周岳陵,岳正波,胡馥鵬,王 進(jìn)
摻氮碳量子點(diǎn)對(duì)光合細(xì)菌生長(zhǎng)過(guò)程的影響
周岳陵,岳正波,胡馥鵬,王 進(jìn)*
(合肥工業(yè)大學(xué)資源與環(huán)境工程學(xué)院,安徽 合肥 230009)
以檸檬酸為碳源?乙二胺為修飾劑,一步水熱合成了摻氮碳量子點(diǎn)(N-CQDs).通過(guò)分析光合色素?蛋白質(zhì)和丙二醛等生理指標(biāo),研究了N-CQDs對(duì)光合細(xì)菌生長(zhǎng)的影響.結(jié)果表明N-CQDs抑制了的生長(zhǎng)并呈現(xiàn)濃度-效應(yīng)關(guān)系;光合色素分析表明N-CQDs促使菌體的類胡蘿卜素含量提高,菌綠素含量降低;光譜分析表明N-CQDs導(dǎo)致了胞內(nèi)物質(zhì)(如光合色素?蛋白質(zhì)等)的泄漏.N-CQDs較強(qiáng)的光誘導(dǎo)電子轉(zhuǎn)移能力導(dǎo)致培養(yǎng)體系中產(chǎn)生過(guò)量自由基,自由基引發(fā)一系列脂質(zhì)過(guò)氧化反應(yīng),進(jìn)而導(dǎo)致生物膜的破裂?物質(zhì)外泄和細(xì)菌衰亡.光照下N-CQDs對(duì)表現(xiàn)出較高的毒性.研究結(jié)果對(duì)于認(rèn)識(shí)N-CQDs的光致毒性及其生態(tài)環(huán)境效應(yīng)具有一定的參考價(jià)值.
摻氮碳量子點(diǎn);光合細(xì)菌;光合色素;細(xì)胞毒性
近年來(lái),隨著碳納米材料的大量開(kāi)發(fā)與使用,其不可避免地被釋放到環(huán)境中,增加了生物與其接觸的機(jī)會(huì).碳納米材料的毒性效應(yīng)和環(huán)境風(fēng)險(xiǎn)受到研究者的廣泛關(guān)注[1-3].研究證實(shí)多壁碳納米管[4]?單壁碳納米管[5]和富勒烯[6]等碳納米材料對(duì)微生物和高等生物具有一定的生態(tài)毒性風(fēng)險(xiǎn).
碳量子點(diǎn)(CQDs)泛指一類粒徑小于10nm,在光激發(fā)下能發(fā)熒光的新型碳納米材料.由于其光吸收和光誘導(dǎo)電子轉(zhuǎn)移能力以及粒徑小?水分散性良好等特性,CQDs已被證實(shí)在眾多領(lǐng)域具有非常好的應(yīng)用前景.但是,CQDs具有豐富的表面官能團(tuán)和活躍的物化特性,其進(jìn)入環(huán)境后可能會(huì)對(duì)環(huán)境微生物造成負(fù)面影響,對(duì)生態(tài)系統(tǒng)和人類健康造成危害.因此,有必要對(duì)CQDs潛在的生物毒性和生態(tài)效應(yīng)進(jìn)行評(píng)估.
關(guān)于CQDs的生物毒性研究涉及的實(shí)驗(yàn)對(duì)象有細(xì)胞[7-8]、細(xì)菌[9-11]、藻類[12]、斑馬魚(yú)[13]、老鼠[14]等,研究的生物種類較為有限,得到的實(shí)驗(yàn)結(jié)果也不盡相同.CQDs的細(xì)胞毒性通常存在濃度依賴性,濃度越高,細(xì)胞毒性越明顯,但同種CQDs對(duì)不同類型的細(xì)胞可能表現(xiàn)出不同的毒性[7].Biswas等[8]也發(fā)現(xiàn)CQDs對(duì)不同的細(xì)菌具有不同的毒性表現(xiàn).除細(xì)胞和細(xì)菌外,研究發(fā)現(xiàn),CQDs對(duì)環(huán)境中的生產(chǎn)者藻類也具有顯著的生物毒性,當(dāng)CQDs濃度達(dá)到一定數(shù)值時(shí),通常會(huì)抑制藻類的生長(zhǎng)及其光合作用[12].盡管有研究表明CQDs對(duì)魚(yú)類和鼠類等動(dòng)物未表現(xiàn)出明顯的致毒效應(yīng)[13-14],但對(duì)于環(huán)境中日漸增多的CQDs,其潛在的生態(tài)毒性和環(huán)境影響應(yīng)當(dāng)引起我們足夠的重視.
近些年來(lái),雖然有關(guān)CQDs的生物毒性研究已廣泛開(kāi)展,但對(duì)于CQDs光感特性與生物毒性之間的認(rèn)識(shí)有限.考慮到CQDs的光電活性,其在光照環(huán)境下對(duì)環(huán)境微生物的影響可能更大.本文以光敏感性的常見(jiàn)環(huán)境微生物光合細(xì)菌()作為研究對(duì)象,探討CQDs對(duì)生長(zhǎng)過(guò)程的影響及其潛在環(huán)境效應(yīng),從而豐富CQDs對(duì)環(huán)境微生物影響的認(rèn)識(shí),為進(jìn)一步理解CQDs的生態(tài)效應(yīng)以及評(píng)估其生態(tài)風(fēng)險(xiǎn)提供參考.
光合細(xì)菌()由中國(guó)科學(xué)技術(shù)大學(xué)盛國(guó)平教授饋贈(zèng).培養(yǎng)基為HCH培養(yǎng)基[15].
在50mL聚四氟乙烯內(nèi)襯的不銹鋼反應(yīng)釜中加入1.0g檸檬酸?10mL超純水以及0.3mL乙二胺,混合均勻后于200℃反應(yīng)5h.自然冷卻后將反應(yīng)液離心10min(8000r/min).上清液用3500Da的透析袋透析2d,得到N-CQDs儲(chǔ)備液,濃度為14.4mg/L(以碳計(jì)).
以50mL透明玻璃瓶為反應(yīng)器,培養(yǎng)體積為40mL.每瓶接種4mL的母液(OD660= 1.5).按照實(shí)驗(yàn)設(shè)計(jì)加入N-CQDs,鼓氬氣5min后用丁基橡膠塞與鋁蓋封瓶,放置于光照培養(yǎng)箱(光強(qiáng)4500lux,32℃)靜置培養(yǎng).N-CQDs添加量分別為0,1.8,3.6和7.2mg/L(以碳計(jì)).每組設(shè)定3個(gè)平行.每隔一定時(shí)間抽取菌液用于測(cè)定OD660?光合色素?蛋白質(zhì)和丙二醛等生理指標(biāo).
光合色素的提取:取5mL菌液,離心收集菌體(12000r/min,30min),5mL蒸餾水洗滌3次.菌體懸浮于5mL丙酮-甲醇(7:2,v/v)溶液中超聲浸提10min (300W,60%),離心收集上清液(12000r/min,10min).重復(fù)上述浸提過(guò)程2次,合并提取液用于光譜分析.類胡蘿卜素(Car)和菌綠素(Bchl)含量按Jessen和Beer-Lambert-Bouguer定律進(jìn)行計(jì)算[16].
利用場(chǎng)發(fā)射透射電鏡(JEM-2100F,日本)對(duì)N-CQDs形貌觀測(cè)表征.利用紫外-可見(jiàn)分光光度計(jì)(UV1750,日本島津)?熒光分光光度計(jì)(F4600,日本日立)對(duì)N-CQDs和培養(yǎng)液進(jìn)行光譜表征.培養(yǎng)液中蛋白質(zhì)與丙二醛含量分別采用南京建成生物工程研究所的總蛋白測(cè)試盒(A045-2-2)和丙二醛測(cè)試盒(A003-1-2)測(cè)試.數(shù)據(jù)處理及分析采用Microsoft Excel 2007和Origin 8.0軟件.
蛋白質(zhì)(Protein)的含量按公式(1)計(jì)算.
式中:P為樣品的Protein濃度,g/L;ODT、ODC和ODS分別為樣品?對(duì)照和標(biāo)準(zhǔn)品的OD值;S為標(biāo)準(zhǔn)品的濃度,g/L.
丙二醛(MDA)的含量按公式(2)計(jì)算.
式中:M為樣品的MDA含量,nmol/mL;ODT、ODC、ODS和ODB分別為樣品、對(duì)照、標(biāo)準(zhǔn)品和空白的OD值;S為標(biāo)準(zhǔn)品的濃度,nmol/mL;?為樣品的稀釋倍數(shù).
圖1a表明N-CQDs在340nm處有特征吸收峰,當(dāng)激發(fā)波長(zhǎng)為340nm時(shí),熒光發(fā)射峰為460nm.圖1b表明N-CQDs的熒光發(fā)射與激發(fā)波長(zhǎng)有關(guān),表現(xiàn)出激發(fā)光依賴性.熒光發(fā)射峰半峰寬較小,說(shuō)明粒徑分布較為均勻.TEM結(jié)果進(jìn)一步證實(shí)N-CQDs粒徑小于10nm,尺寸分布均勻,顆粒分散性良好,無(wú)團(tuán)聚(圖1c).
如圖2所示培養(yǎng)初期,N-CQD對(duì)其生長(zhǎng)繁殖過(guò)程無(wú)顯著影響.但培養(yǎng)至第7d,N- CQD處理組的OD660值均低于對(duì)照組,且N-CQDs的濃度越大,OD660值越小.當(dāng)培養(yǎng)至衰亡期(第9d)時(shí),N-CQDs處理組的OD660值下降更快.黃淮青等[9]發(fā)現(xiàn)葡萄糖基熒光碳點(diǎn)(CDs)與調(diào)整期(2h)的酵母菌共培養(yǎng)時(shí),對(duì)數(shù)期(10h)時(shí)酵母數(shù)量隨著CDs的濃度增大而減少,這與本研究的現(xiàn)象一致.歐陽(yáng)少虎在研究氧化石墨烯(GO)和氧化石墨烯量子點(diǎn)(GOQD)對(duì)小球藻的毒性時(shí)發(fā)現(xiàn),兩者均表現(xiàn)為先促后抑.在培養(yǎng)的前48h,這2種碳材料均促進(jìn)了藻類的生長(zhǎng)分裂,而72h后兩者表現(xiàn)出抑制作用[17].N-CQDs對(duì)的生長(zhǎng)存在抑制,同時(shí)會(huì)加速細(xì)菌衰亡過(guò)程.這主要是由于納米材料在被內(nèi)化的過(guò)程中,會(huì)促進(jìn)親代與子代細(xì)胞壁的分裂,但經(jīng)細(xì)菌內(nèi)化后,可能會(huì)使菌體細(xì)胞逐漸出現(xiàn)結(jié)構(gòu)受損?氧化應(yīng)激增加?細(xì)胞代謝被干擾等不良反應(yīng),從而導(dǎo)致菌體的衰亡[17].
如圖2和表1所示,光照培養(yǎng)7d后對(duì)照組的生物量最高,各反應(yīng)組生物量隨N-CQDs添加量的增大而降低,當(dāng)N-CQDs濃度為7.2mg/L時(shí),生物量下降9.2%.因此,N-CQDs對(duì)的生長(zhǎng)過(guò)程存在抑制效果,主要體現(xiàn)為降低適應(yīng)期的細(xì)菌基數(shù),加速細(xì)菌衰亡,繼而使生物量降低,且這一效應(yīng)存在濃度依賴現(xiàn)象.
圖2 N-CQDs對(duì)R. acidophila培養(yǎng)過(guò)程的影響
表1 培養(yǎng)7d時(shí)R. acidophila的干重
圖3a表明各實(shí)驗(yàn)組均有類胡蘿卜素(Car)和菌綠素(Bchl)吸收峰,說(shuō)明N-CQDs并未影響中光合色素的種類.圖3b表明Car含量隨N-CQDs濃度的增大而增加,而B(niǎo)chl含量則隨N-CQDs濃度的增大而降低.Car作為一類輔助色素,能夠捕獲和傳遞光能,還可以保護(hù)光化學(xué)反應(yīng)中心,防止光損傷與自由基氧化.研究表明,鹽藻和雨生紅球藻在響應(yīng)環(huán)境脅迫時(shí),會(huì)合成和積累大量類胡蘿卜素[18-20].本研究中Car含量增加是自身對(duì)N-CQDs脅迫的響應(yīng).Bchl作為光化學(xué)反應(yīng)的主要色素,其含量與活性影響到細(xì)菌的生長(zhǎng)代謝過(guò)程.環(huán)境脅迫將破壞光合作用系統(tǒng),致使葉綠素含量不斷下降[21].細(xì)胞內(nèi)的高氧化應(yīng)激壓力也會(huì)影響生物體內(nèi)葉綠素a的合成[22].環(huán)境逆境下,細(xì)胞體內(nèi)產(chǎn)生的多種活性氧(H2O2,O2-,-OH*,1O2*等)會(huì)導(dǎo)致機(jī)體的氧化損傷[23],并且葉綠體是主要的靶器官[24].歐陽(yáng)少虎[17]發(fā)現(xiàn)GOQD會(huì)引起小球藻葉綠素a含量降低,他認(rèn)為可能是GOQDs抑制了葉綠素的合成.而本研究中,Bchl含量的降低,可能是N-CQDs破壞了光化學(xué)反應(yīng)中心的結(jié)構(gòu),導(dǎo)致Bchl的流失和分解.光合色素分析結(jié)果表明N-CQDs對(duì)表現(xiàn)出脅迫作用,而細(xì)菌通過(guò)合成Car來(lái)削弱此作用.
2.4.1 紫外-可見(jiàn)吸收光譜 對(duì)照組的初始培養(yǎng)液無(wú)特征吸收峰,而N-CQDs處理組則在340nm處出現(xiàn)特征峰.培養(yǎng)12d,各實(shí)驗(yàn)組于390nm處出現(xiàn)一個(gè)強(qiáng)吸收峰,且在500nm~600nm間有4個(gè)吸收峰,這些吸收峰與活細(xì)胞光譜的主要吸收峰相對(duì)應(yīng)(圖4a),可能是色素泄漏造成的.程茜茹等[25]發(fā)現(xiàn)沼澤紅假單胞菌的Bchl在光照下容易降解為一種相對(duì)穩(wěn)定的中間物質(zhì),該物質(zhì)在390nm處具有強(qiáng)吸收峰.N-CQDs處理組上清液中390nm處的吸收強(qiáng)度隨N-CQDs濃度的增大而增大,說(shuō)明Bchl的降解加劇.而B(niǎo)chl的降解通常涉及到羥基自由基以及脂質(zhì)過(guò)氧化物[21].N-CQDs可能引起了過(guò)度的脂質(zhì)過(guò)氧化反應(yīng),導(dǎo)致細(xì)胞膜的損傷,致使更多的胞內(nèi)物質(zhì)(如Bchl a)泄漏到培養(yǎng)基中.而B(niǎo)chl降解產(chǎn)物的增多,可能是處理組Bchl含量偏低的原因之一.
2.4.2 三維熒光光譜 圖5為對(duì)照組和添加7.2mg/ L的N-CQDs處理組不同時(shí)期培養(yǎng)液的三維熒光光譜分析結(jié)果.培養(yǎng)第3d,對(duì)照組培養(yǎng)液出現(xiàn)新的熒光峰(ex/em=400/465nm)(圖5b),此峰為聚羧酸類腐殖酸物質(zhì),說(shuō)明此時(shí)對(duì)照組代謝旺盛.而處理組中N-CQDs峰(ex/em=350/450nm)迅速消失,說(shuō)明N-CQDs能夠被細(xì)菌吸附或內(nèi)化.這可能是由于N-CQDs粒徑小于10nm,極易被內(nèi)化進(jìn)入菌體內(nèi).但此體系中并未出現(xiàn)ex/em=400/ 465nm熒光峰(圖5f),說(shuō)明N-CQDs處理組細(xì)菌的代謝可能受到限制.N-CQDs處理組第3d檢測(cè)到色素的熒光峰(ex/em=390/615nm和ex/em=390/675nm) (圖5f).這說(shuō)明胞內(nèi)色素發(fā)生外泄,光反應(yīng)中心可能遭到破壞[26].培養(yǎng)至第7d,對(duì)照組未檢測(cè)到的色素?zé)晒夥?表明其生長(zhǎng)狀態(tài)良好,物質(zhì)外流較少;而N-CQDs處理組中的色素?zé)晒夥暹M(jìn)一步增強(qiáng),說(shuō)明胞內(nèi)物質(zhì)在持續(xù)泄漏.
至第12d,細(xì)菌進(jìn)入衰亡期,各實(shí)驗(yàn)組中均檢測(cè)到色素?zé)晒夥?圖5d和h).表2顯示隨著N-CQDs的濃度增加,細(xì)胞色素的熒光峰強(qiáng)度相應(yīng)增大,進(jìn)一步證明N-CQDs處理組的細(xì)菌衰亡程度更嚴(yán)重.熒光光譜分析結(jié)果表明光照培養(yǎng)下N-CQDs對(duì)存在脅迫作用,并且整個(gè)生長(zhǎng)過(guò)程一直存在細(xì)菌胞內(nèi)物質(zhì)的持續(xù)泄漏.因此,N-CQDs對(duì)的損傷是一個(gè)持續(xù)的過(guò)程.
表2 色素?zé)晒馓卣鞣宓膹?qiáng)度
圖5 不同時(shí)刻培養(yǎng)液的三維熒光光譜圖
圖6 培養(yǎng)液中的蛋白質(zhì)和丙二醛含量
丙二醛(MDA)是細(xì)胞膜脂質(zhì)過(guò)氧化反應(yīng)的產(chǎn)物,其含量變化能夠反映細(xì)胞膜脂質(zhì)的過(guò)氧化程度.脂質(zhì)過(guò)氧化反應(yīng)會(huì)持續(xù)引發(fā)細(xì)胞膜的損傷,進(jìn)而產(chǎn)生不可逆的破壞,導(dǎo)致細(xì)胞死亡,胞內(nèi)物質(zhì)外泄[27].培養(yǎng)液中蛋白質(zhì)和丙二醛的含量均隨N-CQDs濃度的增大而增高(圖6).蛋白質(zhì)的大量外泄表明N- CQDs導(dǎo)致了菌體細(xì)胞膜的受損[28-29].Travlou等[30]研究氮摻雜CQDs的抗菌活性時(shí)發(fā)現(xiàn),氨基和酰胺基在水溶液中的質(zhì)子化會(huì)使N-CQDs與細(xì)菌脂質(zhì)膜發(fā)生靜電相互作用,從而破壞細(xì)胞膜.N-CQDs的氮元素?fù)诫s可能加劇了CQDs的毒性.當(dāng)添加7.2mg/L的N-CQDs時(shí),實(shí)驗(yàn)組的MDA含量為對(duì)照組的2.3倍.張倩[31]在研究碳納米材料的毒性作用時(shí),檢測(cè)到氧化石墨烯(GO)暴露下的微藻的丙二醛含量的顯著升高,發(fā)現(xiàn)GO能夠誘導(dǎo)氧化脅迫,造成微藻細(xì)胞的膜脂質(zhì)過(guò)氧化.MDA含量的變化也能夠間接反應(yīng)機(jī)體細(xì)胞受自由基攻擊的嚴(yán)重程度.由于氨基和酰胺基的強(qiáng)給電子能力,N-CQDs能夠誘發(fā)大量活性氧(O2-、OH-、HO2-)的產(chǎn)生[30].這些活性氧會(huì)導(dǎo)致的氧化損傷,從而對(duì)脂質(zhì)?蛋白質(zhì)?核酸等造成損害,最終導(dǎo)致細(xì)胞死亡.
本研究發(fā)現(xiàn)N-CQDs對(duì)光合細(xì)菌的毒性存在濃度依賴性.培養(yǎng)7d時(shí)1.8,3.6,7.2mg/L的N-CQDs使得生物量分別下降了1.1%,5.2%和9.2%(表1).其中生物量抑制率(%)與N-CQDs濃度(mg/L)存在線性相關(guān)關(guān)系(2=0.97).董微等[32]研究也發(fā)現(xiàn)碳量子點(diǎn)對(duì)酵母菌的毒性表現(xiàn)出濃度依賴性.雖然碳量子點(diǎn)已被證實(shí)具有細(xì)胞毒性,但大部分研究表明碳量子點(diǎn)的毒性較小.當(dāng)細(xì)胞抑制率(活力或數(shù)量)為10%時(shí),碳量子點(diǎn)的濃度通常大于38mg/L(表3).而本研究中,當(dāng)N-CQDs的濃度為7.2mg/L時(shí),其對(duì)的抑制率已達(dá)到9.2%.因此,在光照下,N-CQDs可能表現(xiàn)出較高的毒性.
表3 碳量子點(diǎn)的細(xì)胞毒性
CQDs具有優(yōu)良的光電性質(zhì),既能作為電子供體也能成為電子受體.在持續(xù)光照下,CQDs通常會(huì)產(chǎn)生光生電子-空穴對(duì),形成的空穴和電子被分離且分別遷移到CQDs表面,能夠?qū)⑽皆谄浔砻娴牧u基和水分子氧化成羥基自由基(·OH),這些小分子具有很強(qiáng)的氧化能力,可以破壞或者降解有機(jī)物.研究表明CQDs能夠促進(jìn)羥基自由基和超氧自由基的生成[40-43].這些自由基容易攻擊細(xì)胞膜上的多不飽和脂肪酸,造成脂質(zhì)過(guò)氧化,導(dǎo)致細(xì)胞膜失去功能.同時(shí)能夠直接和蛋白質(zhì)?核酸等作用,導(dǎo)致細(xì)胞的病變或死亡.Biswas等[8]發(fā)現(xiàn)石墨烯量子點(diǎn)(GQDs)暴露下細(xì)菌出現(xiàn)物理?yè)p傷以及明顯的氧化應(yīng)激行為.本研究中當(dāng)N-CQDs被添加到培養(yǎng)基中,在光照下,體系內(nèi)會(huì)持續(xù)產(chǎn)生大量的自由基,從而引發(fā)一系列脂質(zhì)過(guò)氧化反應(yīng),丙二醛含量隨N-CQDs的濃度增大而增高.而膜結(jié)構(gòu)中豐富的多不飽和脂肪酸分子,有利于脂質(zhì)過(guò)氧化鏈?zhǔn)椒磻?yīng)的發(fā)生,這些連鎖反應(yīng)對(duì)細(xì)胞膜造成大量的損傷,最終破壞膜的完整性,導(dǎo)致大量膜蛋白和胞內(nèi)色素的泄漏.N-CQDs對(duì)環(huán)境微生物的脅迫作用和光致毒性等,值得進(jìn)一步關(guān)注.
以檸檬酸和乙二胺為原料水熱合成制得粒徑小于10nm發(fā)藍(lán)色熒光的N-CQDs.N-CQDs對(duì)光合細(xì)菌的生長(zhǎng)具有氧化脅迫作用,因此抑制了其生長(zhǎng)過(guò)程并導(dǎo)致胞內(nèi)蛋白及光合色素等泄漏.添加7.2mg/L的N-CQDs對(duì)的生物量抑制率達(dá)9.2%,反映細(xì)胞膜脂質(zhì)過(guò)氧化反應(yīng)的MDA濃度則是無(wú)添加對(duì)照組的2.3倍.
[1] 閭曉萍,黃 絢,楊 坤.碳納米材料的生物毒性效應(yīng)研究及展望 [J]. 環(huán)境污染與防治, 2011,33(5):87-94. Lv X P, Huang X, Yang K. Advance and perspectives of the bio- toxicity of carbon nanomaterial [J]. Environmental Pollution Control, 2011,33(5):87-94.
[2] 呂小慧,陳白楊,朱小山.氧化石墨烯的水環(huán)境行為及其生物毒性 [J]. 中國(guó)環(huán)境科學(xué), 2016,36(11):3348-3359. Lv X H, Chen B Y, Zhu X H. Fate and toxicity of graphene oxide in aquatic environment [J]. China Environmental Science, 2016,36(11): 3348-3359.
[3] 李佳昕,張 嫻,張愛(ài)清,等.碳納米材料的水環(huán)境行為及對(duì)水生生物毒理學(xué)研究進(jìn)展 [J]. 生態(tài)毒理學(xué)報(bào), 2017,12(5):12-25.Li J X, Zhang X, Zhang A Q, et al. A review of aquatic environmental behavior of carbon nanomaterials and its toxicological effects on aquatic organisms [J]. Asian Journal of Ecotoxicology, 2017,12(5): 12-25.
[4] 王玉琳,聞 韻,王曉慧,等.多壁碳納米管長(zhǎng)期作用對(duì)活性污泥系統(tǒng)的影響 [J]. 環(huán)境科學(xué)研究, 2014,27(12):1486-1492. Wang Y L, Wen Y, Wang X H,et al.Long-term effects of multi- walled carbon nanotubes on activated sludge system [J]. Research of Environmental Science, 2014,27(12):1486-1492.
[5] 朱小山,朱 琳,田勝艷,等.三種碳納米材料對(duì)水生生物的毒性效應(yīng) [J]. 中國(guó)環(huán)境科學(xué), 2008,28(3):269-273. Zhu X S, Zhu L, Tian S Y, et al. Toxicity effect of three kinds of carbon nanomaterials on aquatic organisms [J]. China Environmental Science. 2008,28(3):269-273.
[6] 朱小山,朱 琳,郎宇鵬,等.富勒烯及其衍生物對(duì)斑馬魚(yú)胚胎發(fā)育毒性的比較 [J]. 中國(guó)環(huán)境科學(xué), 2008,28(2):173-177. Zhu X S, Zhu L, Lang Y P,et al. Developmental toxicity in zebrafish embryos after exposure to three fullerene aggregates (nC60) and fullerol [J]. China Environmental Science, 2008,28(2):173-177.
[7] Arul V, Edison T N J I, Lee Y R,et al. Biological and catalytic applications of green synthesized fluorescent N-doped carbon dots using[J]. Journal of Photochemistry and Photobiology B: Biology, 2017,168:142-148.
[8] Biswas A, Khandelwal P, Das R,et al. Oxidant mediated one-step complete conversion of multi-walled carbon nanotubes to graphene quantum dots and their bioactivity against mammalian and bacterial cells[J]. Journal of Materials Chemistry B, 2017,5(4):785-796.
[9] 黃淮青,曾 萍,韓寶福,等.熒光碳點(diǎn)的合成及對(duì)釀酒酵母的毒性研究 [J]. 無(wú)機(jī)化學(xué)學(xué)報(bào), 2012,28(1):13-19. Huang H Q, Zeng P, Han B F,et al. Preparation of fluorescent carbon dots and its cytotoxicity for[J]. Chinese Journal of Inorganic Chemistry, 2012,28(1):13-19.
[10] Bagheri Z, Ehtesabi H, Hallaji Z,et al. Investigation the cytotoxicity and photo-induced toxicity of carbon dot on yeast cell [J]. Ecotoxicology and Environmental Safety, 2018,161:245-250.
[11] 劉文娟,靳競(jìng)男,馬家恒,等.熒光碳點(diǎn)納米材料對(duì)大腸桿菌的毒性研究 [J]. 化學(xué)與生物工程, 2015,32(9):26-30. Liu W J, Jin J N, Ma J H,et al. Toxic effect of photoluminescent carbon dots nanomaterial on[J]. Chemistry & Bioengineering, 2015,32(9):26-30.
[12] Xiao A, Wang C, Chen J,et al. Carbon and metal quantum dots toxicity on the microalgae[J]. Ecotoxicology and Environmental Safety, 2016,133:211-217.
[13] Kang Y, Li Y, Fang Y,et al. Carbon quantum dots for Zebrafish fluorescence imaging [J]. Scientific Reports, 2015,5(11835):1-12.
[14] Wang K, Gao Z, Gao G,et al. Systematic safety evaluation on photoluminescent carbon dots [J]. Nanoscale Research Letters, 2013,8(122):1-9.
[15] 何春華.光合細(xì)菌的分離鑒定和生長(zhǎng)條件優(yōu)化及應(yīng)用初探 [D]. 哈爾濱:哈爾濱工業(yè)大學(xué), 2009. He C H. Research on separation, identification, growth conditions of photosynthetic bacteria and application pre-test [D]. Harbin: Harbin Institute of Technology, 2009.
[16] 卓民權(quán),趙春貴,程茜茹,等.紫細(xì)菌光合色素指紋圖譜的建立與色素分析 [J]. 微生物學(xué)報(bào), 2012,52(6):760-768. Zhuo M Q, Zhao C G, Cheng X R,et al. Fingerprinting analysis of photopigments in purple bacteria [J]. Acta Microbiologica Sinica, 2012,52(6):760-768.
[17] 歐陽(yáng)少虎.三種碳納米材料對(duì)小球藻的毒性效應(yīng)及其機(jī)理研究 [D]. 天津:南開(kāi)大學(xué), 2016. OuYang S H. The toxic effects and mechanisms of three carbonaceous nanomaterials on[D]. Tianjin: Tianjin University, 2016.
[18] Lamers P P, van de Laak C C W, Kaasenbrood P S,et al. Carotenoid and fatty acid metabolism in light-stressed[J]. Biotechnology & Bioengineering, 2010,106(4):638-648.
[19] Lemoine Y, Schoefs B. Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress [J]. Photosynthesis Research, 2010,106(1/2):155-177.
[20] 李 瑩.強(qiáng)光脅迫下雨生紅球藻積累次生類胡蘿卜素過(guò)程中的光合作用變化和光保護(hù)機(jī)制 [D]. 武漢:華中師范大學(xué), 2005. Li Y. Photosynthetic acclimation and photoprotective mechanism of(Chlorophyceae) during the accumulation of secondary carotenoids at elevated irradiation [D]. Wuhan: Central China Normal University, 2005.
[21] Gomes M P, Le Manac'H S G, Maccario S,et al. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants [J]. Pesticide Biochemistry and Physiology, 2016,130:65-70.
[22] Perreault F, Popovic R, Dewez D. Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in[J]. Environmental Pollution, 2014,185:219-227.
[23] Li Z, Wakao S, Fischer B B,et al. Sensing and responding to excess light [J]. Annual Review of Plant Biology, 2009,60(1):239-260.
[24] Han D, Wang J, Sommerfeld M,et al. Susceptibility and protective mechanisms of motile and non motile cells of(chlorophyceae) to photooxidative stress [J]. Journal of Phycology, 2012,48(3):693-705.
[25] 程茜茹,趙春貴,卓民權(quán),等.沼澤紅假單胞菌光合色素的分離、組成分析與光穩(wěn)定性 [J]. 微生物學(xué)通報(bào), 2014,41(1):26-34. Cheng Q R, Zhao C G, Zhuo M Q,et al. Separation, characterization and light stability of photosynthetic pigments from[J]. Microbiology China, 2014,41(1):26-34.
[26] 殷高方,趙南京,胡 麗,等.基于色素特征熒光光譜的浮游植物分類測(cè)量方法 [J]. 光學(xué)學(xué)報(bào), 2014,34(9):312-317. Yin G F, Zhao N J, Hu L,et al. Classified measurement of phytoplankton based on characteristic fluorescence of photosynthetic pigments [J]. Acta Opitica Sinica, 2014,34(9):312-317.
[27] Ledford H K, Niyogi K K. Singlet oxygen and photo-oxidative stress management in plants and algae [J]. Plant Cell and Environment, 2005,28(8):1037-1045.
[28] 姜國(guó)飛,李旭飛,呂 艷,等.Cu/ZnO-RGO的抗菌性能及應(yīng)用 [J]. 中國(guó)環(huán)境科學(xué), 2018,38(8):3121-3128. Jiang G F, Li X F, Lv Y,et al. Antibacterial properties and application of Cu/ZnO-RGO nanocomposites [J]. China Environmental Science, 2018,38(8):3121-3128.
[29] 陳緒松,李 棟,劉志杰,等.等離子體射流滅活液體中銅綠假單胞菌的研究 [J]. 微生物學(xué)通報(bào), 2017,44(4):865-871. Chen X S, Li D, Liu Z J,et al. Inactivation ofin suspension using atmospheric pressure plasma jet [J]. Microbiology China, 2017,44(4):865-871.
[30] Travlou N A, Giannakoudakis D A, Algarra M,et al. S- and N-doped carbon quantum dots: surface chemistry dependent antibacterial activity [J]. Carbon, 2018,135:104-111.
[31] 張 倩.氧化石墨烯對(duì)4種微藻的致毒效應(yīng)研究 [D]. 青島:中國(guó)海洋大學(xué), 2015. Zhang Q. Toxicity of water dispersible graphene oxide (GO) to four species of algae [D]. Qingdao: Ocean University of China, 2015.
[32] 董 微,王 瑩,宋有濤,等.熒光碳點(diǎn)與CdTe量子點(diǎn)對(duì)畢赤酵母的毒性比較 [J]. 分析試驗(yàn)室, 2012,31(11):1-4. Dong W, Wang Y, Song Y T,et al. Comparison of cytotoxicity of fluorescent carbon dots and CdTe quantum dots for pichia pastoris [J]. Chinese Journal of Analysis Laboratory, 2012,31(11):1-4.
[33] Jiang K, Sun S, Zhang L,et al. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging [J]. Angewandte Chemie-international Edition, 2015,54(18): 5360-5363.
[34] Gong X, Lu W, Paau M C,et al. Facile synthesis of nitrogen-doped carbon dots for Fe3+sensing and cellular imaging [J]. Analytica Chimica Acta, 2015,861:74-84.
[35] Wei J, Zhang X, Sheng Y,et al. Simple one-step synthesis of water-soluble fluorescent carbon dots from waste paper [J]. New Journal of Chemistry, 2014,38(3):906-909.
[36] Deng J, Lu Q, Mi N,et al. Electrochemical synthesis of carbon nanodots directly from alcohols [J]. Chemistry-A European Journal, 2014,20(17):4993-4999.
[37] Sahu S, Behera B, Maiti T K,et al. Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents [J]. Chemical Communications, 2012, 48(70):8835-8837.
[38] Jaiswal A, Ghosh S S, Chattopadhyay A. One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol) [J]. Chemical Communications, 2012,48(3):407-409.
[39] Zhai X, Zhang P, Liu C,et al. Highly luminescent carbon nanodots by microwave-assisted pyrolysis [J]. Chemical Communications, 2012, 48(64):7955-7957.
[40] Di J, Xia J, Huang Y,et al. Constructing carbon quantum dots/Bi2SiO5ultrathin nanosheets with enhanced photocatalytic activity and mechanism investigation [J]. Chemical Engineering Journal, 2016,302: 334-343.
[41] Di J, Xia J, Chen X,et al. Tunable oxygen activation induced by oxygen defects in nitrogen doped carbon quantum dots for sustainable boosting photocatalysis [J]. Carbon, 2017,114:601-607.
[42] Sharma S, Umar A, Mehta S K,et al. Solar light driven photocatalytic degradation of levofloxacin using TiO2/Carbon-dot nanocomposites [J]. Chemical Engineering Journal, 2018,42(9):7445-7456.
[43] Zhang J, Yan M, Yuan X,et al. Nitrogen doped carbon quantum dots mediated silver phosphate/bismuth vanadate Z-scheme photocatalyst for enhanced antibiotic degradation [J]. Journal of Colloid and Interface Science, 2018,529:11-22.
致謝:光合細(xì)菌由中國(guó)科學(xué)技術(shù)大學(xué)盛國(guó)平教授饋贈(zèng),在此表示感謝.
Effect of nitrogen-doped carbonquantum dots on the growth of photosynthetic bacteria.
ZHOU Yue-ling, YUE Zheng-bo, HU Fu-peng, WANG Jin*
(School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China)., 2019,39(8):3396~3403
Nitrogen-doped carbon quantum dots (N-CQDs) were formed by one-step hydrothermal synthesis, using citric acid as carbon source and ethylene diamine as modifierin this study. The effects of N-CQDs on the growth of photosynthetic bacteriawere investigated by analyzing the physiological indexes of photosynthetic pigment, protein and malondialdehyde. The results showed that N-CQDs inhibited the growth ofand showed a concentration-effect relationship. Additionally, N-CQDs increased the content of carotenoid inwhile it decreased the content of bacteriochlorophyll. Furthermore, spectra analysis results showed that N-CQDs led to the leakage of intracellular sbustances such as photosynthetic pigment and protein. The strong light-induced electron transfer ability of N-CQDs resulted in excessive free radicals in the culture system of, which led to a series of lipid peroxidation reactions, which in turn led to the rupture of biofilms, material leakage and bacterial death. N-CQDs had a high toxicity onunder light. The results of this study are valuable for understanding the phototoxicity and ecological effects of N-CQDs.
N-CQDs;photosynthetic bacteria;photosynthetic pigment;cytotoxicity
X171.5
A
1000-6923(2019)08-3396-08
周岳陵(1994-),男,湖南衡陽(yáng)人,碩士研究生,主要研究方向?yàn)榄h(huán)境生態(tài)修復(fù).發(fā)表論文1篇.
2019-02-20
國(guó)家自然科學(xué)基金資助項(xiàng)目(41772361);中央高?;究蒲许?xiàng)目(JZ2017YYPY0246)
* 責(zé)任作者, 教授, sophiawj@hfut.edu.cn