2009, 31(2): 96– 100. doi: 10.3969/j.issn.1672-948X.2009.02.025.晏傳奇, 鄒坤. 百合科植物多糖研究進(jìn)展 [J]. 三峽大學(xué)學(xué)報(自然科學(xué)版), 2009, 31(2): 96–100. doi: 10.3969/j.issn.1672-948X.2009.02.025.
[15] SINGH S, SINGH G, ARYA S K. Mannans: An overview of properties and application in food products [J]. Int J Biol Macromol, 2018, 119: 79–95. doi: 10.1016/j.ijbiomac.2018.07.130.
[16] TESTER R F, AL-GHAZZEWI F H. Beneficial health characteristics of native and hydrolysed konjac () glucomannan[J]. J Sci Food Agric, 2016, 96(10): 3283–3291. doi: 10.1002/jsfa.7571.
[17] GAN X N, XU Y, XU H, et al. Improvement in determination for polysaccharide and mannose in dendrobii officinalis caulis and its comparation with dendrobii devoniani caulis [J]. Drug Stand China, 2014, 15(4): 276–279. doi: 10.19778/j.chp.2014.04.011.甘小娜, 徐英, 徐紅, 等. 鐵皮石斛中多糖和甘露糖含量測定方法的改進(jìn)及與齒瓣石斛的比較研究 [J]. 中國藥品標(biāo)準(zhǔn), 2014, 15(4): 276–279. doi: 10.19778/j.chp.2014.04.011.
[18] GONZALEZ P S, O’PREY J, CARDACI S, et al. Mannose impairs tumour growth and enhances chemotherapy [J]. Nature, 2018, 563 (7733): 719–723. doi: 10.1038/s41586-018-0729-3.
[19] WANG J H, ZHA X Q, LUO J P, et alAn acetylated galactoman- noglucan from the stems ofLindl. [J]. Carbohydr Res, 2010, 345(8): 1023–1027. doi: 10.1016/j.carres.2010.03.005.
[20] LI Q, XIE Y, SU J W, et alIsolation and structural characterization of a neutral polysaccharide from the stems of[J]. Int J Biol Macromol, 2012, 50(5): 1207–1211. doi: 10.1016/j.ijbiomac. 2012.03.005.
[21] LUO A X, HE X J, ZHOU S D, et alantioxidant activities of a water-soluble polysaccharide derived fromLindl. extracts [J]. Int J Biol Macromol, 2009, 45(4): 359–363. doi: 10.1016/ j.ijbiomac.2009.07.008.
[22] WANG J H, LUO J P, ZHA X Q. Structural features of a pectic polysaccharide from the stems ofLindl. [J]. Carbo- hydr Polym, 2010, 81(1): 1–7. doi: 10.1016/j.carbpol.2010.01.040.
[23] WANG J H, LUO J P, YANG X F, et al. Structural analysis of a rham- noarabinogalactan from the stems ofLindl. [J]. Food Chem, 2010, 122(3): 572–576. doi: 10.1016/j.foodchem.2010.03.012.
[24] PAN L H, FENG B J, WANG J H, et al. Structural characterization and anti-glycation activity in vitro of a water-soluble polysaccharide from[J]. J Food Biochem, 2013, 37(3): 313–321. doi: 10.1111/j.1745-4514.2011.00633.x.
[25] XIE S Z, GE J C, LI F, et al. Digestive behavior ofpolysaccharides in the gastrointestinal tracts of mice [J]. Int J Biol Macromol, 2018, 107: 825–832. doi: 10.1016/j.ijbiomac.2017.09.047.
[26] ZHANG M, WU J W, HAN J J, et alIsolation of polysaccharides fromleaves and anti-inflammatory activity in LPS- stimulated THP-1 cells [J]. Chem Cent J, 2018, 12(1): 109. doi: 10.1186/ s13065-018-0480-8.
[27] TIAN C C, ZHA X Q, PAN L H, et alStructural characterization and antioxidant activity of a low-molecular polysaccharide from[J]. Fitoterapia, 2013, 91: 247–255. doi: 10.1016/j.fitote. 2013.09.018.
[28] GE J C, ZHA X Q, NIE C Y, et alPolysaccharides fromstems alleviates lung inflammation in cigarette smoke- induced mice [J]. Carbohydr Polym, 2018, 189: 289–295. doi: 10.1016/ j.carbpol.2018.02.054.
[29] XI X J, XIAO S Z, TANG F, et al. Monosaccharide analysis ofpolysaccharides by high performance liquid chromato-graphy/electrospray ionization mass spectrometry [J]. Amer J Agric For, 2016, 4(6): 156–162. doi: 10.11648/j.ajaf.20160406.13.
[30] XING S P, ZHANG X F, KE H N, et al. Physicochemical properties of polysaccharides fromby fractional precipitation and their preliminary antioxidant and anti-HepG2 cells activities[J]. Chem Cent J, 2018, 12(1): 100. doi: 10.1186/s13065-018-0468-4.
[31] WANG J H, ZUO S R, LUO J P. Structural analysis and immuno- stimulating activity of an acidic polysaccharide from the stems ofLindl. [J]. Molecules, 2017, 22(4): 611. doi: 10. 3390/molecules22040611.
[32] HUANG K W, LI Y R, TAO S C, et al. Purification, characterization and biological activity of polysaccharides from[J]. Molecules, 2016, 21(6): 701. doi: 10.3390/molecules21060701.
[33] DENG Y, CHEN L X, HAN B X, et alQualitative and quantitative analysis of specific polysaccharides inby using saccharide mapping and chromatographic methods [J]. J Pharm Biomed Anal, 2016, 129: 163–171. doi: 10.1016/j.jpba.2016.06.051.
[34] SI H Y, CHEN N F, CHEN N D, et al. Structural characterisation of a water-soluble polysaccharide from tissue-culturedC. Z. Tang et S. J. Cheng [J]. Nat Prod Res, 2018, 32(3): 252–260. doi: 10.1080/14786419.2017.1350670.
[35] ZHANG Y, WANG H X, GUO Q B, et al. Structural characterization and conformational properties of a polysaccharide isolated fromLindl. [J/OL]. Food Hydrocoll, 2019, (2019–01–22). doi: 10.1016/j.foodhyd.2019.01.044.
[36] LI X L, XIAO J J, ZHA X Q, et al. Structural identification and sulfated modification of an antiglycationpolysaccharide [J]. Carbohydr Polym, 2014, 106: 247–254. doi: 10. 1016/j.carbpol.2014.02.029.
[37] HE T B, HUANG Y P, YANG L, et al. Structural characterization and immunomodulating activity of polysaccharide from[J]. Int J Biol Macromol, 2016, 83: 34–41. doi: 10.1016/j. ijbiomac.2015.11.038.
[38] YANG L C, HSIEH C C, WEN C L, et al. Structural characterization of an immunostimulating polysaccharide from the stems of a new medicinalspecies:Taiseed Tosnobile [J]. Int J Biol Macromol, 2017, 103: 1185–1193. doi: 10.1016/j.ijbiomac.2017.05.185.
[39] YU W X, REN Z Y, ZHANG X F, et al. Structural characterization of polysaccharides fromand their effects on apoptosis of HeLa cell line [J]. Molecules, 2018, 23(10): 2484. doi: 10. 3390/molecules23102484.
[40] ZHA X Q, DENG Y Y, LI X L, et al. The core structure of apolysaccharide required for the inhibition of human lens epithelial cell apoptosis [J]. Carbohydr Polym, 2017, 155: 252– 260. doi: 10.1016/j.carbpol.2016.08.087.
[41] YUE H, LIU Y Q, QU H H, et al. Structure analysis of a novel hetero- xylan from the stem ofand anti angiogenesis activities of its sulfated derivative [J]. Int J Biol Macromol, 2017, 103: 533–542. doi: 10.1016/j.ijbiomac.2017.05.097.
[42] LI F, CUI S H, ZHA X Q, et al. Structure and bioactivity of a polysac- charide extracted from protocorm-like bodies of[J]. Int J Biol Macromol, 2015, 72: 664–672. doi: 10.1016/j.ijbio mac.2014.08.026.
[43] WEI W, FENG L, BAO W R, et alStructure characterization and immunomodulating effects of polysaccharides isolated from[J]. J Agric Food Chem, 2016, 64(4): 881–889. doi: 10. 1021/acs.jafc.5b05180.
[44] TOMODA M, NAKATSUKA S, TAMAI M, et al. Plant mucilages. VIII. Isolation and characterization of a mucous polysaccharide, “- glucomannan,” fromTubers [J]. Chem Pharm Bull, 1973, 21(12): 2667–2671. doi: 10.1248/cpb.21.2667.
[45] YUE L, WANG W, WANG Y, et alpolysaccharide inhibits angiotensin II-induced ROS and inflammation via NOX4 and TLR2 pathways [J]. Int J Biol Macromol, 2016, 89: 376–388. doi: 10. 1016/j.ijbiomac.2016.05.002.
[46] WANG Y, LIU D, CHEN S J, et al. A new glucomannan from: Structural and anti-fibrosis effects [J]. Fitoterapia, 2014, 92: 72–78. doi: 10.1016/j.fitote.2013.10.008.
[47] DONG L, XIA S H, LUO Y, et al. Targeting delivery oligonucleotide into macrophages by cationic polysaccharide fromsuccessfully inhibited the expression of TNF-[J]. J Control Release, 2009, 134(3): 214–220. doi: 10.1016/j.jconrel.2008.11.013.
[48] PENG Q, LI M, XUE F, et al. Structure and immunobiological activity of a new polysaccharide from[J]. Carbohydr Polym, 2014, 107: 119–123. doi: 10.1016/j.carbpol.2014.02.042.
[49] WANG Y R, HAN S W, LI R F, et al. Structural characterization and immunological activity of polysaccharides from the tuber of[J]. Int J Biol Macromol, 2019, 122: 628–635. doi: 10.1016/j. ijbiomac.2018.10.201.
[50] LIAO Z C, ZENG R, HU L L, et al. Polysaccharides from tubers of: Physicochemical characterization, formulation of buccoadhesive wafers and preliminary study on treating oral ulcer [J]. Int J Biol Macromol, 2019, 122: 1035–1045. doi: 10.1016/j.ijbiomac. 2018.09.050.
[51] WANG B, XU S, HUANG L J, et al. Isolation, purification and structural characterization of a polysaccharide fraction from stem tuber of, named BSPI-A [J]. Food Sci, 2010, 31(17): 120–123. 王博, 徐莎, 黃琳娟, 等. 白芨多糖BSPI-A的分離純化及結(jié)構(gòu)研究 [J]. 食品科學(xué), 2010, 31(17): 120–123.
[52] LIU J Y, WANG H C, YIN Y, et al. Controlled acetylation of water- soluble glucomannan from[J]. Carbohydr Polym, 2012, 89(1): 158–162. doi: 10.1016/j.carbpol.2012.02.065.
[53] WU X G, XIN M, CHEN H, et al. Novel mucoadhesive polysaccharide isolated fromimproves the intraocular penetration and efficacy of levofloxacin in the topical treatment of experimental bacterial keratitis [J]. J Pharm Pharmacol, 2010, 62(9): 1152–1157. doi: 10.1111/j.2042-7158.2010.01137.x.
[54] ZHANG M S, SUN L, ZHAO W C, et al. Cholesteryl-modification of a glucomannan fromand its hydrogel properties [J]. Molecules, 2014, 19(7): 9089–9100. doi: 10.3390/molecules19079089.
[55] WANG C, LUO W F, LI P W, et al. Preparation and evaluation of chitosan/alginate porous microspheres/polysaccharide composite hemostatic sponges [J]. Carbohydr Polym, 2017, 174: 432– 442. doi: 10.1016/j.carbpol.2017.06.112.
[56] YU X L, LIN S E, ZHANG J Q, et al. Purification of polysaccharide from artificially cultivated(Wall.) Lindl. by high-speed counter current chromatography and its antitumor activity [J]. J Sep Sci, 2017, 40(22): 4338–4346. doi: 10.1002/jssc.201700340.
[57] ZHANG X H. Structural analysis and antidiabetic activities of polysac- charides from[D]. Shantou: Shantou University, 2011: 21–27. 張曉輝. 金線蓮多糖結(jié)構(gòu)分析及抗糖尿病活性研究 [D]. 汕頭: 汕頭大學(xué), 2011: 21–27.
[58] WU Y B, ZHANG X C, YI J, et al. Determination of the monosaccharide composition inpolysaccharide from different origins by pre-column derivatization HPLC method [J]. China Pharm, 2015, 26(15): 2116–2119. doi: 10.6039/j.issn.1001-0408.2015.15.37.吳巖斌, 張秀才, 易駿, 等. 柱前衍生化HPLC法測定不同基源金線蓮多糖的單糖組成 [J]. 中國藥房, 2015, 26(15): 2116–2119. doi: 10.6039/j.issn.1001-0408.2015.15.37.
[59] YANG Z G, ZHANG X H, YU J. Primary study on the characterization of polysaccharides from[J]. China J Pharm Econ, 2015, 10(S1): 36–37. 楊振國, 張曉輝, 余杰. 金線蓮多糖結(jié)構(gòu)的初步分析 [J]. 中國藥物經(jīng)濟(jì)學(xué), 2015, 10(S1): 36–37.
[60] ZHANG J Q. The purification and the structure representation of polysac- charides from(Wall) Lindl. and the anti-tumor activities research [D]. Fuzhou: Fujian Medical University, 2010: 4.張錦雀. 金線蓮多糖的分離純化、結(jié)構(gòu)表征及其抗腫瘤活性 [D]. 福州: 福建醫(yī)科大學(xué), 2010: 4.
[61] LIN S E, HUANG L Y, YU X L. Analyze monosaccharide composition of polysaccharide in artificial cultivatedby pre-column derivatization HPLC [J]. J Fujian Med Univ, 2016, 50(3): 148–154. 林守二, 黃麗英, 俞曉玲. 柱前衍生化HPLC法分析人工栽培金線蓮中多糖的單糖組成 [J]. 福建醫(yī)科大學(xué)學(xué)報, 2016, 50(3): 148–154.
[62] LI S L. Studies on the content changes, structural characteristics and pharmacological activities ofpolysaccharides [D]. Hangzhou: Zhejiang Agricultural and Forestry University, 2018: 31. 李帥玲. 金線蓮多糖的含量變化、結(jié)構(gòu)表征及藥理活性研究 [D]. 杭州: 浙江農(nóng)林大學(xué), 2018: 31.
[63] YANG Z G, ZHANG X H, YANG L W, et al. Protective effect ofpolysaccharide against CCl4-induced oxidative liver damage in mice [J]. Int J Biol Macromol, 2017, 96: 442–450. doi: 10.1016/j.ijbiomac.2016.12.039.
[64] CHEN L, ZHANG Y P, JIN L X. Preparation, characterization and anti- ageing activity ofblume polysaccharide [J]. Acta Aliment, 2018, 47(2): 210–219. doi: 10.1556/066.2018.47.2.10.
[65] CHEN X, CAO D X, ZHOU L, et al. Structure of a polysaccharide fromBl., and oligosaccharides prepared thereof with anti-pancreatic cancer cell growth activities [J]. Carbohydr Polym, 2011, 86(3): 1300–1305. doi: 10.1016/j.carbpol.2011.06.029.
[66] MING J, LIU J, WU S R, et al. Structural characterization and hypolipidemic activity of a polysaccharide PGEB-3H from the fruiting bodies ofBlume [J]. Procedia Eng, 2012, 37: 169–173. doi: 10.1016/j.proeng.2012.04.221.
[67] LIN P C, WU D T, XIE J, et al. Characterization and comparison of bioactive polysaccharides from the tubers of[J]. Food Hydrocoll, 2015, 43: 199–206. doi: 10.1016/j.foodhyd.2014.05.015.
[68] FANG Y K, NING A H, LI S, et al. Polysaccharides extracted fromhave antitumor propertiesand in an H22 mouse hepatoma ascites model[J]. Int J Mol Sci, 2018, 19(5): 1386. doi: 10.3390/ijms19051386.
[69] YANG H H, WU Y J, GAN C J, et al. Characterization and antioxidant activity of a novel polysaccharide fromLindl. [J]. Carbohydr Polym, 2016, 138: 327–334. doi: 10.1016/j.carbpol.2015.11. 071.
[70] LUO D H, WANG Z J, LI Z M, et al. Structure of an entangled heteropolysaccharide fromLindl. and its anti- oxidant and anti-cancer properties [J]. Int J Biol Macromol, 2018, 112: 921–928. doi: 10.1016/j.ijbiomac.2018.02.051.
[71] XIE J Z, ZOU L H, LUO X, et al. Structural characterization and immunomodulating activities of a novel polysaccharide from[J]. Int J Biol Macromol, 2018, 114: 520–528. doi: 10.1016/j. ijbiomac.2018.03.124.
[72] WANG H L, YEH K W, CHEN P R, et al. Isolation and characteri- zation of a pure mannan from(cv. Gower Ramsey) current pseudobulb during initial inflorescence development [J]. Biosci Biotechnol Biochem, 2006, 70(2): 551–553. doi: 10.1271/bbb.70.551.
[73] BARRETO D W, PARENTE J P. Chemical properties and biological activity of a polysaccharide from[J]. Carbohydr Polym, 2006, 64(2): 287–291. doi: 10.1016/j.carbpol.2005. 11.038.
[74] MENG L Z, LV G P, HU D J, et al. Effects of polysaccharides from different species of(Shihu) on macrophage function [J]. Molecules, 2013, 18(5): 5779–5791. doi: 10.3390/molecules18055779.
[75] HUANG Y P, HE T B, CUAN X D, et al. 1,4--d-glucomannan fromactivates NF-кBTLR4 to regulate the immune response [J]. Molecules, 2018, 23(10): 2658. doi: 10.3390/molecules 23102658.
[76] XIE S Z, LIU B, ZHANG D D, et al. Intestinal immunomodulating activity and structural characterization of a new polysaccharide from stems of[J]. Food Funct, 2016, 7(6): 2789– 2799. doi: 10.1039/C6FO00172F.
[77] LUO D D, QU C, LIN G S, et al. Character and laxative activity of polysaccharides isolated from[J]. J Funct Foods, 2017, 34: 106–117. doi: 10.1016/j.jff.2017.04.024.
[78] XIE S Z, LIU B, YE H Y, et al.polysac- charide regionally regulates intestinal mucosal barrier function and intestinal microbiota in mice [J]. Carbohydr Polym, 2019, 206: 149– 162. doi: 10.1016/j.carbpol.2018.11.002.
[79] PAN L H, WANG J, YE X Q, et al. Enzyme-assisted extraction of polysaccharides fromand its functional properties and immunomodulatory activity [J]. LWT-Food Sci Technol, 2015, 60(2): 1149–1154. doi: 10.1016/j.lwt.2014.10.004.
[80] LUO A X, FAN Y J. Immune stimulating activity of water-soluble polysaccharide fractions fromLindl. [J]. Afr J Pharm Pharmacol, 2011, 5(5): 625–631. doi: 10.5897/AJPP11.169.
[81] WANG Y, LIU J J, LI Q, et al. Two natural glucomannan polymers, from Konjac and, as bioactive materials for pharmaceutical applications [J]. Biotechnol Lett, 2015, 37(1): 1–8. doi: 10.1007/s 10529-014-1647-6.
[82] CHEN Z Y, CHENG L Z, HE Y C, et al. Extraction, characterization, utilization as wound dressing and drug delivery ofpolysaccharide: A review [J]. Int J Biol Macromol, 2018, 120: 2076– 2085. doi: 10.1016/j.ijbiomac.2018.09.028.
[83] CHEN J C, TIAN S, SHU X Y, et al. Extraction, characterization and immunological activity of polysaccharides from[J]. Int J Mol Sci, 2016, 17(7): 1011. doi: 10.3390/ijms17071011.
[84] FERREIRA S S, PASSOS C P, MADUREIRA P, et al. Structure- function relationships of immunostimulatory polysaccharides: A review [J]. Carbohydr Polym, 2015, 132: 378–396. doi: 10.1016/j.carbpol. 2015.05.079.
[85] LUO Q L, TANG Z H, ZHANG X F, et al. Chemical properties and antioxidant activity of a water-soluble polysaccharide from[J]. Int J Biol Macromol, 2016, 89: 219–227. doi: 10.1016/j. ijbiomac.2016.04.067.
[86] ZENG B Y, SU M H, CHEN Q X, et alAntioxidant and hepato- protective activities of polysaccharides from[J]. Carbohydr Polym, 2016, 153: 391–398. doi: 10.1016/j.carbpol.2016. 07.067.
[87] ZHAO Y P, SON Y O, KIM S S, et al. Antioxidant and anti-hypergly- cemic activity of polysaccharide isolated fromLindl. [J]. J Biochem Mol Biol, 2007, 40(5): 670–677. doi: 10.5483/ BMBRep.2007.40.5.670.
[88] PAN L H, LI X F, WANG M N, et al. Comparison of hypoglycemic and antioxidative effects of polysaccharides from four differentspecies [J]. Int J Biol Macromol, 2014, 64: 420–427. doi: 10.1016/j.ijbiomac.2013.12.024.
[89] FENG C Z, CAO L, LUO D, et al.polysaccharides atte- nuate cognitive impairment in senescence-accelerated mouse prone 8 micemodulation of microglial activation [J]. Brain Res, 2019, 1704: 1–10. doi: 10.1016/j.brainres.2018.09.030.
[90] ZHOU B H, TAN J, ZHANG C, et al. Neuroprotective effect of polysaccharides fromBlume against corticosterone- induced apoptosis in PC12 cellsinhibition of the endoplasmic reticulum stress-mediated pathway [J]. Mol Med Rep, 2018, 17(1): 1182–1190. doi: 10.3892/mmr.2017.7948.
[91] BURTON R A, FARROKHI N, BACIC A, et al. Plant cell wall polysaccharide biosynthesis: Real progress in the identification of participating genes [J]. Planta, 2005, 221(3): 309–312. doi: 10.1007/ s00425-005-1495-7.
[92] DOMOZYCH D S, CIANCIA M, FANGEL J U, et al. The cell walls of green algae: A journey through evolution and diversity [J]. Front Plant Sci, 2012, 3: 82. doi: 10.3389/fpls.2012.00082.
[93] HOCH G. Cell wall hemicelluloses as mobile carbon stores in non- reproductive plant tissues [J]. Funct Ecol, 2007, 21(5): 823–834. doi: 10.1111/j.1365-2435.2007.01305.x.
[94] FRANZ G. Metabolism of reserve polysaccharides in tubers ofL. [J]. Planta Med, 1979, 36(5): 68–73. doi: 10.1055/s-0028- 1097242.
[95] SCHELLER H V, ULVSKOV P. Hemicelluloses [J]. Annu Rev Plant Biol, 2010, 61: 263–289. doi: 10.1146/annurev-arplant-042809-112315.
[96] VOINICIUC C, DAMA M, GAWENDA N, et al. Mechanistic insights from plant heteromannan synthesis in yeast [J]. Proc Natl Acad Sci USA, 2019, 116(2): 522–527. doi: 10.1073/pnas.1814003116.
[97] CHUA M, HOCKING T J, CHAN K, et al. Temporal and spatial regulation of glucomannan deposition and mobilization in corms of(Araceae) [J]. Amer J Bot, 2013, 100(2): 337– 345. doi: 10.3732/ajb.1200547.
[98] CRANG R, LYONS-SOBASKI S, WISE R. Plant Anatomy: A Concept- based Approach to the Structure of Seed Plants [M]. Cham: Springer, 2018: 182. doi: 10.1007/978-3-319-77315-5.
[99] HE C M, WU K L, ZHANG J X, et al. Cytochemical localization of polysaccharides inand the involvement ofin the synthesis of mannan polysaccharides [J]. Front Plant Sci, 2017, 8: 173. doi: 10.3389/fpls.2017.00173.
[100]DOBLIN M S, PETTOLINO F, BACIC A. Plant cell walls: The skeleton of the plant world [J]. Funct Plant Biol, 2010, 37(5): 357– 381. doi: 10.1071/FP09279.
[101]LIEPMAN A H, WILKERSON C G, KEEGSTRA K. Expression of cellulose synthase-like () genes in insect cells reveals that CslA family members encode mannan synthases [J]. Proc Natl Acad Sci USA, 2005, 102(6): 2221–2226. doi: 10.1073/pnas.0409179102.
[102]VERBAN?I? J, LUNN J E, STITT M, et al. Carbon supply and the regulation of cell wall synthesis [J]. Mol Plant, 2018, 11(1): 75–94. doi: 10.1016/j.molp.2017.10.004.
[103]ORELLANA A, MORAGA C, ARAYA M, et al. Overview of nucleo- tide sugar transporter gene family functions across multiple species [J]. J Mol Biol, 2016, 428(16): 3150–3165. doi: 10.1016/j.jmb.2016. 05.021.
[104]BRETON C, ?NAJDROVá L, JEANNEAU C, et al. Structures and mechanisms of glycosyltransferases [J]. Glycobiology, 2006, 16(2): 29R–37R. doi: 10.1093/glycob/cwj016.
[105]DAVIS J, BRANDIZZI F, LIEPMAN A H, et al.mannan synthase CSLA9 and glucan synthase CSLC4 have opposite orien- tations in the golgi membrane [J]. Plant J, 2010, 64(6): 1028–1037. doi: 10.1111/j.1365-313X.2010.04392.x.
[106]BUCHANAN M, BURTON R A, DHUGGA K S, et al. Endo-(1,4)--glucanase gene families in the grasses: Temporal and spatial co- transcription of orthologous genes [J/OL]. BMC Plant Biol, 2012, 12: 235. doi: 10.1186/1471-2229-12-235.
[107]SANDHU A P S, RANDHAWA G S, DHUGGA K S. Plant cell wall matrix polysaccharide biosynthesis [J]. Mol Plant, 2009, 2(5): 840– 850. doi: 10.1093/mp/ssp056.
[108]GOUBET F, BARTON C J, MORTIMER J C, et al. Cell wall gluco- mannan inis synthesised by CSLA glycosyltransferases, and influences the progression of embryogenesis [J]. Plant J, 2009, 60(3): 527–538. doi: 10.1111/j.1365-313X.2009.03977.x.
[109]DHUGGA K S, BARREIRO R, WHITTEN B, et alGuar seed- mannan synthase is a member of the cellulose synthase super gene family [J]. Science, 2004, 303(5656): 363–366. doi: 10.1126/science. 1090908.
[110]GILLE S, CHENG K, SKINNER M E, et al. Deep sequencing of voodoo lily (): An approach to identify rele- vant genes involved in the synthesis of the hemicellulose glucomannan [J]. Planta, 2011, 234(3): 515–526. doi: 10.1007/s00425-011-1422-z.
[111]VERHERTBRUGGEN Y, YIN L, OIKAWA A, et al. Mannan synthase activity in the CSLD family [J]. Plant Sign Behav, 2011, 6(10): 1620– 1623. doi: 10.4161/psb.6.10.17989.
[112]WANG Y, MORTIMER J C, DAVIS J, et al. Identification of an additional protein involved in mannan biosynthesis [J]. Plant J, 2013, 73(1): 105–117. doi: 10.1111/tpj.12019.
[113]GAO F, CAO X F, SI J P, et al. Characterization of the alkaline/neutral invertase gene inand its relationship with polysaccharide accumulation [J/OL]. Genet Mol Res, 2016, 15(2): gmr. 15027647. doi: 10.4238/gmr.15027647.
[114]WAN R L, SUN J, HE T, et al. Cloning cDNA and functional charac- terization of UDP-glucose pyrophosphorylase in[J]. Biol Plant, 2016, 61(1): 147–154. doi: 10.1007/s10535-016-0645-z.
[115]HE C M, YU Z M, TEIXEIRA DA SILVA J A, et al.fromcontributes to mannose content of water- soluble polysaccharides and plays a role in salt stress response [J/OL]. Sci Rep, 2017, 7: 41010. doi: 10.1038/srep41010.
[116]HE C M, ZENG S J, TEIXEIRA da S J A, et al. Molecular cloning and functional analysis of the phosphomannomutase () gene fromand evidence for the involvement of an abiotic stress response during germination [J]. Protoplasma, 2017, 254(4): 1693–1704. doi: 10.1007/s00709-016-1044-1.
[117]YU Z M, HE C M, TEIXEIRA da S J A, et al. Molecular cloning and functional analysis ofrelated to water-soluble polysac- charides fromwith enhanced abiotic stress tolerance [J]. Plant Cell Tiss Org Cult, 2017, 131(3): 579–599. doi: 10. 1007/s11240-017-1308-2.
[118]HE C M, ZHANG J X, LIU X C, et al. Identification of genes involved in biosynthesis of mannan polysaccharides inby RNA-seq analysis [J]. Plant Mol Biol, 2015, 88(3): 219– 231. doi: 10.1007/s11103-015-0316-z.
[119]HE C M, WU K L, ZHANG J X, et al. Cytochemical localization of polysaccharides inand the involvement ofin the synthesis of mannan polysaccharides [J]. Front Plant Sci, 2017, 8: 173. doi: 10.3389/fpls.2017.00173.
[120]ZHANG G Q, XU Q, BIAN C, et al. TheLindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution [J]. Sci Rep, 2016, 6: 19029. doi: 10.1038/srep19029.
[121]ZHANG G Y, NIE S P, HUANG X J, et alStudy on-acetyl-glucomannan (Dendronan): 7. Improving effects on colonic health of mice [J]. J Agric Food Chem, 2016, 64(12): 2485– 2491. doi: 10.1021/acs.jafc.5b03117.
[122]TEIXEIRA da S J A, DOBRáNSZKI J, CARDOSO J C, et al. Methods for genetic transformation in[J]. Plant Cell Rep, 2016, 35 (3): 483–504. doi: 10.1007/s00299-015-1917-3.
[123]TEIXEIRA da S J A, JIN X H, DOBRáNSZKI J, et al. Advances inmolecular research: Applications in genetic variation, identification and breeding [J]. Mol Phylogenet Evol, 2016, 95: 196– 216. doi: 10.1016/j.ympev.2015.10.012.
[124]TEKIN?EN K K, GüNER A. Chemical composition and physico- chemical properties of tubera salep produced from some Orchidaceae species [J]. Food Chem, 2010, 121(2): 468–471. doi: 10.1016/j.food chem.2009.12.066.
[125]HARIJATI N, MASTUTI R, CHAIRIYAH N, et al. Effects of seeding material age, storage time, and tuber tissue zone on glucomannan content ofBlume [J]. Int J Plant Biol, 2018, 9(1): 34–38. doi: 10.4081/pb.2018.7626.
[126]SING H S, SINGH G, ARYA S K. Mannans: An overview of properties and application in food products [J]. Int J Biol Macromol, 2018, 119: 79–95. doi: 10.1016/j.ijbiomac.2018.07.130.
Advances in Active Polysaccharides in Medicinal Plants of Orchidaceae
ZHANG Ming-ze1,2, HE Chun-mei1, WANG Hao-bin1,2, YU Zhen-ming1, SI Can1,2, ZHAO Cong-hui1,2, DUAN Jun1*
(1. Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences,Guangzhou 510650, China; 2. University of Chinese Academy of Sciences,Beijing 100049, China)
Orchidaceae is the second largest family of flowering plants. There are 28 000 species in 736 genera identified, among them, 343 species in 82 genera are used as medicine, such as,,,, and so on. The main functional constituents in medicinal Orchidaceae plants are polysaccharides, stilbene derivatives, phenolics, terpenoids, alkaloids, flavones and sterols. Water-soluble polysaccharide in orchid plant are mainly composed of mannose and glucose, which is one of important pharmacological active constituents with many pharmacological functions, such as enhancing immunity, anti-tumor, anti-oxidation, lowering blood glucose and improving memory. The structure, pharmacological function and biosynthesis of active polysaccharide in medicinal Orchidaceae plants are reviewed, and some key problems were proposed for further research, which would provide references for further promoting the protection and rational exploitation of medicinal resources of Orchidaceae.
Orchidaceae; Polysaccharide; Pharmacological activity; Biosynthesis
10.11926/jtsb.4073
2019-04-02
2019-06-15
國家自然科學(xué)基金項(xiàng)目(31871547)資助
This work was supported by the National Natural Science Foundation of China (Grant No. 31871547).
張明澤(1986~ ), 男, 博士研究生, 研究方向?yàn)殍F皮石斛生物技術(shù)育種。E-mail: zhangmingze@scib.ac.cn
E-mail: duanj@scib.ac.cn