舒宛 王心怡 李志華 等
摘要:【目的】分析外源生長(zhǎng)激素對(duì)水稻T-DNA插入突變體褐飛虱抗性的影響,并測(cè)定其農(nóng)藝性狀,為突變基因介導(dǎo)的抗蟲(chóng)分子機(jī)理研究提供理論參考?!痉椒ā恳运臼荏w中花11(ZH11)及其T-DNA插入突變體CF54為材料,利用三引物PCR鑒定出純合突變株系,并用乙烯利(ET)、水楊酸(SA)和茉莉酸甲酯(MeJA)對(duì)ZH11及其純合突變株系進(jìn)行處理,測(cè)定植株上褐飛虱的蜜露分泌量和蟲(chóng)體增重量。對(duì)ZH11及其純合突變株系的株高、穗長(zhǎng)、有效穗數(shù)、有效分蘗數(shù)、每穗實(shí)粒數(shù)和千粒重等農(nóng)藝性狀進(jìn)行測(cè)定?!窘Y(jié)果】從突變體CF54后代中共篩選出10個(gè)株系,其中純合突變株系有2個(gè),分別為CF54-6和CF54-10。經(jīng)ET、SA和MeJA處理后ZH11及其純合突變株系CF54-6和CF54-10植株上褐飛虱的蟲(chóng)體增重量和蜜露分泌量較未處理對(duì)照顯著(P<0.05,下同)或極顯著(P<0.01,下同)下降,但未處理對(duì)照間均無(wú)顯著差異(P>0.05,下同)。經(jīng)MeJA處理后,純合突變株系CF54-6和CF54-10植株上褐飛虱的蟲(chóng)體增重量和蜜露分泌量較ZH11顯著下降,但經(jīng)SA和ET處理的純合突變株系CF54-6和CF54-10植株上褐飛虱的蜜露分泌量和蟲(chóng)體增重量與ZH11無(wú)顯著差異。純合突變株系CF54-6和CF54-10的有效分蘗數(shù)、有效穗數(shù)和千粒重與ZH11無(wú)顯著差異,但株高、穗長(zhǎng)和每穗實(shí)粒數(shù)顯著或極顯著高于ZH11?!窘Y(jié)論】ET、SA和MeJA 3種外源生長(zhǎng)激素均能誘導(dǎo)水稻野生型及其純合突變株系植株對(duì)褐飛虱的取食與生長(zhǎng)發(fā)育產(chǎn)生抑制作用,尤其是MeJA抑制效果最佳,推測(cè)純合突變株系抗蟲(chóng)性受茉莉酸(JA)信號(hào)途徑的影響更大。T-DNA插入明顯影響水稻植株的農(nóng)藝性狀。
關(guān)鍵詞: 水稻;T-DNA插入突變體;褐飛虱;抗性;茉莉酸甲酯(MeJA);乙烯利(ET);水楊酸(SA);農(nóng)藝性狀
中圖分類(lèi)號(hào): S511.035.3? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2019)02-0230-07
Abstract:【Objective】The purpose was to identify the effect of growth hormone treatment on brown planthopper (BPH) resistance of rice T-DNA insertion mutants, and to detect the agronomic traits of the mutants,which could provide theoretical reference for the study of molecular mechanism of insect resistance mediated by mutant gene. 【Method】 Rice variety Zhonghua 11(ZH11) and its T-DNA insertion mutant CF54 were used as materials. Homozygous insertion mutants were identified by the tri-primers PCR method. ZH11 and its homozygous mutant were treated with ethephon(ET),salicylic acid(SA) and methyl jasmonate(MeJA)to measure the BPH honeydew secretion and the weight gain. Finally,agronomic traits,such as the plant height,spike length,effective spikes,number of productive panicles,grain number per spike and 1000-grain weight of ZH11 and the mutants were measured. 【Result】Ten lines were screened out from the offspring of mutant CF54,including two homozygous mutant lines CF54-6 and CF54-10. After ET,SA or MeJA treatments,the body weight gain and honeydew secretion of ZH11 and its homozygous mutant strains CF54-6 and CF54-10 on plants were significantly(P<0.05,the same below) or extremely(P<0.01,the same below) lower than those of untreated control,but no significant difference was detected between untreated controls(P>0.05, the same below). After treated with MeJA,the homozygous mutant lines CF54-6 and CF54-10 displayed significant reduction in BPH honeydew secretion and the weight gain comparing with ZH11. However,there was no significant difference in honeydew secretion and body weight gain between homozygous mutants CF54-6 and CF54-10 treated with SA and ET and ZH11. The productive panicles,effective spikes and 1000-grain weight of homozygous mutant lines CF54-6 and CF54-10 treated by SA and ET were not significantly different from those of ZH11. But the plant height,spike length,and grain number per spike increased significantly or extremely higher than? ZH11. 【Conclusion】The three exogenous growth hormones ET,SA and MeJA can induce the inhibition of feeding and growth of BPH in wild type rice and homozygous mutant rice plants,the effects of MeJA is the optimal. It is speculated that the resistance of these two mutant lines are more affected by jasmonic acid(JA) signaling pathway. T-DNA insertion affects the agronomic traits of rice plants.
Key words: rice; T-DNA insertion mutant; Nilaparvata lugens; resistance; methyl jasmonate(MeJA); ethephon (ET); salicylic acid(SA); agronomic trait
0 引言
【研究意義】水稻(Oryza sativa L.)是我國(guó)的第一大糧食作物,而褐飛虱(Nilaparvata lugens)是造成水稻受害減產(chǎn)的最主要害蟲(chóng)之一(王慧等,2016)。實(shí)踐表明,抗蟲(chóng)水稻品種的選育是防治褐飛虱最高效、無(wú)污染的方法,構(gòu)建水稻突變體庫(kù)為水稻功能基因組研究及其品種選育提供了重要資源(Meng et al.,2017)。因此,考察水稻相關(guān)突變體對(duì)褐飛虱的抗性,并對(duì)其農(nóng)藝性狀進(jìn)行測(cè)定,可為抗褐飛虱新基因的發(fā)掘及新品種選育提供參考依據(jù)。【前人研究進(jìn)展】目前,從水稻中發(fā)現(xiàn)并被定位的抗褐飛虱基因有35個(gè)(Wang et al.,2018),成功克隆的抗性主效基因有8個(gè),如Bph3、Bph6、Bph9、Bphl4和Bph26等(Du et al.,2009;Liu et al.,2014;Srinivasan et al.,2015;Zhao et al.,2016;Guo et al.,2018),其可有效提高水稻對(duì)褐飛虱的抗性。但利用這些抗性基因通過(guò)分子標(biāo)記育種等手段培育抗褐飛虱水稻的周期相對(duì)較長(zhǎng),且大多數(shù)抗性品種只含有單個(gè)或少數(shù)抗褐飛虱基因,可能較難應(yīng)對(duì)褐飛虱生物型變異的發(fā)生,導(dǎo)致水稻品種對(duì)褐飛虱的抗性逐漸下降(王海鵬等,2016)。隨著反向遺傳學(xué)技術(shù)的發(fā)展,利用其鑒定抗性相關(guān)基因可加快對(duì)抗蟲(chóng)相關(guān)基因功能及其分子機(jī)理研究,從而促進(jìn)水稻抗蟲(chóng)育種。姚張良等(2014)構(gòu)建了水稻OsRCI-1基因的RNAi表達(dá)載體并獲得突變株系ir-rci,通過(guò)對(duì)褐飛虱生物量(初羽化體重)、發(fā)育歷期、羽化數(shù)、單雌卵量和長(zhǎng)翅型比率等多個(gè)生長(zhǎng)發(fā)育指標(biāo)的測(cè)定,結(jié)果表明,OsRCI-1基因功能沉默后水稻對(duì)褐飛虱的抗性顯著增強(qiáng)。郭惠民(2015)以水稻T-DNA插入突變體為研究對(duì)象,通過(guò)田間觀察從11000多份純合突變體中獲得259份抗褐飛虱的突變體,并通過(guò)室內(nèi)抗蟲(chóng)實(shí)驗(yàn)篩選出1個(gè)高抗褐飛虱的突變體T35。此外,有研究發(fā)現(xiàn)外源生長(zhǎng)激素處理對(duì)褐飛虱與水稻間的互作起著重要作用。吳瑩瑩等(2012)研究發(fā)現(xiàn),用0.25和0.50 mmol/L茉莉酸甲酯(MeJA)處理水稻品種IR26、IR36和TN1后,水稻植株對(duì)褐飛虱II生物型的抗性顯著提高,由感蟲(chóng)水平上升至抗蟲(chóng)水平。Guo等(2018)使用外源水楊酸(SA)和茉莉酸(JA)處理感褐飛虱水稻和攜帶Bph6基因的抗褐飛虱水稻,結(jié)果發(fā)現(xiàn),褐飛虱的存活率明顯降低,水稻植株對(duì)褐飛虱的抗性增強(qiáng)?!颈狙芯壳腥朦c(diǎn)】目前鮮見(jiàn)以蜜露分泌量和蟲(chóng)體增重量為抗蟲(chóng)指標(biāo)探討不同外源生長(zhǎng)激素處理對(duì)水稻突變體抗褐飛虱性影響的相關(guān)研究報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】以水稻T-DNA插入突變體為材料,利用乙烯利(ET)、SA和MeJA對(duì)其進(jìn)行處理,以蜜露分泌量和蟲(chóng)體增重量為抗蟲(chóng)指標(biāo)鑒定突變體植株對(duì)褐飛虱的抗性水平,分析突變體中突變基因介導(dǎo)的抗性所參與的信號(hào)通路,為該基因介導(dǎo)的抗蟲(chóng)分子機(jī)理研究提供理論參考。
1 材料與方法
1. 1 試驗(yàn)材料
供試的水稻受體中花11(ZH11)及其T-DNA插入突變體CF54來(lái)源于華中農(nóng)業(yè)大學(xué)突變體庫(kù);褐飛虱蟲(chóng)源來(lái)源于廣西大學(xué)農(nóng)場(chǎng)實(shí)驗(yàn)田并在感蟲(chóng)品種臺(tái)中本地1號(hào)(TN1)上飼養(yǎng)并繁殖;SA購(gòu)自索萊寶(北京)科技有限公司;MeJA購(gòu)自麥克林(上海)生化科技有限公司;ET購(gòu)自美國(guó)Sigma-Aldrich公司。
1. 2 純合突變體的鑒定
參照張斌和何福林(2017)的三引物PCR從水稻T-DNA插入突變體CF54中鑒定獲得純合突變株系。依據(jù)T-DNA插入位點(diǎn),F(xiàn)P為插入位點(diǎn)上游基因序列上的正向引物,RP為插入位點(diǎn)下游基因序列上的反向引物,NP為T(mén)-DNA左端側(cè)翼序列上的中間引物(表1)。PCR反應(yīng)體系10.0 μL:2×Taq Master Mix 5.0 μL,正、反向引物(FP和RP)各0.2 μL,NP中間引物(載體上引物)0.4 μL,DNA模板1.0 μL,ddH2O補(bǔ)足至10.0 μL。擴(kuò)增程序:94 ℃預(yù)變性5 min;94 ℃ 30 s,58 ℃ 30 s,72 ℃ 45 s,進(jìn)行32個(gè)循環(huán);72 ℃延伸5 min。PCR產(chǎn)物以1.5%瓊脂糖凝膠電泳檢測(cè)。
1. 3 生長(zhǎng)激素處理
SA、MeJA和ET供試濃度分別為0.5、1.0和0.5 mmol/L(魯玉杰等,2006;吳瑩瑩等,2012)。其中SA和MeJA以50 mmol/L Na2HPO4緩沖液(用1 mol/L鹽酸滴定至pH 8.0)為溶劑;ET以蒸餾水(pH 7.2)為溶劑。
參照魯玉杰等(2006)的方法:取苗齡30 d的盆栽(直徑25 cm,高度15 cm)水稻苗(4株/盆)共45盆180株,處理前1 d洗凈植株莖稈,然后分別用SA、MeJA和ET噴灑植株,分別以50 mmol/L Na2HPO4緩沖液和蒸餾水為對(duì)照,按5 mL/株的劑量處理。將處理后的水稻植株置于環(huán)境條件為溫度(28±2)℃、光照/黑暗為12 h/12 h、相對(duì)濕度70%~80%的溫室內(nèi)培養(yǎng)24 h,然后進(jìn)行接蟲(chóng)處理試驗(yàn)。
1. 4 蜜露量和蟲(chóng)體增重量測(cè)定
水稻植株經(jīng)生長(zhǎng)激素處理24 h后,將Parafilm蠟?zāi)ぶ谱鞯南灤?0 mm×35 mm)固定在水稻莖稈中間部位(圖1),內(nèi)接1頭將在24 h內(nèi)羽化的褐飛虱雌成蟲(chóng),48 h后終止褐飛虱取食,取下蠟袋。按照每株接種2個(gè)蠟袋,每盆接8個(gè)蠟袋,每盆苗中取1株苗固定2個(gè)未接蟲(chóng)的蠟袋作對(duì)照,每處理設(shè)3盆,即以上試驗(yàn)均3個(gè)重復(fù)。使用十萬(wàn)分之一精度天平分別稱量褐飛虱取食前后的蠟袋重量和蟲(chóng)體重量(鄧釗等,2016)。蜜露分泌量為褐飛虱取食前后蠟袋的重量差,蟲(chóng)體增重量為褐飛虱取食前后蟲(chóng)體重量差。以蟲(chóng)體增重量和蜜露分泌量的平均值來(lái)綜合評(píng)定水稻植株對(duì)褐飛虱的抗性水平。
1. 5 農(nóng)藝性狀測(cè)定
2017年秋季將ZH11及篩選獲得的純合突變體株系種植于廣西大學(xué)試驗(yàn)田,并在成熟期對(duì)其進(jìn)行農(nóng)藝性狀測(cè)定,包括株高、穗長(zhǎng)、有效穗數(shù)、有效分蘗數(shù)、每穗實(shí)粒數(shù)和千粒重。每個(gè)株系在田間種植10行,每行10株,設(shè)3個(gè)重復(fù)。每個(gè)重復(fù)兩端的株行和每行兩端的單株均不統(tǒng)計(jì)農(nóng)藝性狀。采用Excel 2007和SPSS 18.0進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析及制圖。
2 結(jié)果與分析
2. 1 純合突變株系的鑒定結(jié)果
根據(jù)三引物PCR篩選純合突變體株系。具體過(guò)程:FP與RP引物間因T-DNA插入導(dǎo)致該組合無(wú)法擴(kuò)增出目標(biāo)條帶,僅FP與NP組合能擴(kuò)增出大小為508 bp的單一條帶;而未插入T-DNA的陰性植株中,F(xiàn)P與RP組合可擴(kuò)增出大小為914 bp的單一條帶;雜合插入突變體中,一條染色體上有T-DNA插入,F(xiàn)P與NP組合可擴(kuò)增出大小為508 bp的條帶,而另一條染色體無(wú)T-DNA插入,F(xiàn)P也可與RP組合擴(kuò)增出大小為914 bp的條帶。利用該方法從突變體CF54后代中共篩選出10個(gè)株系,其中純合突變株系2個(gè),分別為CF54-6和CF54-10,雜合突變株系有5個(gè),無(wú)突變的株系有2個(gè),另外一個(gè)株系無(wú)法判斷(圖2)。
基于突變體庫(kù)中提供的信息,利用突變體CF54的側(cè)翼序列(962 bp)在NCBI中進(jìn)行BLAST比對(duì),結(jié)果發(fā)現(xiàn),T-DNA的插入位點(diǎn)在水稻第7染色體上,位于Os07g44710基因下游9.94 kb和Os07g44730基因上游2.02 kb的基因間隔區(qū)域,并未插入有注釋功能的基因內(nèi)部(圖3)。其中,Os07g44710基因的注釋功能為鈣調(diào)素依賴性蛋白激酶,而Os07g44730基因的注釋功能為未知蛋白。由于突變體CF54中T-DNA插入在基因間隔區(qū)域,無(wú)法從插入位點(diǎn)的信息推測(cè)是否由于突變而導(dǎo)致性狀改變。
2. 2 MeJA處理對(duì)褐飛虱蜜露分泌量和蟲(chóng)體增重的影響
經(jīng)MeJA處理的ZH11及其純合突變株系CF54-6和CF54-10植株上褐飛虱的蜜露分泌量和蟲(chóng)體增重均存在顯著差異(P<0.05,下同),較未處理對(duì)照均顯著或極顯著(P<0.01,下同)降低,未處理對(duì)照間無(wú)顯著差異(P>0.05,下同)(圖4)。其中,經(jīng)MeJA處理的純合突變株系CF54-6和CF54-10植株上褐飛虱蜜露分泌量分別為2.06和2.22 mg,較對(duì)應(yīng)的對(duì)照極顯著降低52.5%和51.2%,比MeJA處理的ZH11顯著降低35.4%和30.4%(圖4-A)。經(jīng)MeJA處理的純合突變株系CF54-6和CF54-10植株上褐飛虱蟲(chóng)體增重量分別為0.31和0.33 mg,較對(duì)應(yīng)的對(duì)照極顯著降低61.3%和60.7%,比MeJA處理的ZH11顯著降低44.6%和41.1%(圖4-B)。綜上所述,在MeJA誘導(dǎo)作用下,ZH11及其純合突變株系植株上褐飛虱的取食受到抑制,生長(zhǎng)發(fā)育延緩,尤其對(duì)純合突變株系植株上褐飛虱的生長(zhǎng)發(fā)育影響更明顯。
2. 3 SA處理對(duì)褐飛虱蜜露分泌量和蟲(chóng)體增重的影響
經(jīng)SA處理的ZH11與其純合突變株系CF54-6和CF54-10植株上褐飛虱的蜜露分泌量和蟲(chóng)體增重量均無(wú)顯著差異,但較未處理對(duì)照均顯著降低,未處理對(duì)照間也無(wú)顯著差異(圖5)。其中,經(jīng)SA處理的ZH11及其純合突變株系CF54-6和CF54-10植株上褐飛虱的蜜露分泌量分別為3.15、2.93和3.02 mg,較對(duì)應(yīng)的對(duì)照顯著降低31.5%、32.5%和33.6%(圖5-A)。經(jīng)SA處理的ZH11及其純合突變株系CF54-6和CF54-10植株上褐飛虱的蟲(chóng)體增重量分別為0.55、0.51和0.49 mg,較對(duì)應(yīng)的對(duì)照顯著降低34.5%、36.3%和41.0%(圖5-B)。綜上所述,在SA誘導(dǎo)作用下,ZH11及其純合突變株系植株上褐飛虱的取食均受到抑制,生長(zhǎng)發(fā)育延緩。
2. 4 ET處理對(duì)褐飛虱蜜露分泌量和蟲(chóng)體增重的影響
經(jīng)ET處理的ZH11及其純合突變株系CF54-6和CF54-10植株上褐飛虱的蜜露分泌量和蟲(chóng)體增重量變化情況與SA處理相似(圖6)。其中,經(jīng)ET處理的ZH11及其純合突變株系CF54-6和CF54-10植株上褐飛虱的蜜露分泌量分別為3.08、3.25和3.19 mg,較對(duì)應(yīng)對(duì)照顯著降低34.9%、31.9%和31.7%(圖6-A)。經(jīng)ET處理的ZH11及其純合突變株系CF54-6和CF54-10植株上褐飛虱的蟲(chóng)體增重量分別為0.57、0.53和0.58 mg,較對(duì)應(yīng)的對(duì)照顯著降低36.0%、36.1%和31.8%(圖6-B)。綜上所述,在ET誘導(dǎo)作用下,ZH11及其純合突變株系植株上褐飛虱的取食受到抑制,生長(zhǎng)發(fā)育延緩。
2. 5 農(nóng)藝性狀測(cè)定結(jié)果
對(duì)篩選出的純合突變株系CF54-6和CF54-10農(nóng)藝性狀進(jìn)行測(cè)定,結(jié)果如表3所示。2個(gè)純合突變株系的有效分蘗數(shù)、有效穗數(shù)和千粒重與ZH11無(wú)顯著差異,其中,CF54-6和CF54-10的有效穗數(shù)均高于ZH11,但有效分蘗數(shù)千粒重均低于ZH11。其余3個(gè)性狀(株高、穗長(zhǎng)和每穗實(shí)粒數(shù))在純合突變株系與ZH11間均存在顯著或極顯著差異,其中純合突變株系CF54-6和CF54-10的株高分別為92.8和92.5 cm,較ZH11顯著增加10.7%和10.4%;穗長(zhǎng)分別為22.4和22.0 cm,較ZH11極顯著增加22.4%和20.2%;每穗實(shí)粒數(shù)分別為105.8和103.4粒,較ZH11顯著增加10.3%和7.8%??梢?jiàn),T-DNA插入明顯影響水稻植株的農(nóng)藝性狀。
3 討論
水稻T-DNA插入突變體是研究基因功能的良好材料。當(dāng)受體基因組中插入外源DNA片段后,可能會(huì)影響被插入的目標(biāo)基因或上、下游基因的功能,也可能激活或沉默遠(yuǎn)離插入位點(diǎn)的基因功能(趙潔等,2013)。已有研究表明,T-DNA易插入在基因富集、轉(zhuǎn)錄活躍的區(qū)域,41.9%的插入位點(diǎn)位于基因間,25.0%的插入位點(diǎn)位于基因上、下游500 bp內(nèi)的功能區(qū)(Chen et al.,2010)。本研究供試材料水稻T-DNA插入突變體CF54的插入位點(diǎn)位于Os07g44710基因下游9.94 kb和Os07g44730基因上游2.02 kb的區(qū)域,未見(jiàn)插入任何有注釋功能的基因內(nèi)部,其中,Os07g44710基因編碼鈣調(diào)素依賴性蛋白激酶。鈣調(diào)蛋白激酶是一種調(diào)節(jié)生物細(xì)胞功能作用的蛋白質(zhì),通過(guò)與鈣離子結(jié)合形成復(fù)合物后與靶酶結(jié)合,進(jìn)而調(diào)控生物細(xì)胞的生長(zhǎng)發(fā)育(胡德文等,1999)。本研究結(jié)果表明,未經(jīng)生長(zhǎng)激素處理時(shí),純合突變株系CF54-6和CF54-10植株上蜜露分泌量和蟲(chóng)體增重量與ZH11無(wú)顯著差異,說(shuō)明T-DNA插入對(duì)水稻褐飛虱抗性影響不明顯,但這2個(gè)株系的穗長(zhǎng)、每穗實(shí)粒數(shù)和株高與ZH11存在極顯著或顯著差異,其原因可能是T-DNA插入位點(diǎn)影響了鈣調(diào)蛋白激酶基因的表達(dá)。但與插入位點(diǎn)更近的注釋基因Os07g44730為未知蛋白基因,其可能參與信號(hào)通路介導(dǎo)的抗性反應(yīng)及植物的生長(zhǎng)發(fā)育調(diào)控。另外,由于插入位點(diǎn)所在的間隔區(qū)長(zhǎng)達(dá)11.96 kb,也可能在該區(qū)段內(nèi)有未知的功能基因或未知的調(diào)控序列存在。
前人研究表明,施用外源MeJA、SA和ET可誘導(dǎo)植株產(chǎn)生抗性,影響植食性昆蟲(chóng)的取食和生長(zhǎng)發(fā)育,昆蟲(chóng)表現(xiàn)為體重下降或拒食(桂連友等,2004;龍亞芹等,2009;Lu et al.,2014)。本研究利用MeJA、SA和ET 3種外源生長(zhǎng)激素處理ZH11及其純合突變株系CF54-6和CF54-10后,結(jié)果發(fā)現(xiàn),三者植株上褐飛虱的蟲(chóng)體增重量和蜜露分泌量均呈下降趨勢(shì),其中,經(jīng)MeJA處理的純合突變株系CF54-6和CF54-10植株上褐飛虱抗性較ZH11顯著下降,說(shuō)明3種外源生長(zhǎng)激素均能誘導(dǎo)水稻野生型及其純合突變株系植株對(duì)褐飛虱的取食與生長(zhǎng)發(fā)育產(chǎn)生抑制作用,尤其是MeJA抑制效果更佳,推測(cè)這2個(gè)突變株系抗蟲(chóng)性受JA信號(hào)途徑的影響。郭安(2009)研究也發(fā)現(xiàn),水稻T-DNA右邊界側(cè)翼插入的一段281 bp DNA序列(NtTLA)后,MeJA處理可增強(qiáng)水稻T-DNA插入突變體中NtTIA的表達(dá)水平,推測(cè)NtTIA參與JA信號(hào)途徑中的抗病防衛(wèi)機(jī)制??梢?jiàn),與SA和ET相比,MeJA對(duì)水稻T-DNA插入突變體CF54的褐飛虱抗性誘導(dǎo)作用更強(qiáng),可能是T-DNA插入導(dǎo)致突變體植株后JA介導(dǎo)的信號(hào)通路被激活,外源MeJA處理產(chǎn)生更多防御抗蟲(chóng)物質(zhì)的原因。因此,下一步應(yīng)深入分析T-DNA插入位點(diǎn)兩端的序列特征,檢測(cè)其轉(zhuǎn)錄表達(dá)情況及其與JA信號(hào)途徑基因的關(guān)系,探討插入位點(diǎn)與抗蟲(chóng)性的關(guān)系。
4 結(jié)論
ET、SA和MeJA 3種外源生長(zhǎng)激素均能誘導(dǎo)水稻野生型及其純合突變株系植株對(duì)褐飛虱的取食與生長(zhǎng)發(fā)育產(chǎn)生抑制作用,尤其是MeJA抑制效果最佳,推測(cè)突變株系抗蟲(chóng)性受茉莉酸(JA)信號(hào)途徑的影響。T-DNA插入明顯影響水稻植株的農(nóng)藝性狀。
參考文獻(xiàn):
鄧釗,石少階,王卉穎,上官欣欣,劉丙芳,荊勝利,杜波,陳榮智,祝莉莉,何光存. 2016. 秈稻資源WD15515中抗褐飛虱QTL的定位研究[J]. 作物學(xué)報(bào),42(3):353-360. [Deng Z,Shi S J,Wang H Y,Shangguang X X,Liu B F,Jing S L,Du B,Chen R Z,Zhu L L,He G C. 2016. Analysis of QTLs for brown planthopper resistance in indica rice WD15515[J]. Journal of Crop,42(3):353-360.]
桂連友,劉樹(shù)生,陳宗懋. 2004. 外源茉莉酸和茉莉酸甲酯誘導(dǎo)植物抗蟲(chóng)作用及其機(jī)理[J]. 昆蟲(chóng)學(xué)報(bào),47(4):507-514. [Gui L Y,Liu S S,Chen Z M. 2004. Plant resistance to insects induced by application of exogenous jasmonic acid and methyl jasmonate[J]. Journal of Entomology,47(4):507-514.]
郭安. 2009. T-DNA插入突變體及2,4-二氧四氫喋啶合酶基因?qū)共》佬l(wèi)反應(yīng)作用的研究[D]. 南京:南京農(nóng)業(yè)大學(xué). [Guo A. 2009. The research on mutant generated by T-DNA insertion and lumazine synthase gene affects pathogen defense[D]. Nanjing:Nanjing Agricultural University.]
郭惠民. 2015. 水稻抗褐飛虱相關(guān)基因AOC和TOM64的功能及抗蟲(chóng)機(jī)理研究[D]. 北京:中國(guó)科學(xué)院大學(xué). [Guo H M. 2015. Function and insect resistance mechanism of AOC and TOM64 genes related to brown planthopper resistance in rice[D]. Beijing:University of Chinese Acade-my of Sciences.]
胡德文,何之常,史紅梅. 1999. 鈣/鈣調(diào)素依賴性蛋白激酶在植物中的生理調(diào)節(jié)作用[J]. 武漢植物學(xué)研究,17(S1):89-98. [Hu D W,He Z C,Shi H M. 1999. The regulation role of calcium/calmodulin-dependent protein kinase on physiologic properties in higher[J]. Plants Journal of Wuhan Botanical Research,17(S1):89-98.]
龍亞芹,王萬(wàn)東,王美存,陳于福,解德宏,陳華蕊,俞艷春,尼章光. 2009. 水楊酸(SA)誘導(dǎo)植物對(duì)病蟲(chóng)害產(chǎn)生抗性及作用機(jī)制研究[J]. 熱帶農(nóng)業(yè)科學(xué),29(12):46-50. [Long Y Q,Wang W D,Wang M C,Chen Y F,Xie D H,Chen H R,Yu Y C,Ni Z G. 2009. Salicylic acid induced resistance of plants against insects and diseases and its intera-ction mechanism[J].Tropical Agricultural Science,29(12):46-50.]
魯玉杰,王霞,婁永根,程家安. 2006. 乙烯信號(hào)轉(zhuǎn)導(dǎo)途徑在褐飛虱誘導(dǎo)的水稻揮發(fā)物釋放中的作用[J]. 科學(xué)通報(bào),51(18):2146-2153. [Lu Y J,Wang X,Lou Y G,Cheng J A. 2006. The role of ethylene signal transduction pathway in rice volatile release induced by brown planthopper[J]. Scientific Bulletin,51(18):2146-2153.]
王海鵬,黃曉西,梁越洋,朱軍,張翠霞,王秀梅,貢常委,鄭愛(ài)萍,鄧其明,李雙成,王玲霞,李平,王世全. 2016. 轉(zhuǎn)Cry30Fa1基因抗褐飛虱水稻的獲得及鑒定[J]. 中國(guó)水稻科學(xué),30(3):256-264. [Wang H P,Huang X X,Liang Y Y,Zhu J,Zhang C X,Wang X M,Gong C W,Zheng A P,Deng Q M,Li S C,Wang L X,Li P,Wang S Q. 2016. Development and identification of insect resistant transgenic rice with Cry30Fa1 gene[J]. Chinese Rice Scien-ce,30(3):256-264.]
王慧,嚴(yán)志,陳金節(jié),周桂香,方玉,王林,黃艷玲,張從合,張?jiān)苹? 2016. 水稻抗褐飛虱基因研究進(jìn)展與展望[J]. 雜交水稻,31(4):1-5. [Wang H,Yan Z,Chen J J,Zhou G X,F(xiàn)ang Y,Wang L,Huang Y L,Zhang C H,Zhang Y H. 2016. Research progress and prospect of brown plantho-pper resistance genes in rice[J]. Hybrid Rice,31(4):1-5.]
吳瑩瑩,吳碧球,陳燕,黃所生,黃鳳寬. 2012. 茉莉酸甲酯誘導(dǎo)水稻對(duì)褐飛虱抗性與植株總酚含量的關(guān)系研究[J]. 西南農(nóng)業(yè)學(xué)報(bào),25(2):462-466. [Wu Y Y,Wu B Q,Chen Y,Huang S S,Huang F K. 2012. Relations between resistance of rice induced by methyl jasmonate,brown planthopper and total phenol content[J]. Southwest Journal of Agriculture,25(2):462-466.]
姚張良,曹夢(mèng)嬌,王霞,繆家順,沈勵(lì)澤,鄧建宇,吳慧明,徐志宏,婁永根,周?chē)?guó)鑫. 2014. 脂氧合酶OsRCI-1正調(diào)控水稻對(duì)二化螟的抗性[J]. 環(huán)境昆蟲(chóng)學(xué)報(bào),36(4):507-515. [Yao Z L,Cao M J,Wang X,Miao J S,Shen L Z,Deng J Y,Wu H M,Xu Z H,Lou Y G,Zhou G X. 2014. Rice lipoxygenase gene OsRCI-1 mediated pathway positively regulates resistance to rice striped stem borer[J]. Journal of Environmental Insects,36(4):507-515.]
張斌,何福林. 2017. 三引物法鑒定轉(zhuǎn)基因水稻U5純合體[J]. 分子植物育種,15(11):4476-4482. [Zhang B,He F L. 2017. Identification of transgenic rice U5 homozygote by three primers[J]. Molecular Plant Breeding,15(11):4476-4482.]
趙潔,劉峙,彭于發(fā),齊放軍. 2013. 轉(zhuǎn)基因植物非預(yù)期效應(yīng)檢測(cè)評(píng)價(jià)技術(shù)的發(fā)展[J]. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),15(2):64-69. [Zhao J,Liu Z,Peng Y F,Qi F J. 2013. Progress on technology for detection and evaluation of unintended effects of genetically modified plants[J]. China Agricultural Science and Technology Report,15(2):64-69.]
Chen S Y,Jin W Z,Wang M Y,Zhang F,Zhou J,Jia Q J,Wu Y R,Liu F Y,Wu P. 2010. Distribution and characterization of over 1000 T-DNA tags in rice genome[J]. The Plant Journal,36(1):105-113.
Du B,Zhang W L,Liu B F,Hu J,Wei Z,Shi Z Y,He R F,Zhu L L,Chen R Z,Han B,He G C. 2009. Identification and characterization of Bph14,a gene conferring resistance to brown planthopper in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,106(52):22163-22168.
Guo J P,Xu C,Wu D,Zhao Y,Qiu Y F,Wang X X,Yang Y,Cai B D,Liu X,Jing S L,Shangguan X X,Wang H Y,Ma Y H,Hu L,Wu Y,Shi S J,Wang W L,Zhu L L,Xu X,Chen R Z,F(xiàn)eng Y Q,He G C. 2018. Bph6 encodes an exocyst-localized protein and confers broad resistance to planthoppers in rice[J]. Nature Genetics,50(2):297-306.
Liu Y,Wu H,Chen H,Wu H,Chen H,Liu Y L,He J,Kang H Y,Sun Z G,Pan G,Wang Q,Hu J L,Zhou F,Zhou K N,Zheng X M,Ren Y L,Chen L M,Wang Y H,Zhao Z G,Lin Q B,Wu F Q,Zhang X,Guo X P,Cheng X N,Jiang L,Wu C Y,Wang H Y,Wan J M. 2014. A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice[J]. Nature Biotechnology,33(3):301-305.
Lu J,Li J C,Ju H P,Liu X L,Erb M,Wang X,Lou Y G. 2014. Contrasting effects of ethylene biosynthesis on induced plant resistance against a chewing and a piercing-sucking herbivore in rice[J]. Molecular Plant,7(11):1670-1682.
Meng X B,Yu H Z,Zhang Y Z,Zhuang F F,Song X G,Gao S S,Gao C X,Li J Y. 2017. Construction of a genome-wide mutant library in rice using CRISPR/Cas9[J]. Molecular Plant,10(9):1238-1241.
Srinivasan T S,Almazan M L P,Bernal C C,F(xiàn)ujita D,Ramal A F,Yasui H,Subbarayalu M K,Horgan F G. 2015. Cu-rrent utility of the BPH25,and BPH26,genes and possibi-lities for further resistance against plant and leafhoppers from the donor cultivar ADR52[J]. Applied Entomology & Zoology,50(4):533-543.
Wang H,Shi S,Guo Q,Nie L,Du B,Chen R,Zhu L,He G C. 2018. High-resolution mapping of a gene conferring strong antibiosis to brown planthopper and developing resistant near-isogenic lines in 9311 background[J]. Mole-cular Breeding,38(8):107.
Zhao Y,Huang J,Wang Z Z,Jing S L,Wang Y,Ouyang Y D,Cai B D,Xin X F,Liu X,Zhang C X,Pan Y F,Ma R,Li Q F,Jiang W H,Zeng Y,Shangguan X X,Wang H Y,Du B,Zhu L L,Xu X,F(xiàn)eng Y Q,He S Y,Chen R Z,Zhang Q F,He G C. 2016. Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation[J]. Proceedings of the National Academy of Sciences of the United States of America,113(45):12850-12855.
(責(zé)任編輯 陳 燕)