袁 野,馬益清,殷生晶,孫玉坤
飛輪電池不對稱勵磁卸載軸向懸浮混合磁軸承設計
袁 野,馬益清,殷生晶,孫玉坤
(江蘇大學電氣信息工程學院,鎮(zhèn)江 212013)
針對飛輪電池支承與傳動系統(tǒng)集成度低、能量損耗大等問題,該文設計了一種兼顧卸載和軸向懸浮的不對稱勵磁混合磁軸承,該磁軸承拓撲結(jié)構(gòu)由含永磁環(huán)的上定子、下定子及轉(zhuǎn)子組成。分析了不同工作模式下的運行機理;綜合考慮永磁退磁、最大偏心以及軸向擾動等因素對磁軸承卸載能力的影響,制定了磁軸承額定卸載力約束準則;結(jié)合永磁材料工作曲線,推導出卸載力數(shù)值模型以及退磁/最大偏心下軸向補償力數(shù)值模型并實現(xiàn)了磁軸承關(guān)鍵結(jié)構(gòu)參數(shù)設計。三維有限元分析表明,正常卸載力、退磁卸載力、偏心卸載力的有限元分析值與理論值誤差分別為4%、3.7%和5.8%,驗證了參數(shù)設計結(jié)果的準確性。樣機試驗結(jié)果表明,卸載力理論計算值與實測值的最大誤差約為4%,平均誤差為2%;軸向負載80 N時,轉(zhuǎn)子由上定子氣隙處保護磁軸承起浮,穩(wěn)定懸浮后軸向單邊位移約為25m,軸向負載120 N時,轉(zhuǎn)子由下定子氣隙處保護磁軸承起浮,穩(wěn)定懸浮后軸向單邊位移約為35m,所設計的磁軸承具有良好的卸載與懸浮性能。研究結(jié)果可為高集成、低損耗、高可靠性的飛輪電池系統(tǒng)設計提拱參考。
軸承;設計;模型;飛輪電池;不對稱勵磁;有限元
隨著高強度材料、現(xiàn)代控制理論、磁懸浮支承技術(shù)、電力電子技術(shù)以及制造加工工藝的發(fā)展,車載飛輪電池[1-4]受到國內(nèi)外眾多學者的關(guān)注。相比傳統(tǒng)蓄電池,飛輪電池具有高比功率、高比能量、大電流接受能力(再充電和再生制動時)、較長的使用時間、快速充放電等優(yōu)點[5-6]。將飛輪電池作為輔助動力單元,與蓄電池配合使用,可以有效提升電動汽車動力電池的性能。
日本學者提出將磁軸承技術(shù)與飛輪電機合二為一形成車載飛輪電池用磁懸浮飛輪電機的理論。常用飛輪電機包括異步電機[7-9]、永磁電機[10-11]、開關(guān)磁阻電機[12-16]等。飛輪轉(zhuǎn)子支承系統(tǒng)可采用超導軸承[17]、永磁軸承[18-19]、機械軸承和電磁軸承[20-22]。其中,單一的超導軸承或者永磁軸承無法實現(xiàn)五自由度穩(wěn)定控制;機械軸承空載損耗大,大幅度降低了車載飛輪電池的待機時間和能量存儲效率;電磁軸承需要通過控制繞組電流值來實現(xiàn)轉(zhuǎn)子懸浮,當外界擾動較大時,所需懸浮功耗也相應增大,加之車載飛輪電池處于散熱功能較差的真空裝置中,電磁軸承產(chǎn)生懸浮力所帶來溫升降低了系統(tǒng)的運行效率和可靠性。混合磁軸承[23-24]融合了主動磁軸承和永磁型磁軸承的優(yōu)勢,通過高性能永磁材料產(chǎn)生偏置磁場,電磁線圈僅產(chǎn)生控制磁場,具有功耗低、體積緊湊、易于控制等優(yōu)點。
根據(jù)磁軸承轉(zhuǎn)子中磁場極性分布的不同,混合磁軸承可分為異極性結(jié)構(gòu)[25]和同極性結(jié)構(gòu)[26]:異極性磁軸承轉(zhuǎn)子同一位置處的磁場極性交替變化,磁滯損耗高,且轉(zhuǎn)速越高損耗越大;對于同極性磁軸承,磁場的極性相同,磁滯損耗小,更適合應用于真空和高速等場合。根據(jù)磁軸承功能的不同,可分為徑向磁軸承[27],軸向磁軸承[28]和徑向-軸向混合磁軸承。此外,對于立式飛輪電池支承與傳動系統(tǒng),其系統(tǒng)除軸向懸浮磁軸承,徑向磁軸承和飛輪電機之外,需通過卸載軸承來實現(xiàn)軸系重量卸載[29-31]。江蘇大學孫玉坤團隊提出了一種單繞組磁懸浮飛輪電池結(jié)構(gòu),通過單繞組磁懸浮電機與多個磁懸浮軸承配合,實現(xiàn)了懸浮/發(fā)電/電動柔性一體化運行;朱熀秋團隊提出了一種新型磁懸浮異步飛輪電機系統(tǒng),并進行了魯棒強抗擾控制研究。上述飛輪系統(tǒng)雖然實現(xiàn)了轉(zhuǎn)子五自由度懸浮運行,但其卸載軸承和軸向懸浮軸承均為獨立部件,集成度有待進一步加強。
本文提出了一種不對稱勵磁卸載軸向懸浮混合磁軸承(unloading axial suspension hybrid magnetic bearing,UAHMB)。首先介紹了所提磁軸承的拓撲結(jié)構(gòu),并分析了不同工作模式下的運行機理;考慮永磁退磁、最大偏心以及軸向擾動等因素對磁軸承性能的影響,提出了磁軸承設計約束準則;推導出卸載力數(shù)值模型以及退磁/最大偏心下軸向補償力數(shù)值模型,在此基礎上,給出了關(guān)鍵參數(shù)設計理論,并通過三維有限元驗證了設計理論的正確性。最后結(jié)合一臺樣機對所設計的磁軸承進行了卸載能力與懸浮性能試驗。
UAHMB結(jié)構(gòu)如圖1所示。主要由上定子、下定子、永磁環(huán)、上定子繞組、下定子繞組及轉(zhuǎn)子組成。上定子由環(huán)形內(nèi)磁極、永磁環(huán)、環(huán)形外磁極和環(huán)形筒連接而成,下定子由環(huán)形內(nèi)磁極、環(huán)形外磁極和環(huán)形筒連接而成。
圖1 卸載軸向懸浮混合磁軸承結(jié)構(gòu)
上定子中永磁環(huán)(permanent magnet,PM)徑向充磁,且其軸向長度與環(huán)形筒軸向長度相等,下定子無永磁環(huán)。圓盤型轉(zhuǎn)子嵌套與轉(zhuǎn)軸上,轉(zhuǎn)子與上定子/下定子之間均留有工作氣隙;環(huán)形外磁極與環(huán)形內(nèi)磁極之間開有軸向的圓形槽,槽內(nèi)繞制有控制線圈。
UAHMB運行狀態(tài)可以分為:正常卸載、永磁退磁/卸載和軸向擾動下動態(tài)運行。在不同運行狀態(tài)下,其產(chǎn)生卸載力或軸向懸浮力的原理也相應改變。表1為磁軸承不同工作狀態(tài)下永磁體,上定子和下定子工作模式,圖2為不同工作模型下磁路圖。
表1 UAHMB 工作原理
注:fm為徑向充磁的永磁環(huán)所產(chǎn)生的磁通;fdm為永磁體退磁時氣隙磁通;fc為控制磁通;fuc為下定子繞組產(chǎn)生的磁通;fm*為氣隙磁通;N、S表示磁極。
圖2a為無擾動時UAHMB正常卸載磁路圖。徑向充磁的永磁環(huán)所產(chǎn)生的磁通m經(jīng)過上定子的外磁極、氣隙、轉(zhuǎn)子、內(nèi)磁極形成閉合回路,形成沿軸系向上的懸浮力,實現(xiàn)卸載功能。
圖2b為無擾動下永磁體退磁時UAHMB磁路圖。dm為永磁體退磁時氣隙磁通,與上定子繞組產(chǎn)生控制磁通c相疊加,實現(xiàn)轉(zhuǎn)子軸向卸載。
圖2c為轉(zhuǎn)子向下偏心時磁路圖。氣隙磁通為m*,與上定子繞組產(chǎn)生磁通c相疊加,實現(xiàn)轉(zhuǎn)子軸向卸載。
圖2d為轉(zhuǎn)子向上偏心時磁路圖。此時氣隙磁通為m*,可通過控制上定子繞組磁通方向,形成合成磁通(m*?uc);若此時上定子合成磁通仍大于軸系向下合力,則導通下定子繞組,產(chǎn)生磁通uc,形成沿軸系向下的合力。
UAHMB的關(guān)鍵結(jié)構(gòu)參數(shù)如圖3所示。
設上定子、下定子和轉(zhuǎn)子均選用同類型的軟磁材料,且該軟磁材料的磁化曲線的線性區(qū)間為[min,max];靜態(tài)下,永磁體產(chǎn)生的的氣隙磁通密度為pm,永磁體退磁時產(chǎn)生的氣隙磁通密度為pm*;軸向負載加大或轉(zhuǎn)子向下偏心時,上定子繞組所產(chǎn)生的控制氣隙磁通密度為uc,其最大值為ucmax;轉(zhuǎn)子向上偏心時,下定子繞組產(chǎn)生的控制氣隙磁通密度為dc,其最大值為dcmax。一般有:
考慮永磁體高溫退磁以及轉(zhuǎn)子軸向偏心,對UAHMB不同模式下產(chǎn)生的軸向力做如下定義:
1)永磁體產(chǎn)生的卸載力為pm*,轉(zhuǎn)子無偏心時(靜態(tài))卸載力為pm0,向下最大偏心時卸載力為pmin,向上最大偏心時卸載力為pmax。
注:Du1為上定子內(nèi)極內(nèi)徑,Du2為內(nèi)極外徑;Du3表示外極內(nèi)徑,Du4為外極外徑。huz為軸向長度,Dd1為下定子內(nèi)極內(nèi)徑;Dd2為內(nèi)極外徑,Dd3為外極內(nèi)徑。Dd4為外極外徑,hdz為軸向長度;gu1為上定子內(nèi)極與轉(zhuǎn)子之間氣隙,gu2為上定子外極與轉(zhuǎn)子之間氣隙。gd1為下定子內(nèi)極與轉(zhuǎn)子之間氣隙,gd2為下定子外極與轉(zhuǎn)子之間氣隙;Lpm為永磁環(huán)的充磁長度,hz為永磁環(huán)軸向高度。D2pm為永磁環(huán)內(nèi)徑,D3pm為永磁環(huán)外徑,mm。
2)永磁體高溫退磁時,卸載力為dpm。
綜上,UAHMB設計準則應滿足如下關(guān)系:
UAHMB處于靜態(tài)卸載時,卸載力為
定義mc為永磁體工作磁動勢,有
定義u1為氣隙1處的氣隙磁阻,u2為氣隙2處的氣隙磁阻,u1為上定子內(nèi)極氣隙1處的截面積,u2為上定子外極氣隙2處的截面積,可得
其中pm為永磁體充磁厚度,pm為永磁體工作點磁場強度。永磁體漏磁系數(shù)可表示為
其中pmu為環(huán)形永磁體上端部漏磁磁阻,pmd為永磁體下端部漏磁磁阻。
永磁體高溫退磁和沿軸系向下偏心均會導致轉(zhuǎn)子懸浮力發(fā)生改變。
本小節(jié)著重分析釹鐵硼永磁材料的熱穩(wěn)定性對UAHMB卸載力的影響,永磁體-曲線受溫度影響變化如圖4所示[32]。
注:Br為永磁體常溫下剩余磁通密度;Hc為矯頑力;Bpm為永磁體工作點磁通密度;hpm為永磁體工作點磁場強度;Br*為永磁體退磁時剩余磁通密度;Hc*為永磁體退磁時矯頑力,Bpm*為永磁體工作點磁通密度,hpm*永磁體退磁時工作點磁場強度,a為負載曲線與h軸夾角。
由圖4a有
則永磁體退磁模式下卸載力數(shù)值解析模型為
式中為永磁體工作溫度,0為室內(nèi)溫度,K;t為永磁體的溫度系數(shù),%K。
永磁環(huán)通過上定子磁路產(chǎn)生的卸載力為
根據(jù)圖2d所示關(guān)系,UAHMB關(guān)于軸向氣隙的卸載力數(shù)值解析模型為
其中0為轉(zhuǎn)子在平衡位置時氣隙長度,max為最大軸向偏心長度,mm。
2.4.3 上定子繞組計算
上定子繞組產(chǎn)生的最大軸向懸浮力umax為
定義uu為上定子繞組最大安匝數(shù),得上定子繞組參數(shù)
約束條件為
根據(jù)圖2d給出的運行機理以及式(2)設計準則,當沿軸系向上最大擾動力df=pm時,下定子繞組需提供的軸向力dc應滿足
得到以氣隙長度為自變量的上定子繞組在轉(zhuǎn)子沿軸系向上偏心時的軸向力表達式為
同樣,永磁體在轉(zhuǎn)子沿軸系向上偏心時以氣隙長度為自變量的軸向力表達式為
進一步的,有
定義0dcmax為轉(zhuǎn)子無偏心,則下定子繞組參數(shù)可表示為
約束條件為
設計目標:氣隙偏置磁通密度0.6 T,卸載力100 N,氣隙0.5 mm。永磁體剩余磁通密度1.2 T,矯頑力850 kA/m,轉(zhuǎn)子最大偏心為0.2 mm。根據(jù)前述理論分析和設計準則,各結(jié)構(gòu)參數(shù)及設計結(jié)果如表2所示。
表2 UAHMB的關(guān)鍵結(jié)構(gòu)參數(shù)
結(jié)合UAHMB三維有限元模型,分析UAHMB不同模式下電磁特性,驗證本文給出的設計方法的正確性與合理性。具體驗證指標包括:工作磁通密度,靜態(tài)卸載力,退磁軸向力及相應氣隙磁通密度,最大偏心處卸載力及相應氣隙磁通密度,上定子繞組軸向力,下定子繞組軸向力及氣隙磁通密度等。
3.1.1 永磁體與上定子參數(shù)設計驗證
圖5為永磁體正常卸載時,上定子磁通密度以及氣隙磁通密度分布。由圖可知,當UAHMB正常運行于卸載模式時,上定子氣隙磁通密度平均值約為0.605 T,與理論值pm=0.6 T相的相對誤差為0.08%,符合設計要求,卸載力pm為104 N,與理論值100 N的相對誤差為4%,在允許誤差范圍之內(nèi)。
圖5 卸載模式時上定子磁通密度與氣隙磁通密度
圖6為永磁體退磁時上定子磁通密度以及氣隙磁通密度分布。如圖6所示,當永磁體退磁時,上定子氣隙磁通密度平均值約為0.53 T,與理論值dpm=0.54 T相的相對誤差為1.85%,卸載力為78 N,與理論值dpm=81 N的相對誤差為3.7%,均滿足設計要求。
圖6 退磁時上定子磁通密度與氣隙磁通密度
圖7為轉(zhuǎn)子軸系向下最大偏心時上定子磁通密度以及氣隙磁通密度分布。如圖7所示,當軸系向下最大偏心0.2 mm時,此時氣隙為0.7 mm,通過有限元分析以及傅里葉變化得到上定子極氣隙磁通密度基波平均值約為0.515 T,與式(2)計算所得pmin理論值0.5 T相符合;此外,有限元分析得卸載力pmin為65 N,與理論值69 N相對誤差為5.8%,在允許誤差范圍之內(nèi)。
圖7 向下最大偏心時上定子磁通密度與氣隙磁通密度
圖8給出了軸系向下最大偏心時,上定子繞組最大繞組磁動勢模式下的磁通密度圖。
圖8 上定子繞組最大安匝數(shù)下磁通密度
由圖8可知,當上定子氣隙為0.7 mm,上定子繞組工作與最大磁動勢條件下時,通過有限元分析以及傅里葉變化得到上定子氣隙合成磁通密度(ucmax+pm)為0.65 T,滿足設計約束條件;此外,上定子繞組在軸向向下最大偏心時,理論上上定子繞組在最大磁動勢下應提供不小于31 N軸向力,軸向合力不小于100 N,有限元分析計算得此時軸向力合力為110 N,滿足設計要求。
3.1.2 下定子參數(shù)設計驗證
當轉(zhuǎn)子沿軸系向上偏心時,可通過控制上定子繞組磁動勢與下定子繞組磁動勢,形成沿軸系向下的合力。因此,下定子最大抗軸向擾動力100 N,即df=100 N。圖9為轉(zhuǎn)子在平衡位置與軸系向上最大偏心區(qū)間內(nèi),永磁卸載力的數(shù)值變化以及上定子繞組最大磁動勢下軸向力的數(shù)值變化。
由圖9a可知,當轉(zhuǎn)子從平衡位置沿軸系向上偏心時,永磁體提供的懸浮力遞增,0.3 mm氣隙處最大值約為160 N,0.5 mm氣隙處最小值約為100 N;上定子繞組最大磁動勢下,可提供的軸向力也隨著氣隙的變小而遞增,0.5 mm氣隙處最小值約為24 N,0.3 mm氣隙處最大值約為78 N。由圖9b可知,永磁體卸載力與上定子軸向力差值最約為84 N,對應上定子氣隙0.3~0.35 mm,下定子氣隙0.7~0.65 mm。因此,下定子繞組需提供的軸向力應大于84 N,本文取100 N。
圖10為下定子在氣隙為0.7,0.65,0.5 mm的磁通密度以及相應的氣隙磁通密度分布。如圖10a所示,當下定子氣隙為0.7 mm,繞組提供440 AT磁動勢式,有限元分析得到下定子氣隙磁通密度基波平均值約為0.41 T,理論值1dcmax為0.4 T,此時軸向力100 N,滿足設計要求。
a. 永磁卸載力與上定子繞組軸向力a. PM unloading force and upper stator axial forceb. 永磁體卸載力與上定子軸向力差值b. Difference between PM unloading force and upper stator axial force
注:gd1為下定子氣隙,NdId為磁動勢。 Note: gd1 is air gap, NdId is magneto-dynamic potential.
如圖10b所示當氣隙為0.65 mm,下定子繞組提供360 AT磁動勢時,定子氣隙磁通密度基波平均值約為0.42 T,此時有限元分析得軸向力100 N;如圖10c所示,當氣隙為0.5 mm,下定子繞組提供420 AT磁動勢時,下定子氣隙磁通密度基波平均值約為0.535 T,小于氣隙磁通密度飽和限定值1.2 T,滿足設計要求。
為了進一步驗證理論分析的正確性,根據(jù)理論設計結(jié)果制造了一臺樣機。圖11為樣機實物,定子與轉(zhuǎn)子采用電工純鐵,永磁體材料為釹鐵硼,徑向四自由度采用機械結(jié)構(gòu)限制。
圖11 樣機
通過調(diào)節(jié)螺母實現(xiàn)軸向上定子氣隙與下定子氣隙變化,變化值通過電渦流位移傳感器檢測,進而測量出卸載力大?。煌ㄟ^改變軸向負載重量,測得UAHMB穩(wěn)態(tài)懸浮位移波形。圖12為不同氣隙值下,卸載力理論計算值與實測值。兩者數(shù)值最大誤差約為4%,平均誤差為2%。驗證了UAHMB卸載力設計的有效性。
圖12 卸載力實測值
圖13為軸向負載80 和120 N時,轉(zhuǎn)子位移的波形圖。由圖13a可知,軸向負載80 N時,轉(zhuǎn)子由上定子氣隙處保護磁軸承起浮,穩(wěn)定懸浮后軸向單邊位移約為25m;由圖13b可知,軸向負載120 N時,轉(zhuǎn)子由下定子氣隙處保護磁軸承起浮,穩(wěn)定懸浮后軸向單邊位移約為35m;可實現(xiàn)軸向穩(wěn)定懸浮。
圖13 不同負載的轉(zhuǎn)子軸向位移
為提高飛輪電池的集成性與系統(tǒng)效率,提出了一種卸載軸向懸浮混合磁軸承并給出其關(guān)鍵參數(shù)設計理論與方法。得到以下結(jié)論:
1)所提可以運行在多種工作模式:卸載模式,軸向負載加大/永磁退磁模式,上擾動/下擾動自平衡控制模式,實現(xiàn)了卸載與軸向懸浮一體化。
2)推導出永磁卸載力關(guān)鍵轉(zhuǎn)子偏心位置的數(shù)值解析模型,推導出永磁體退磁模式下卸載力數(shù)值解析模型以及繞組磁動勢產(chǎn)生的軸向力數(shù)學模型。通過有限元分析驗證了理論計算的正確性。
3)結(jié)合磁軸承自身運行機理,制定了設計準則,給出了關(guān)鍵結(jié)構(gòu)參數(shù)設計方法以及約束條件。通過有限元與實驗驗證了設計方法合理性。
4)本文給出的卸載力/軸向力數(shù)學模型以及參數(shù)設計方法,可以推廣至不同類型的混合磁軸承參數(shù)設計中,為磁軸承懸浮力建模以及控制提供了理論基礎。
[1] Peng C, Sun J, Song X, et al. Frequency-varying current harmonics for active magnetic bearing via multiple resonant controllers[J]. IEEE Transactions on Industrial Electronics, 2017, 64(1): 517-526.
[2] Yuan Ye, Sun Yukun, Huang Yonghong. Radial force dynamic current compensation method of single winding bearingless flywheel motor[J]. IET Power Electronics, 2015, 8(7): 1224-1229.
[3] Itani K, De Bernardinis A, Khatir Z, et al. Integration of different modules of an electric vehicle powered by a battery- flywheel storage system during traction operation[C]// Multidisciplinary Conference on Engineering Technology (IMCET), IEEE International. IEEE, 2016: 126-131.
[4] Yuan Ye, Sun Yukun, Huang Yonghong. Accurate mathematical model of bearingless flywheel motor based on Maxwell tensor method[J]. IET Electronics Letters, 2016, 52(11): 950-951.
[5] Yuan Ye, Sun Yukun, Huang Yonghong. Design and analysis of bearingless flywheel motor specially for flywheel energy storage[J]. IET Electronics Letters, 2016, 52(1): 66-68.
[6] Faraji F, Majazi A, Al-Haddad K. A comprehensive review of flywheel energy storage system technology[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 477-490.
[7] Ooshima M, Kitazawa S, Chiba A, et al. Design and analyses of a coreless-stator-type bearingless motor/generator for clean energy generation and storage systems[J]. IEEE Transactions on Magnetics, 2006, 42(10): 3461-3463.
[8] Ooshima M, Kobayashi S, Tanaka H. Magnetic suspension performance of a bearingless motor/generator for flywheel energy storage systems[C]//Power and Energy Society General Meeting, 2010 IEEE: 1—4.
[9] Severson E, Nilssen R, Undeland T, et al. Suspension force model for bearingless ac homopolar machines designed for flywheel energy storage[C]//GCC Conference and Exhibition (GCC), 2013 7th IEEE. IEEE, 2013: 274-279.
[10] Wang G, Wang P, Wang X. Analyze of permanent magnet loss of high speed permanent magnet synchronous motor for flywheel energy storage system[C]//Applied Superconductivity and Electromagnetic Devices (ASEMD), 2015 IEEE International Conference on. IEEE, 2015: 549-550.
[11] Liu K, Fu X, Lin M, et al. AC copper losses analysis of the ironless brushless DC motor used in a flywheel energy storage system[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(7): 1-5.
[12] Cardenas R, Pena R, Perez M, et al. Power smoothing using a switched reluctance machine driving a flywheel[J]. IEEE Transactions on Energy Conversion, 2006, 21(1): 294-295.
[13] Yuan Ye, Sun Yukun, Huang Yonghong. Radial force dynamic current compensation method of single winding bearingless flywheel motor[J]. IET Power Electronics, 2015, 8(7): 1224-1229.
[14] Yuan Ye, Sun Yukun, Huang Yonghong. Accurate mathematical model of bearingless flywheel motor based on Maxwell tensor method[J]. Electronics Letters, 2016, 52(11): 950-951.
[15] Yuan Ye, Sun Yukun, Huang Yonghong. Design and analysis of bearingless flywheel motor specially for flywheel energy storage[J]. Electronics Letters, 2016, 52(1): 66-68.
[16] Yuan Ye, Sun Yukun, Xiang Qianwen, et al. Model-free adaptive control for three degree-of-freedom hybrid magnetic bearings[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(12): 2035-2045.
[17] Kohari Z, Nadudvari Z, Szlama L, et al. Test results of a compact disk-type motor/generator unit with superconducting bearings for flywheel energy storage systems with ultra-low idling losses[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 1497-1501.
[18] Bachovchin K D, Hoburg J F, Post R F. Stable levitation of a passive magnetic bearing[J]. Magnetics, IEEE Transactions on, 2013, 49(1): 609-617.
[19] 袁野,孫玉坤,張維煜,等. 新型飛輪儲能備用軸承磁力數(shù)值分析[J]. 電機與控制學報,2016,20(7):95-101.
Yuan Ye Sun Yukun Zhang Weiyu. et al. Magnetic force numerical analysis of auxiliary bearings in optimized flywheel storage system[J] Electric Machines and Control, 2016, 20(7): 95-101. (in Chinese with English abstract)
[20] Bai J, Zhang X, Wang L. A flywheel energy storage system with active magnetic bearings[J]. Energy Procedia, 2012, 16: 1124-1128.
[21] Pichot M A, Kajs J P, Murphy B R, et al. Active magnetic bearings for energy storage systems for combat vehicles[J]. Magnetics, IEEE Transactions on, 2001, 37(1): 318-323.
[22] Su Z, Wang D, Chen J, et al. Improving operational performance of magnetically suspended flywheel with pm-biased magnetic bearings using adaptive resonant controller and nonlinear compensation method[J]. IEEE Transactions on Magnetics, 2016, 52(7): 1-4.
[23] Peng C, Sun J, Song X, et al. Frequency-varying current harmonics for active magnetic bearing via multiple resonant controllers[J]. IEEE Transactions on Industrial Electronics, 2017, 64(1): 517-526.
[24] Yu Zhiqiang, Zhang Guomin, Qiu Qingquan, et al. Development status of magnetic levitation flywheel energy storage system based on high-temperature superconductor[J]. Transactions of China Electrotechnical Society, 2013, 28(12): 109-118.
[25] 袁野,孫玉坤,黃永紅,等. 磁軸承變飽和柔性變結(jié)構(gòu)控制[J]. 控制理論與應用,2015,32(12):1627-1634.
Yuan Ye, Sun Yukun, Huang Yonghong, et al. Variable saturation soft variable structure control of magnetic bearing[J]. Control Theory and Applications, 2015, 32(12): 1627-1634. (in Chinese with English abstract)
[26] 房建成,孫津濟. 一種磁懸浮飛輪用新型永磁偏置徑向磁軸承[J]. 北京航空航天大學學報,2006(11):1304-1307.
Fang Jiancheng, Sun Jingji. New permanent magnet biased radial magnetic bearing in magnetic suspending flywheel application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006(11): 1304-1307. (in Chinese with English abstract)
[27] 鞠金濤,朱熀秋,張維煜. 逆變器驅(qū)動對三極徑向–軸向混合磁軸承徑向承載力的影響[J].中國電機工程學報, 2016, 36(11): 3085-3091.
Ju Jintao, Zhu Huangqiu, Zhang Weiyu. The effects of inverter-fed on radial carrying capacity of three-pole radial-axial hybrid magnetic bearings[J]. Proceedings of the Chinese Society for Electrical Engineering, 2016, 36(11): 3085-3091. (in Chinese with English abstract)
[28] 吳磊濤,王東,蘇振中,等. 考慮定子外殼漏磁的同極式永磁偏置徑向磁軸承磁路模型[J]. 電工技術(shù)學報,2017,32(11):118-125.
Wu Leitao, Wang Dong, Su Zhenzhong, et al. Leakage magnetic field and precise magnetic circuit model of the permanent magnetic biased radial magnetic bearing[J]. Transactions of China Electrotechnical Society, 2017, 32(11): 118-125. (in Chinese with English abstract)
[29] 王抗,王東,吳磊濤,等. 基于解析模型的多氣隙永磁偏置軸向磁軸承電磁優(yōu)化設計[J]. 電機與控制應用,2016,43(3):1-7.
Wang Kang, Wang Dong, Wu Leitao, et al. Optimal design of permanent magnet biased axial magnetic bearing with multiple air gaps based on analytical model[J]. Motor and Control Application, 2016, 43(3): 1-7. (in Chinese with English abstract)
[30] 李奕良,戴興建,張小章. 儲能飛輪永磁卸載設計及試驗[J]. 清華大學學報:自然科學版,2008,48(8):1268-1271.
Li Yiliang, Dai Xingjian, Zhang Xiaozhang. Design and testing of a permanent magnetic bearing for an energy storage flywheel[J]. Journal of Tsinghua University: Natural Science Edition, 2008, 48(8): 1268-1271. (in Chinese with English abstract)
[31] 田錄林,李言,田琦,等. 軸向磁化的雙環(huán)永磁軸承軸向磁力研究[J]. 中國電機工程學報,2007,27(36):41-45.
Tian Lulin, Li Yan, Tian Qi, et al. Research on the axial magnetic force of axially magnetized bi-annular-shaped permanent magnetic bearings[J]. Proceedings of The Chinese Society for Electrical Engineering, 2007, 27(36): 41-45. (in Chinese with English abstract)
[32] 林巖. 釹鐵硼永磁電機防高溫失磁技術(shù)的研究[D]. 沈陽:沈陽工業(yè)大學, 2006.
Lin Yan. Research on Technology of Demagnetization Proof of Temperature Permanent Magnet Machine on High Technology[D]. Shenyang: Shenyang University of Technology, 2006. (in Chinese with English abstract)
Design of axially suspended hybrid magnetic bearing with asymmetric excitation and unloading for flywheel battery
Yuan Ye, Ma Yiqing, Yin Shengjing, Sun Yukun
(,,212013,)
Bearingless flywheel battery has many advantages, such as high specific power, high specific energy, high current receiving capacity (recharge and regenerative braking), long service life, fast charge and discharge, and it is considered to be the most competitive auxiliary batteries for electric vehicle. However, there are some problems in bearingless flywheel motors and some magnetic bearings in bearingless flywheel battery systems, such as low integration, large energy loss and low reliability. Aiming at above problems, an axially suspended hybrid magnetic bearing with asymmetric excitation and unloading which consists a lower stator, a upper stator with permanent magnet ring and a rotor is proposed in this paper. First of all, the mechanical structure of the axially suspended hybrid magnetic bearing with asymmetric excitation and unloading is introduced, and the different operating mechanisms under the conditions of unloading, demagnetization, down disturbance and upward disturbance are discussed. The design criteria is set according to the operating mechanisms under different working conditions. According to the design criteria and the working curve of rare earth permanent magnet materials, the numerical model of unloading force and the axial compensation under demagnetization/maximum eccentricity are deduced. Then, the structural parameters of upper stator and permanent magnet are designed, and the windings of the upper stator and lower stator are calculated considering the constraint conditions of demagnetization and eccentricity. Based on this, three-dimensional finite element model is established. Simulation results show that the flux density is about 0.605 T between upper stator and air gap under unloading mode which verifies the validity of the design method for permanent magnet and upper stator parameters. The suspension force of finite analysis is about 100 N and the relative error with theoretical suspension force value (104 N) is 4%. When working under the demagnetization mode, the flux density is about 0.53 T between upper stator and air gap which approximately equals to the theoretical value(0.54 T). The suspension force of finite analysis is about 78 N and the relative error with the theoretical suspension force value(81N) is 3.7%. When the maximum downward eccentricity is 0.2 mm, the flux density is 0.515 T which approximately equals to the 0.5 T of theoretical value, the suspension force of finite analysis is about 65 N and the relative error with the theoretical suspension force value(69 N) is 5.8%. When the maximum upward eccentricity is 0.2 mm, the flux density is 0.65 T and the suspension force of finite analysis is about 110 N. Finally, in order to further verify the correctness of theoretical analysis, a prototype is manufactured according to the design results. The results of prototype test show that the maximum error between theoretical calculation value and measured value of unloading force is about 4%, and the average error is 2%, the rotor radial displacement is about 25m when the axial load is 80 N, the rotor radial displacement is about 35m when the axial load is 120 N. The results indicate the proposed magnetic bearing has a good unloading and suspension performance of the magnetic bearing, which provides a new idea and method for the design of high integration, low loss and high reliability flywheel battery system.
bearings; design; models; flywheel battery; asymmetric excitation; finite element
10.11975/j.issn.1002-6819.2019.15.008
TG156
A
1002-6819(2019)-15-0054-09
2018-12-27
2019-06-17
國家自然科學基金項目(51707082,51877101);江蘇省自然科學基金項目(BK20170546,BK20150524);江蘇高校優(yōu)勢學科建設工程資助項目
袁 野,博士,講師,研究方向為飛輪儲能系統(tǒng)無軸承化設計與優(yōu)化,先進復合儲能系統(tǒng)能量管理。Email:1000050003@ujs.edu.cn
袁 野,馬益清,殷生晶,孫玉坤. 飛輪電池不對稱勵磁卸載軸向懸浮混合磁軸承設計[J]. 農(nóng)業(yè)工程學報,2019,35(15):54-62. doi:10.11975/j.issn.1002-6819.2019.15.008 http://www.tcsae.org
Yuan Ye, Ma Yiqing, Yin Shengjing, Sun Yukun. Design of axially suspended hybrid magnetic bearing with asymmetric excitation and unloading for flywheel battery[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(15): 54-62. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.15.008 http://www.tcsae.org