趙思涵 顏彥 陳志晟 商?!√稃惒ā『鷤?/p>
摘要:【目的】解析木薯脫落酸(ABA)受體PYR/PYL/RCARs家族基因(MePYL13)在木薯塊根采后生理性變質(zhì)(PPD)過程中的功能作用,為后續(xù)探索ABA信號通路在木薯PPD中的功能及作物抗逆育種打下基礎(chǔ)?!痉椒ā繌哪臼砥贩NSC8中克隆MePYL13基因,應用生物信息學分析方法對其編碼蛋白的理化性質(zhì)、親疏水性、保守結(jié)構(gòu)域及二、三級結(jié)構(gòu)等進行預測,對基因上游啟動子進行元件分析,通過亞細胞定位觀察MePYL13蛋白在植物細胞中的定位情況,并利用實時熒光定量PCR檢測MePYL13基因在木薯PPD過程中的相對表達量。【結(jié)果】克隆獲得的MePYL13基因編碼區(qū)(CDS)長度663 bp,編碼220個氨基酸,蛋白分子量23.957 kD,理論等電點(Ip)為6.74。MePYL13蛋白與巴西橡膠樹(XP_021654464.1)PYL家族蛋白的氨基酸序列同源性最高,為91.55%,表明MePYL13蛋白氨基酸序列具有高度保守性。從MePYL13基因啟動子鑒定獲得與非生物脅迫逆境相關(guān)的響應元件,包括厭氧誘導元件(ARE,AAACCA)、光響應元件(ATCT-motif,AATCTAATCC)、干旱MYB元件(MBS,TAACTG)及ABA應答元件(ABRE,AAACAGA)和分生組織表達相關(guān)元件(CAT-box,GCCACT)等;MePYL13蛋白在木薯細胞的細胞核和細胞質(zhì)上均有表達。隨著PPD進程的推移,MePYL13基因相對表達量整體上呈上升趨勢,至PPD后期(48 h)其相對表達量是0 h時(PPD前)的16倍,即MePYL13基因受木薯塊根PPD的顯著誘導?!窘Y(jié)論】MePYL13基因是PYR/PYL/RCARs家族成員,可能在木薯塊根PPD過程中發(fā)揮正向調(diào)控作用,為培育木薯PPD改良品種提供了潛在基因資源。
關(guān)鍵詞: 木薯;PYR/PYL/RCARs家族;MePYL13基因;生理性變質(zhì)現(xiàn)象(PPD);表達特征
中圖分類號: S533.01? ? ? ? ? ? ? ? ? ? ? 文獻標志碼: A 文章編號:2095-1191(2019)12-2629-09
Cloning and expression analysis of MePYL13 gene in cassava
ZHAO Si-han1,2, YAN Yan2, CHEN Zhi-sheng1,2, SHANG Sang1, TIAN Li-bo1*, HU Wei2*
(1 College of Horticulture, Hainan University, Haikou? 570228, China; 2Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou? 571101, China)
Abstract:【Objective】In this paper, abscisic acid(ABA) receptor PYR/PYL/RCARs family member(MePYL13) was cloned from cassava genome and its biological information and the expression characteristics in the process of post-harvest physiological deterioration(PPD) in cassava were analyzed, which provided a theoretical basis for further exploring the regulatory mechanism of ABA signaling pathway in cassava PPD and crop breeding for stress tolerance. 【Method】MePYL13 was cloned from cassava variety SC8. The physicochemical properties, hydrophilic/hydrophobic, conserved domain, secondary and tertiary structures of the protein encoded by the gene were predicted, the elements in MePYL13 gene promoter were analyzed through bioinformatics analysis. Subcellular localization of MePYL13 protein was also identified. Besides, the expression pattern of MePYL13 in cassava PPD process was investigated by real-time fluorescence quantitative PCR. 【Result】The coding regions(CDS) of this gene was 663 bp in length and encoded 220 amino acids, the protein molecular weight was 23.957 kD, and the theoretical isoelectric point(Ip) was 6.74. Multiple sequence alignment indicated that the similarity of MePYL13 protein with Hevea brasiliensis(XP_021654464.1) was the highest(91.55%). Amino acid sequence of MePYL13 protein was highly conservative. Several elements related to abiotic stress response were identified from the promoter of MePYL13, including anaerobic induction elements(ARE, AAACCA), light response elements(ATCT-motif,AATCTAATCC), drought MYB element(MBS, TAACTG), ABA response elements(ABRE, AAACAGA) and meristem expression-related elements(CAT-box, GCCACT), and so on. Subcellular location study indicated that MePYL13 protein was distributed in the nucleus and cytoplasm. Totally, MePYL13 was up-regulated at all the three time points in storage roots after harvested, and its relative expression level at 48 h was 16 times of that at 0 h(before PPD). Thus, MePYL13 was significantly increased in PPD process. 【Conclusion】 It is inferred that MePYL13 is a member of the PYR/PYL/RCARs family and may play a positive role in regulating PPD of cassava storage roots. This study is beneficial in providing potential genetic resources for cultivating improved cassava PPD varieties.
Key words: cassava; PYR/PYL/RCARs family; MePYL13 gene; post-harvest physiological deterioration(PPD); expression characters
0 引言
【研究意義】木薯(Manihot esculenta)作為世界七大作物之一(方佳等,2010),全球現(xiàn)有90多個國家栽培種植,熱帶地區(qū)近8億人口將木薯塊根作為主要糧食(Liu et al.,2017)。在我國,木薯主要種植在華南地區(qū),因具有產(chǎn)量高、適應性強、耐貧瘠和干旱土壤、少有病蟲害等優(yōu)點,其產(chǎn)業(yè)發(fā)展?jié)摿薮?,目前在食品、飼料及工業(yè)等領(lǐng)域均有開發(fā)利用(Fermont et al.,2009;Burns et al.,2010;El-Sharkawy,2012;Xu et al.,2013);但木薯塊根極不耐儲藏,采后2~3 d即出現(xiàn)生理性變質(zhì)現(xiàn)象(Post-harvest physiological deterioration,PPD)而造成巨大經(jīng)濟損失,嚴重制約木薯產(chǎn)業(yè)的可持續(xù)發(fā)展(趙平娟等,2013;Uarrota and Maraschin,2015)。活性氧積累是PPD發(fā)生的根本原因之一,有效激活活性氧清除系統(tǒng),控制木薯采后塊根活性氧水平,是延緩木薯PPD的有效手段(Reilly et al.,2004,2007;Owiti et al.,2011;Vanderschuren et al.,2014)。脫落酸(Abscisic acid,ABA)除了參與種子萌發(fā)(Feng et al.,2015)、植株發(fā)育(Jia et al.,2016)、果實成熟(Mou et al.,2016;Tijero et al.,2016)及其他生長發(fā)育過程的調(diào)控(Li et al.,2016;顏彥等,2018)外,還廣泛參與植物應答多種非生物脅迫的信號轉(zhuǎn)導途徑(Umezawa et al.,2010;Boneh et al.,2012;Chen et al.,2018;Kuromori et al.,2018),如干旱、低溫、高鹽和氧化脅迫等。PYR/PYL/RCARs蛋白為植物中功能性ABA受體,屬于配體結(jié)合蛋白的START(Star-related lipid-transfer)超家族,在ABA介導的多種非生物脅迫應答中發(fā)揮重要作用(Ma et al.,2009;Park et al.,2009)。因此,克隆木薯PYL13基因(MePYL13)并分析其表達特征,可為闡明MePYL13基因參與調(diào)控木薯PPD的分子機制提供參考依據(jù)?!厩叭搜芯窟M展】至今,已有多種植物鑒定獲得PYR/PYL/RCARs家族基因,如從擬南芥中鑒定出14個(Park et al.,2009;Gonzalez-Guzman et al.,2012),從水稻中鑒定出13個(Kim et al.,2014),從番茄中鑒定出15個(González-Guzmán et al.,2014),從棉花中鑒定出22個(Liang et al.,2017);并研究證實PYR/PYL/RCAR基因可增強番茄(González-Guzmán et al.,2014)、水稻(Kim et al.,2014)和擬南芥(Zhao et al.,2016)的耐旱性。在擬南芥中,有研究報道AtPYL8和AtPYL9基因可影響根部的發(fā)育(Antoni et al.,2013;Xing et al.,2016),AtPYL9基因還參與調(diào)節(jié)植物葉片衰老,當擬南芥中過表達AtPYL5和AtPYL9基因時能增強植株對ABA的敏感性和耐旱性(Santiago et al.,2009;Zhao et al.,2016)。也有研究表明,當植物經(jīng)受干旱脅迫時其內(nèi)源ABA水平增加,進而誘導H2O2產(chǎn)生并激活Ca2+通道,引起氣孔關(guān)閉;而pyr1/pyl1/pyl2/pyl4突變體會抑制ABA誘導的活性氧產(chǎn)生和氣孔關(guān)閉(Wang et al.,2013)。Kim等(2014)、顏彥等(2018)研究表明,水稻中OsPYL5基因過表達可增強轉(zhuǎn)基因植物的抗旱性,且在種子萌發(fā)過程中對ABA較敏感。Liang等(2017)研究發(fā)現(xiàn),在干旱脅迫下耐旱棉花品種中GhPYL9-11A基因的表達水平高于不耐旱棉花品種,將該基因在擬南芥中過表達能增強轉(zhuǎn)基因植株在種子萌發(fā)和幼苗早期對ABA的敏感性。Yu等(2017)將PtPYRL1和PtPYRL5基因分別在楊樹中過表達,發(fā)現(xiàn)轉(zhuǎn)基因植株具有更強的活性氧清除能力,在逆境脅迫下具有更好的耐受性,說明PtPYRL1或PtPYRL5基因在楊樹ABA信號途徑中發(fā)揮正向調(diào)控作用??梢?,PYL基因響應多種非生物逆境脅迫,并參與調(diào)節(jié)植物的多個生長發(fā)育代謝過程?!颈狙芯壳腥朦c】PYR/PYL/RCARs家族成員作為ABA受體,在ABA介導的非生物脅迫應答中發(fā)揮重要功能作用,但至今鮮見有關(guān)木薯PYL基因克隆及其分析表達特性的研究報道?!緮M解決的關(guān)鍵問題】克隆木薯PYR/PYL/RCARs家族基因MePYL13全長序列,并進行生物信息學及表達分析,旨在解析MePYL13基因在木薯塊根應答PPD信號通路中的功能作用,為后續(xù)探索ABA信號通路在木薯PPD中的功能及作物抗逆育種打下基礎(chǔ)。
1 材料與方法
1. 1 試驗材料
木薯品種SC8由中國熱帶農(nóng)業(yè)科學院熱帶生物技術(shù)研究所保存提供。多糖多酚植物總RNA提取試劑盒購自天根生化科技(北京)有限公司,pMD18-T載體購自寶生物工程(大連)有限公司,TransScript One-Step gDNA Removal and cDNA Synthesis SuperMix試劑盒購自北京全式金生物技術(shù)有限公司,大腸桿菌(Escherichia coli) TOP10、2×Taq Master Mix酶和ChamQ Universal SYBR qPCR Master Mix試劑盒購自南京諾唯贊生物科技有限公司,農(nóng)桿菌GV3101(PSoup+P19)購自上海唯地生物技術(shù)有限公司,載體pNC-Green-SubC和Nimble Cloning試劑盒購自海南壹田生物科技有限公司,T4 DNA連接酶和限制性內(nèi)切酶購自賽默飛世爾科技(中國)有限公司。
1. 2 材料處理
將木薯塊根切下1~2片2 cm左右厚的薄片,放入干凈托盤中并置于相對濕度75%,溫度26 ℃,16 h光照/8 h黑暗光周期的恒溫培養(yǎng)箱中,分別于第0、6、12、24和48 h時取樣,用液氮冷凍后-80 ℃保存?zhèn)溆谩?/p>
1. 3 RNA提取及cDNA合成
使用多糖多酚植物總RNA提取試劑盒提取木薯SC8塊根RNA,再以反轉(zhuǎn)錄試劑盒合成cDNA。
1. 4 基因克隆及載體構(gòu)建
以木薯SC8塊根的cDNA第一鏈為模板,利用NCBI設計MePYL13基因引物(表1)進行PCR擴增。PCR反應體系25.0 μL:2×Taq Master Mix 12.5 μL,上、下游引物(MePYL13-F和MePYL13-R)各1.0 μL,cDNA模板1.0 μL,ddH2O 9.5 μL。擴增程序:95 ℃預變性5 min;95 ℃ 30 s,55 ℃ 30 s,72 ℃ 1 min,進行30個循環(huán);72 ℃延伸5 min。回收純化PCR擴增產(chǎn)物連接至pMD18-T載體上,然后轉(zhuǎn)化大腸桿菌TOP10,選擇陽性克隆菌液送至生工生物工程(上海)股份有限公司測序,將測序正確菌液保存并提取質(zhì)粒。
1. 5 生物信息學分析
利用NCBI鏈接的BLAST對MePYL13基因進行開放閱讀框預測及查找同源序列,以DNAMAN進行翻譯和同源性比對分析;運用NCBI-CDD數(shù)據(jù)庫進行保守結(jié)構(gòu)域預測分析;利用在線工具ProtParam預測MePYL13蛋白的親/疏水性及等電點等理化性質(zhì),并以SOPMA和SWISS-MODEL進行MePYL13蛋白二、三級結(jié)構(gòu)預測(顏彥等,2018);利用MEGA 5.0中的Neighbor-joining(NJ)法構(gòu)建系統(tǒng)發(fā)育進化樹;用Plant CARE進行啟動子元件分析。
1. 6 亞細胞定位
設計MePYL13基因引物(pNC-MePYL13-F和pNC-MePYL13-R),以已有質(zhì)粒為模板進行PCR擴增,PCR擴增產(chǎn)物經(jīng)膠回收后與載體pNC-Green-SubC用Nimble Cloning試劑盒連接和轉(zhuǎn)化,挑選陽性克隆送至生工生物工程(上海)股份有限公司測序,提取的質(zhì)粒轉(zhuǎn)化農(nóng)桿菌GV3101(PSoup+P19)感受態(tài)細胞,通過瞬時表達法將轉(zhuǎn)化的農(nóng)桿菌注射至煙草葉片培養(yǎng)48 h。以空載體pNC-Green-SubC為對照,利用FluoViewTM FV1000激光掃描共聚焦顯微鏡觀察熒光在細胞中的分布情況。
1. 7 基因表達分析
提取各時間點保存木薯塊根樣品的RNA,反轉(zhuǎn)錄合成cDNA,設計熒光定量引物qRT-MePYL13-F和qRT-MePYL13-R(表1)及MeEF1基因引物MeEF1-F和MeEF1-R(Xu et al.,2013),以MeEF1基因為內(nèi)參基因,在Mx3005P熒光定量PCR儀(上海吉泰生物科技有限公司)進行實時熒光定量PCR擴增,反應體系20.0 μL:2×ChamQ Universal SYBR qPCR Master Mix 10.0 μL,上、下游引物各0.4 μL,cDNA模板2.0 μL,ddH2O 7.2 μL。擴增程序:95 ℃預變性30 s;95 ℃ 10 s,56 ℃ 30 s,72 ℃ 30 s,進行40個循環(huán);95 ℃ 15 s,60 ℃ 1 min,95 ℃ 15 s。設3次重復,采用2-△△Ct計算基因的相對表達量(胡偉等,2015)。
1. 8 統(tǒng)計分析
使用Excel 2016對試驗數(shù)據(jù)進行整理,以SPSS 20.0進行單因素方差分析(One-way ANOVA)(韓瑞才等,2017)。
2 結(jié)果與分析
2. 1 MePYL13基因PCR擴增結(jié)果
根據(jù)NCBI數(shù)據(jù)庫中的木薯PYL基因(GenBank登錄號LOC110618627)設計特異性擴增引物,以木薯SC8塊根cDNA為模板,擴增獲得大小約650 bp的特異條帶(圖1)。測序結(jié)果顯示,目的基因編碼區(qū)(CDS)長度663 bp,編碼220個氨基酸,蛋白分子量23.957 kD,理論等電點(Ip)為6.74,命名為MePYL13基因。
2. 2 生物信息學分析結(jié)果
MePYL13蛋白不穩(wěn)定系數(shù)為56.56,表明其為不穩(wěn)定蛋白;親水性平均值(GRAVY)為-0.183,屬于親水性蛋白。MePYL13蛋白二級結(jié)構(gòu)預測結(jié)果(圖2)顯示,α-螺旋占32.27%,延伸鏈占19.09%,β-轉(zhuǎn)角占5.45%,無規(guī)則卷曲占43.18%。應用SWISS-MODEL平臺預測MePYL13蛋白三級結(jié)構(gòu),預測結(jié)果(圖3)與其二級結(jié)構(gòu)預測結(jié)果一致。
通過BLAST比對分析MePYL13蛋白與其他已知植物PYL家族蛋白的同源性,結(jié)果(圖4)發(fā)現(xiàn),MePYL13蛋白與巴西橡膠樹(Hevea brasiliensis)(XP_021654464.1)PYL家族蛋白的氨基酸序列同源性最高,為91.55%。使用ClustalX進行多序列比對,結(jié)果表明MePYL13氨基酸序列具有控制ABA結(jié)合的關(guān)鍵區(qū)域Gate。綜上所述,擴增獲得的MePYL13基因即為PYR/PYL/RCARs家族成員,且可能具有該基因家族的生物學功能。
2. 3 系統(tǒng)發(fā)育進化分析結(jié)果
為進一步探究MePYL13蛋白與其他物種PYR/PYL/RCARs家族的進化關(guān)系,在NCBI數(shù)據(jù)庫中將MePYL13蛋白氨基酸序列與其他物種進行比對分析,結(jié)果顯示,MePYL13蛋白氨基酸序列與巴西橡膠樹、蓖麻(Ricinus communis)、毛果楊(Populus trichocarpa)、麻瘋樹(Jatropha curcas)、胡楊(Populus euphratica)的PYL蛋白氨基酸序列相似性分別為91.55%、79.71%、77.88%、75.45%和70.44%?;赑YL蛋白氨基酸序列相似性構(gòu)建的系統(tǒng)發(fā)育進化樹(圖5)也顯示,MePYL13蛋白與巴西橡膠樹、蓖麻和麻瘋樹聚類在同一分支上,均為大戟科植物,說明PYL蛋白具有較高的同源性;胡桃(Juglans regia)、雷德氏棉(Gossypium raimondii)、棉花(G. hirsutum)和可可(Theobroma cacao)聚類在另一分支上,其物種均起源于熱帶或亞熱帶地區(qū)。說明植物中PYL蛋白氨基酸序列高度保守,木薯MePYL13蛋白與巴西橡膠樹PYL蛋白分子進化距離最小,親緣關(guān)系最近,其基因功能可能最相似。
2. 4 MePYL13基因啟動子元件分析結(jié)果
通過PlantCARE預測分析MePYL13基因轉(zhuǎn)錄起始位點上游2000 bp序列的順式作用元件,結(jié)果(圖6)發(fā)現(xiàn)多個常見的順式作用元件,如TATA-box和CAAT-box,并鑒定獲得與非生物脅迫逆境相關(guān)的響應元件,包括厭氧誘導(ARE,AAACCA)、光響應(ATCT-motif,AATCTAATCC)、干旱MYB元件(MBS,TAACTG)等,以及ABA應答元件(ABRE,AAACAGA)和分生組織表達相關(guān)元件(CAT-box,GCCACT),說明MePYL13基因的表達可能受多重信號系統(tǒng)調(diào)控。
2. 5 MePYL13蛋白亞細胞定位分析結(jié)果
將MePYL13基因與載體pNC-Green-SubC連接獲得的質(zhì)粒轉(zhuǎn)化至農(nóng)桿菌GV3101(PSoup+P19)感受態(tài)細胞中,再通過瞬時表達法將菌液注射至煙草葉片中,經(jīng)激光掃描共聚焦顯微鏡觀察到有熒光分布在細胞核和細胞質(zhì)上(圖7),說明MePYL13蛋白在木薯細胞的細胞核和細胞質(zhì)上均有表達。
2. 6 MePYL13基因表達分析結(jié)果
為解析MePYL13基因在木薯PPD過程中的功能,利用實時熒光定量PCR檢測MePYL13基因在PPD不同時段的表達情況。由圖8可知,在木薯塊根PPD早期(6和12 h),MePYL13基因表達急劇上升,其相對表達量分別是0 h時(PPD前)的6倍和12 倍;隨后MePYL13基因的相對表達量有所回落,至24 h時其相對表達量是0 h時的4倍;在PPD后期(48 h),MePYL13基因表達繼續(xù)上升,其相對表達量是0 h時的16倍。受PPD誘導,MePYL13基因在木薯塊根中的表達整體上呈上調(diào)趨勢,推測其在木薯PPD過程中發(fā)揮重要作用。
3 討論
木薯是我國熱帶和亞熱帶地區(qū)最重要的經(jīng)濟作物之一(張鵬等,2014),但PPD縮短了木薯的貯存期,嚴重影響其商品價值。已有研究表明,ABA可能是果實成熟衰老的上游調(diào)控信號,進而影響采后生理特性及貯藏品質(zhì)(楊方威等,2016)。PYL基因作為ABA信號通路的核心組成部分(Ma et al.,2009;Park et al.,2009),在ABA介導的非生物脅迫過程中發(fā)揮重要作用,如AtPYL9基因過表達擬南芥植株在干旱條件下可顯著提高其抗氧化酶活性,而減輕細胞膜損傷(Zhao et al.,2016);將PtPYRL1或PtPYRL5基因在楊樹中過表達,其轉(zhuǎn)基因植株具有更強的活性氧清除能力(Yu et al.,2017)。木薯塊根的PPD過程主要與活性氧積累有關(guān)(Reilly et al.,2004,2007;Owiti et al.,2011;Vanderschuren et al.,2014)。為解析PYL家族基因在木薯塊根PPD過程中是否具有功能作用,本研究對MePYL13基因進行克隆及表達特征分析,結(jié)果表明,MePYL13基因CDS為663 bp,編碼220個氨基酸,MePYL13蛋白與巴西橡膠樹、蓖麻、毛果楊和麻瘋樹的PYL蛋白氨基酸序列同源性均在75.00%以上,具有控制ABA結(jié)合的關(guān)鍵區(qū)域Gate,且在MePYL13基因啟動子上發(fā)現(xiàn)有響應ABA誘導的核心元件ABRE。由于不同植物中PYL蛋白高度保守,故推測PYL蛋白在不同植物中可能發(fā)揮相似的功能(韓瑞才等,2017;鄧小敏等,2018)。
蛋白質(zhì)修飾和含量變化及蛋白間的相互作用是細胞行使功能的關(guān)鍵,基因編碼蛋白產(chǎn)物因在植物細胞中發(fā)揮作用的位置不同,其功能也各不相同(邢浩然等,2006)。本研究通過亞細胞定位分析,發(fā)現(xiàn)MePYL13蛋白定位于細胞核和細胞質(zhì),與在擬南芥(Ma et al.,2009)、大豆(Bai et al.,2013)和水稻(Tian et al.,2015)上報道的PYL家族基因位置一致,說明PYL家族基因的功能在不同植物物種中高度保守。此外,MePYL13基因在木薯塊根PPD過程中的表達譜顯示,隨著PPD進程的推移MePYL13基因相對表達量呈先升高后降低再升高的變化趨勢,至PPD后期(48 h)其相對表達量是0 h時的16倍,即MePYL13基因受木薯塊根PPD的顯著誘導,由此推測MePYL13基因在木薯塊根PPD過程中發(fā)揮正向調(diào)控作用,與PYL基因受非生物逆境脅迫誘導(Antoni et al.,2013;Wang et al.,2013;Xing et al.,2016;Zhao et al.,2016;顏彥等,2018)的結(jié)論一致,今后可通過在木薯中過表達MePYL13基因進一步研究其在木薯塊根采后PPD過程的調(diào)控機制。
4 結(jié)論
MePYL13基因是PYR/PYL/RCARs家族成員,可能在木薯塊根PPD過程中發(fā)揮正向調(diào)控作用,為培育木薯PPD改良品種提供了潛在基因資源。
參考文獻:
鄧小敏,于潔,陳瑩,晁金泉,張世鑫,田維敏. 2018. 橡膠樹乳管細胞GPPS基因的克隆與表達分析[J]. 南方農(nóng)業(yè)學報,49(11):2117-2128. [Deng X M,Yu J,Chen Y,Chao J Q,Zhang S X,Tian W M. 2018. Cloning and expression analysis of GPPS genes from the laticifer cells of Hevea brasiliensis[J]. Journal of Southern Agriculture,49(11):2117-2128.]
方佳,濮文輝,張慧堅. 2010. 國內(nèi)外木薯產(chǎn)業(yè)發(fā)展近況[J]. 中國農(nóng)學通報,26(16):353-361. [Fang J,Pu W H,Zhang H J. 2010. The development status of cassava industry at home and abroad[J]. Chinese Agricultural Science Bulletin,26(16):353-361.]
胡偉,顏彥,韋運謝,王文泉,夏志強,盧誠,侯曉婉,彭明. 2015. 木薯MeASR基因克隆及表達分析[J]. 生物技術(shù)通報,31(10):125-130. [Hu W,Yan Y,Wei Y X,Wang W Q,Xia Z Q,Lu C,Hou X W,Peng M. 2015. Clone and expression of MeASR gene in cassava[J]. Biotechnology Bulletin,31(10):125-130.]
韓瑞才,武志峰,唐雙勤,潘曉華,石慶華,王根發(fā),吳自明. 2017. 水稻黃嘌呤脫氫酶基因OsXDH克隆及表達分析[J]. 南方農(nóng)業(yè)學報,48(12):2113-2121. [Han R C,Wu Z F,Tang S Q,Pan X H,Shi Q H,Wang G F,Wu Z M. 2017. Cloning and expression analysis for xanthine dehydrogenase gene OsXDH in rice[J]. Journal of Southern Agriculture,48(12):2113-2121.]
邢浩然,劉麗娟,劉國振. 2006. 植物蛋白質(zhì)的亞細胞定位研究進展[J]. 華北農(nóng)學報,21(S2):1-6. [Xing H R,Liu L J,Liu G Z. 2006. Advancement of protein subcellular localization in plants[J]. Acta Agriculturae Boreali-Sinica,21(S2):1-6.]
顏彥,鐵韋韋,丁澤紅,吳春來,胡偉. 2018. 木薯MePYL8基因克隆及表達分析[J]. 分子植物學報,16(14):4498-4504. [Yan Y,Tie W W,Ding Z H,Wu C L,Hu W. 2018. Cloning and expression analysis of MePYL8 gene in cassava[J]. Molecular Plant Breeding,16(14):4498-4504.]
楊方威,段懿菲,馮敘橋. 2016. 脫落酸的生物合成及對水果成熟的調(diào)控研究進展[J]. 食品科學,37(3):266-272. [Yang F W,Duan Y F,F(xiàn)eng X Q. 2016. Advances in biosynthesis of abscisic acid and its roles in regulation of fruit ripening[J]. Food Science,37(3):266-272.]
張鵬,楊俊,周文智,王紅霞,馬秋香. 2014. 能源木薯高淀粉抗逆分子育種研究進展與展望[J]. 生命科學,26(5):465-473. [Zhang P,Yang J,Zhou W Z,Wang H X,Ma Q X. 2014. Progress and perspective of cassava molecular breeding forbioenergy development[J]. Chinese Bulletin of Life Sciences,26(5):465-473.]
趙平娟,孫海彥,黎娟華,盧誠,彭明. 2013. 木薯采后生理性變質(zhì)的研究進展[J]. 熱帶農(nóng)業(yè)科學,33(1):35-41. [Zhao P J,Sun H Y,Li J H,Lu C,Peng M. 2013. Review of cassava post-harvest physiological deterioration research[J]. Chinese Journal of Tropical Agriculture,33(1):35-41.]
Antoni R,Gonzalez-Guzman M,Rodriguez L,Peirats-Llobet M,Pizzio G A,F(xiàn)ernandez M A,de Winne N,de Jaeger G,Dietrich D,Bennett M J,Rodriguez P L. 2013. PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root[J]. Plant Physiology,161(2):931-941.
Bai G,Yang D H,Zhao Y,Ha S,Yang F,Ma J,Gao X S,Wang Z M,Zhu J K. 2013. Interactions between soybean ABA receptors and type 2C protein phosphatases[J]. Plant Molecular Biology,83(6):651-664.
Boneh U,Biton I,Schwartz A,Ben-Ari G. 2012. Characterization of the ABA signal transduction pathway in Vitis vinifera[J]. Plant Science,187:89-96.
Burns A,Gleadow R,Cliff J,Zacarias A,Cavagnaro T. 2010. Cassava:The drought,war and famine crop in a changing world[J]. Sustainability,2(11):3572-3607.
Chen Z F,Wang Z,Yang Y G,Li M,Xu B C. 2018. Abscisic acid and brassinolide combined application synergistically enhances drought tolerance and photosynthesis of tall fescue under water stress[J]. Scientia Horticulturae,228:1-9.
El-Sharkawy M A. 2012. Stress-tolerant cassava:The role of integrative ecophysiology-breeding research in crop improvement[J]. Open Journal of Soil Science,2(2):162-186.
Feng C Z,Chen Y,Wang C,Kong Y H,Wu W H,Chen Y F. 2015. Arabidopsis RAV1 transcription factor,phosphorylated by SnRK2 kinases,regulates the expression of ABI3,ABI4,and ABI5 during seed germination and early seedling development[J]. The Plant Journal,80(4):654-668.
Fermont A M,van Asten P J A,Tittonell P,van Wijk M T,Giller K E. 2009. Closing the cassava yield gap:An ana-lysis from small holder farms in East Africa[J]. Field Crops Research,112(1):24-36.
Gonzalez-Guzman M,Pizzio G A,Antoni R,Vera-Sirera F,Merilo E,Bassel G W,F(xiàn)ernandez M A,Holdsworth M J,Perez-Amador M A,Kollist H,Rodriguez P L. 2012. Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid[J]. The Plant Cell,24(6):2483-2496.
González-Guzmán M,Rodríguez L,Lorenzo-Orts L,Pons C,Sarrión-Perdigones A,F(xiàn)ernández M A,Peirats-Llobet M,F(xiàn)orment J,Moreno-Alvero M,Cutler S R,Albert A,Granell A,Rodríguez P L. 2014. Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root,differential sensitivity to the abscisic acid agonist quinabactin,and the capability to enhance plant drought resistance[J]. Journal of Experimental Botany,65(15):4451-4464.
Jia H F,Jiu S T,Zhang C,Wang C,Tariq P,Liu Z J,Wang B J,Cui L W,F(xiàn)ang J G. 2016. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor[J]. Plant Biotechnology Journal,14(10):2045-2065.
Kim H,Lee K,Hwang H,Bhatnagar N,Kim D Y,Yoon I S,Byun M O,Kim S T,Jung K H,Kim B G. 2014. Overexpression of PYL5 in rice enhances drought tolerance,inhibits growth,and modulates gene expression[J]. Journal of Experimental Botany,65(2):453-464.
Kuromori T,Seo M,Shinozaki K. 2018. ABA transport and plant water stress responses[J]. Trends in Plant Science,23(6):513-522.
Li D,Mou W,Luo Z,Li L,Limwachiranon J,Mao L,Ying T. 2016. Developmental and stress regulation on expression of a novel miRNA,F(xiàn)an-miR73,and its target ABI5 in strawberry[J]. Scientific Reports,6:28385. doi: 10.1038/srep28385.
Liang C Z,Liu Y,Li Y Y,Meng Z G,Yan R,Zhu T,Wang Y,Kang S J,Abid M A,Malik W,Sun G,Guo S,Zhang R. 2017. Activation of ABA receptors gene GhPYL9-11A is positively correlated with cotton drought tolerance in transgenic Arabidopsis[J]. Frontiers in Plant Science,8:1453. doi: 10.3389/fpls.2017.01453.
Liu S,Zainuddin I M,Vanderschuren H,Doughty J,Beeching J R. 2017. RNAi inhibition of feruloyl CoA 6’-hydroxylase reduces scopoletin biosynthesis and post-harvest physiological deterioration in cassava(Manihot esculenta Crantz) storage roots[J]. Plant Molecular Biology,94(1-2):185-195.
Ma Y,Szostkiewicz I,Korte A,Moes D,Yang Y,Christmann A,Grill E. 2009. Regulators of PP2C phosphatase activity function as abscisic acid sensors[J]. Science,324(5930):1064-1068.
Mou W,Li D,Bu J,Jiang Y,Khan Z U,Luo Z,Mao L,Ying T. 2016. Comprehensive analysis of ABA effects on ethy-lene biosynthesis and signaling during tomato fruit ripe-ning[J]. PLoS One,11(4):e0154072.
Owiti J,Grossmann J,Gehrig P,Dessimoz C,Laloi C,Hansen M B,Gruissem W,Vanderschuren H. 2011. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration[J]. The Plant Journal,67(1):145-156.
Park S Y,F(xiàn)ung P,Nishimura N,Jensen D R,F(xiàn)ujii H,Zhao Y,Lumba S,Santiago J,Rodrigues A,Chow T F,Alfred S E,Bonetta D,F(xiàn)inkelstein R,Provart N J,Desveaux D,Rodriquez P L,McCourt P,Zhu J K,Schroeder J I,Volkman B F,Cutler S R. 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J]. Science,324(5930):1068-1071.
Reilly K,Bernal D,Cortés D F,Gómez-Vásquez R,Tohme J,Beeching J R. 2007. Towards identifying the full set of genes expressed during cassava post-harvest physiological deterioration[J]. Plant Molecular Biology,64(1-2):187-203.
Reilly K,Gómez-Vásquez R,Buschmann H,Tohme J,Bee-ching J R. 2004. Oxidative stress responses during cassava post-harvest physiological deterioration[J]. Plant Molecular Biology,56(4):625-641.
Santiago J,Rodrigues A,Saez A,Rubio S,Antoni R,Dupeux F,Park S Y,Márquez J A,Cutler S R,Rodriguez P L. 2009. Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs[J]. The Plant Journal,60(4):575-588.
Tian X,Wang Z,Li X,Lv T,Liu H,Wang L,Niu H,Bu Q. 2015. Characterization and functional analysis of pyrabactin resistance-like abscisic acid receptor family in rice[J]. Rice,8(1):28.
Tijero V,Teribia N,Mu?oz P,Munné-Bosch S. 2016. Implication of abscisic acid on ripening and quality in sweet cherries:Differential effects during pre-and post-harvest[J]. Frontiers in Plant Science,7:602. doi:10.3389/fpls. 2016.00602.
Uarrota V G,Maraschin M. 2015. Metabolomic,enzymatic,and histochemical analyzes of cassava roots during postharvest physiological deterioration[J]. BMC Research Notes,8:648. doi: 10.1186/s13104-015-1580-3.
Umezawa T,Nakashima K,Miyakawa T,Kuromori T,Tanokura M,Shinozaki K,Yamaguchi-Shinozaki K. 2010. Molecular basis of the core regulatory network in ABA Responses:Sensing,signaling and transport[J]. Plant and Cell Physiology,51(11):1821-1839.
Vanderschuren H,Nyaboga E,Poon J S,Baerenfaller K,Grossmann J,Hirsch-Hoffmann M,Kirchgessner N,Nanni P,Gruissem W. 2014. Large-scale proteomics of the cassava storage root and identification of a target gene to reduce postharvest deterioration[J]. The Plant Cell,26(5):1913-1924.
Wang Y Z,Chen Z H,Zhang B,Hills A,Blatt M R. 2013. PYR/PYL/RCAR abscisic acid receptors regulate K+ and Cl- channels through reactive oxygen species-mediated activation of Ca2+ channels at the plasma membrane of intact arabidopsis guard cells[J]. Plant Physiology,163(2):566-577.
Xing L,Zhao Y,Gao J,Xiang C,Zhu J K. 2016. The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth[J]. Scientific Reports,6:27177. doi: 10.1038/srep27177.
Xu J,Duan X G,Yang J,Beeching J R,Zhang P. 2013. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots[J]. Plant Physiology,161(3):1517-1528.
Yu J L,Ge H M,Wang X K,Tang R J,Wang Y,Zhao F G,Lan W Z,Luan S,Yang L. 2017. Overexpression of pyrabactin resistance-like abscisic acid receptors enhances drought,osmotic,and cold tolerance in transgenic poplars[J]. Frontiers in Plant Science,8:1752. doi:10.3389/fpls. 2017.01752.
Zhao Y,Chan Z L,Gao J H,Xing L,Cao M J,Yu C M,Hu Y L,You J,Shi H T,Zhu Y F,Gong Y H,Mu Z X,Wang H Q,Deng X,Wang P C,Bressan R,Zhu J K. 2016. ABA receptor PYL9 promotes drought resistance and leaf senescence[J]. Proceedings of the National Academy of Sciences of the United States of America,113(7):1949-1954.
(責任編輯 蘭宗寶)