袁培銀,王平義,劉添宇,趙 宇,3
(1. 重慶交通大學(xué) 河海學(xué)院,重慶 400074; 2. 重慶交通大學(xué) 航運(yùn)與船舶工程學(xué)院,重慶 400074;3. 重慶交通大學(xué) 建筑與城市規(guī)劃學(xué)院,重慶 400074)
隨著經(jīng)濟(jì)的不斷發(fā)展,人們收入不斷增加,海上旅游業(yè)也不斷興旺,旅游船隊(duì)的規(guī)模不斷增大,內(nèi)河與海上的旅游觀光人數(shù)越來(lái)越多,如今,海上旅游已經(jīng)成為歐洲以及亞洲人的一種時(shí)尚[1-3]。隨著豪華游輪數(shù)量的增加及級(jí)別的提高,對(duì)大型船舶的系泊安全要求也越來(lái)越高,豪華游輪的系泊系統(tǒng)已成為船舶??亢透劭谠O(shè)計(jì)需要考慮的重要問(wèn)題[4-6]。國(guó)內(nèi)外對(duì)于船舶碼頭系泊的研究始于20世紀(jì) 90年代后期,于洋等[7]、吳小鵬[8]及A. R. SHASHIKALA等[9]采用物理模型試驗(yàn)、數(shù)值模擬的方法對(duì)影響船舶系纜力的海洋動(dòng)力因素、船舶因素進(jìn)行了研究;周宏康等[10]通過(guò)模型實(shí)驗(yàn)得到FSRU的運(yùn)動(dòng)響應(yīng)和系泊纜張力;嵇春艷等[11]以碼頭系泊為研究對(duì)象,利用水動(dòng)力分析軟件AQWA,分析了不同浪向角作用下,系泊船舶的幅值響應(yīng)算子和一階波浪力,采用不同方式優(yōu)化船舶系泊系統(tǒng);H.W.LEE等[12]提出了一種應(yīng)用柔性動(dòng)力學(xué)的有限元方法,用于研究系泊纜索與海底的相互耦合作用,并將該方法應(yīng)用到實(shí)際工程中;S. Y. LEE[13]提出了一種應(yīng)用于海上浮動(dòng)結(jié)構(gòu)的新的導(dǎo)向樁碼頭系泊系統(tǒng);陳里等[14]分析了滑坡涌浪作用下系泊船舶系纜力和撞擊能的影響因素,探討了在波高、水深等影響下系泊船舶系纜力和撞擊能的變化規(guī)律,確定了滑坡涌浪對(duì)內(nèi)河船舶系泊安全的影響程度。筆者針對(duì)碼頭與大型游船組成的靠幫系泊系統(tǒng),編寫(xiě)了多浮體水動(dòng)力分析程序,研究了船舶與碼頭間不同距離、不同形狀的碼頭對(duì)系泊船舶的影響規(guī)律。研究方法及計(jì)算程序可推廣至多個(gè)浮體運(yùn)動(dòng)規(guī)律研究中。
采用方形碼頭及圓筒形碼頭這2種不同形狀的碼頭對(duì)相同船舶進(jìn)行系泊分析。船舶與碼頭系泊示意如圖1,其主要尺度參數(shù)見(jiàn)表1。
圖1 船舶與碼頭系泊示意Fig. 1 Diagrammatic sketch of wharf
船舶方形碼頭圓筒形碼頭總長(zhǎng)/m141.8長(zhǎng)/m280總長(zhǎng)/m280型深/m4.2深/m40型深/m12型寬/m19.0寬/m7.7型寬/m12吃水/m2.8帶纜樁/個(gè)12帶纜樁/個(gè)12排水量/t12 516排水量/t26 400排水量/t9 853
圖2 船舶六自由度的RAO曲線Fig. 2 RAO curves of 6-DOF of ship
游船碼頭系泊共有8根系纜繩,其中船艏纜和船尾纜各2根,船中橫纜4根交叉進(jìn)行系泊。纜繩為尼龍材料制成,系纜繩直徑為100 mm,最大拉力為140 kN。
筆者主要研究系泊船舶在風(fēng)浪共同作用下的運(yùn)動(dòng)響應(yīng),風(fēng)速為1.5 m/s,入射方向?yàn)?0°,波浪以180°入射,有義波高為0.8 m。
圖2為船舶六自由度幅值響應(yīng)算子隨著方形碼頭距離的不同而變化的情況。在計(jì)算過(guò)程中,船舶與方形碼頭距離分別為5、10、20、40、100、500 m。
從圖2可以看出,碼頭距離的大小對(duì)旅游船六自由度幅值響應(yīng)算子的變化影響較小。船舶六自由度的幅值響應(yīng)算子的變化周期、變化趨勢(shì)和峰值變化不明顯。
圖3為船舶六自由度上的幅值響應(yīng)算子隨著不同形狀碼頭而產(chǎn)生的變化情況。
圖3 不同形狀碼頭系泊時(shí)船舶六自由度RAO曲線Fig. 3 RAO curves of 6-DOF of ship in different wharfs
由圖3可以看出,當(dāng)船舶的運(yùn)動(dòng)周期為25 s時(shí),不同形狀的碼頭對(duì)船舶六自由度上的幅值響應(yīng)算子影響是不同的,可以得出以下結(jié)論:
1)船舶縱蕩,橫蕩和艏搖運(yùn)動(dòng)幅值隨時(shí)間的增加一直呈現(xiàn)上升趨勢(shì),如圖3(a)、(b)、(f)。在縱蕩方面,在圓筒形碼頭的影響下船舶的運(yùn)動(dòng)幅值更小,說(shuō)明在方形船舶影響下,船舶縱蕩運(yùn)動(dòng)更加劇烈;在橫蕩方面,與縱蕩運(yùn)動(dòng)相反,在方形碼頭的影響下船舶的運(yùn)動(dòng)幅值更小,說(shuō)明船舶受到圓筒形碼頭的影響更大;在艏搖方面,方形碼頭和圓筒形碼頭對(duì)船舶的影響沒(méi)有明顯的變化。
2)船舶橫搖和縱搖運(yùn)動(dòng)幅值隨時(shí)間的增加都呈現(xiàn)先增加后減小的趨勢(shì),如圖3(d)、(e)。在圓筒形碼頭的影響下,船舶的運(yùn)動(dòng)幅值更大,在橫搖和縱搖運(yùn)動(dòng)上分別出現(xiàn)最大幅值,說(shuō)明船舶橫搖和縱搖運(yùn)動(dòng)幅值響應(yīng)算子受圓筒型碼頭影響較方形碼頭影響大。
3)船舶垂蕩隨時(shí)間的增加呈現(xiàn)先減小后增大的趨勢(shì),如圖3(c);但是,在方形碼頭的影響下,船舶的運(yùn)動(dòng)幅值更小,說(shuō)明船舶垂蕩幅值響應(yīng)算子受圓筒型碼頭影響較方形碼頭影響大。
由船舶的幅值響應(yīng)算子曲線(圖2、圖3 )可以看出,不同碼頭形狀對(duì)船舶的頻域結(jié)果的影響也不經(jīng)相同。筆者選擇船舶分別??糠叫未a頭和圓筒形碼頭來(lái)分析系泊船舶在時(shí)域內(nèi)的運(yùn)動(dòng)響應(yīng)問(wèn)題。研究中,2種碼頭的系纜樁位置與纜繩的長(zhǎng)度、材料、預(yù)張力等物理特性保持一致。在方形碼頭和圓筒形碼頭上的船舶系泊示意如圖4。
圖4 碼頭系泊示意Fig. 4 Schematic of wharf mooring
采用筆者自編的程序來(lái)求解船舶與系泊纜索的完全時(shí)域耦合關(guān)系,分析船舶在不同形狀碼頭、相同系泊系統(tǒng)作用下,船舶六自由度運(yùn)動(dòng)響應(yīng)情況(圖5),計(jì)算時(shí)間為3 h,時(shí)間步長(zhǎng)為0.2 s。
圖5 船舶六自由度響應(yīng)曲線Fig. 5 Response curves of 6-DOF of ship
由圖5可以看出:
1)分別系泊??吭诜叫未a頭或圓筒形碼頭,船舶的運(yùn)動(dòng)頻率基本一致。系泊在圓筒形碼頭時(shí),船舶縱蕩和垂蕩的運(yùn)動(dòng)比較劇烈,最大變化幅值分別為1.2 m和0.2 m;系泊在方形碼頭時(shí),船舶橫蕩的運(yùn)動(dòng)比較劇烈,最大變化幅值2.0 m。
2)分別在方形碼頭或圓筒形碼頭系泊下,船舶的運(yùn)動(dòng)頻率基本一致。系泊在方形碼頭時(shí),船舶縱搖和艏搖運(yùn)動(dòng)比較劇烈,最大變化幅值分別為0.4°和3.0°;系泊在圓筒形碼頭時(shí),船舶的橫搖比較劇烈,最大幅值為0.8°。
筆者以某大型游船為例,自編程多體水動(dòng)力學(xué)文件,以碼頭及船舶之間的距離、不同系泊碼頭形狀為變量,研究系泊船舶的水動(dòng)力性能,得到以下結(jié)論:
1)船舶與碼頭間距在50~500 m范圍內(nèi),碼頭間距對(duì)船舶頻域內(nèi)六自由度的幅值響應(yīng)算子基本沒(méi)有影響。
2)據(jù)對(duì)水動(dòng)力特性的分析,圓筒形碼頭對(duì)船舶在橫蕩、垂蕩、橫搖和縱搖等運(yùn)動(dòng)起到一定的增幅作用,但增幅幅值較??;而圓筒形碼頭能大大地減小船舶縱蕩。
3)完全時(shí)域耦合分析發(fā)現(xiàn),船舶在運(yùn)動(dòng)過(guò)程中,運(yùn)動(dòng)頻率保持一致。與方形碼頭系泊相比,船舶在圓筒形碼頭系泊作用下,橫蕩、縱搖和艏搖運(yùn)動(dòng)受到的影響較大;圓筒形碼頭可有效地減小船舶的運(yùn)動(dòng)幅值,而縱蕩,垂蕩和橫搖運(yùn)動(dòng)較為平緩。
4)方形碼頭與圓筒形碼頭對(duì)船舶縱蕩、橫蕩、垂蕩、橫搖、縱搖和艏搖運(yùn)動(dòng)的影響效果不同,如果注重船舶橫蕩運(yùn)動(dòng)幅值控制,應(yīng)選用方形碼頭;如果注重船舶縱搖運(yùn)動(dòng)控制,應(yīng)選用圓筒形碼頭。