• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      UV/Oxone降解水中撲熱息痛的效能及影響模型

      2019-08-28 03:06:50張夢(mèng)文陳菊香高乃云
      中國(guó)環(huán)境科學(xué) 2019年8期
      關(guān)鍵詞:預(yù)測(cè)值效能水體

      張夢(mèng)文,陳菊香,,楊 靜,高乃云

      UV/Oxone降解水中撲熱息痛的效能及影響模型

      張夢(mèng)文1,陳菊香1,2*,楊 靜1,高乃云2*

      (1.新疆大學(xué)建筑工程學(xué)院,新疆 烏魯木齊 830047;2.同濟(jì)大學(xué),污染控制與資源化研究國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海 200092)

      采用UV、oxone和UV/Oxone3種工藝降解ACE,同時(shí)對(duì)體系中氧化活性物質(zhì)種類(lèi)和貢獻(xiàn)率進(jìn)行鑒別和計(jì)算.采用響應(yīng)面曲線法研究HCO3?、Cl?、NO3?、pH值和溫度5因素、3水平條件下UV/Oxone對(duì)ACE的去除效果的綜合影響,并選用3種實(shí)際水體作為原水水質(zhì)背景來(lái)評(píng)價(jià)UV/Oxone降解ACE的實(shí)際降解值和模型預(yù)測(cè)值的差距,最后比較了3種工藝的效能.結(jié)果表明UV、oxone、UV/Oxone3種工藝對(duì)ACE的去除率分別為2.1 %、53.7 %和98.3 %.活性物質(zhì)的鑒別實(shí)驗(yàn)發(fā)現(xiàn)UV激活oxone會(huì)產(chǎn)生?OH、SO4?–和活性氯3種活性物質(zhì),且對(duì)ACE降解的貢獻(xiàn)率分別為37.05 %、19.22 %和43.73 %.通過(guò)響應(yīng)面曲線法得到影響降解ACE效果的回歸方程式,該回歸方程對(duì)應(yīng)的p值小于0.0001,擬合缺失項(xiàng)不顯著,校正決定系數(shù)R2>0.8,說(shuō)明該模型可信度高.選用實(shí)際水體進(jìn)行實(shí)際降解和模型預(yù)測(cè)比較時(shí)發(fā)現(xiàn)實(shí)際降解值基本符合模型預(yù)測(cè)值.最后對(duì)兩種不同工藝進(jìn)行效能比較發(fā)現(xiàn)在同等時(shí)間和降解率的情況,UV/Oxone耗能最低,是一種高效、快速、可行的降解工藝.

      撲熱息痛;UV/Oxone;動(dòng)力學(xué);響應(yīng)面曲線法;效能評(píng)價(jià)

      撲熱息痛(ACE)是一種非抗炎解熱鎮(zhèn)痛藥,由于其適用性廣、價(jià)格低廉等優(yōu)點(diǎn),得到廣泛使用.據(jù)調(diào)查,國(guó)內(nèi)外多種水體中已檢測(cè)到ACE的存在[1-3].其中我國(guó)天然水體中檢測(cè)到ACE的濃度可達(dá)6~ 10μg/L[4],歐洲某污水處理廠檢測(cè)到ACE的濃度達(dá)6~11.3μg/L[5],ACE濃度較高時(shí)具有肝毒性和其他副作用,可能通過(guò)富集作用進(jìn)入生物鏈,長(zhǎng)此以往會(huì)對(duì)人類(lèi)的健康以及生態(tài)系統(tǒng)造成潛在的不利影響[6-7].因此水體中ACE的檢測(cè)和去除得到國(guó)內(nèi)外環(huán)境學(xué)界的廣泛關(guān)注[8-9].傳統(tǒng)水處理工藝對(duì)ACE降解效果不理想,現(xiàn)亟需研究開(kāi)發(fā)一種高效、經(jīng)濟(jì)的處理技術(shù)來(lái)去除水體中的ACE.

      UV/PMS(過(guò)硫酸氫鹽)和UV/PS(過(guò)硫酸鹽)是近年來(lái)水處理領(lǐng)域高級(jí)氧化工藝的研究熱點(diǎn)之一,其可以產(chǎn)生羥基自由基×OH和硫酸根自由基SO4??[10-13],其中SO4?–的氧化還原電位為2.5~3.1V,可降解水中大多數(shù)的污染物[14],所以基于SO4?–的高級(jí)氧化技術(shù)成為研究重點(diǎn)之一.本文采用的氧化劑水王子(oxone)為一種復(fù)合型氧化劑,主要成分為PMS,還包含輔助劑、絡(luò)合劑和穩(wěn)定劑等[15].本實(shí)驗(yàn)中考察了UV、oxone和UV/Oxone 3種氧化體系降解水中ACE的動(dòng)力學(xué)以及UV/Oxone體系中活性物質(zhì)的鑒別及其貢獻(xiàn)率的計(jì)算,采用響應(yīng)面曲線法研究了不同水體中ACE的去除效果和降解ACE的效能.

      1 材料與方法

      1.1 實(shí)驗(yàn)材料

      ACE(399.9%)和oxone(399.7%)購(gòu)買(mǎi)于阿拉丁貿(mào)易有限公司.甲醇(MeOH399.9%),叔丁醇(TBA399.9%),硫代硫酸鈉(Na2S2O3399.0%)購(gòu)買(mǎi)于國(guó)藥集團(tuán)化學(xué)試驗(yàn)有限公司.碳酸氫鈉(NaHCO3399.5%),硝酸鈉(NaNO3399.0%)和氯化鈉(NaCl399.9%)均購(gòu)買(mǎi)于海信玻璃有限公司.高效液相色譜儀(HPLC)檢測(cè)所需流動(dòng)相乙腈為色譜純,購(gòu)自美國(guó)Sigma-Aldrich有限公司,試驗(yàn)中所用樣本溶液均采用Milli-Q超純水(18MΩ·cm) 配制.

      分別從橫山水庫(kù)、錫東水廠和西氿水庫(kù)進(jìn)水口取樣作為不同水質(zhì)背景,于2018年7,8,9,10,11月各調(diào)查采樣一次,取其5次采樣的平均值,具體水質(zhì)參數(shù)見(jiàn)表1.

      表1 實(shí)際水體的水質(zhì)參數(shù)表

      1.2 分析方法

      采用高效液相色譜儀(HPLC2010)對(duì)ACE濃度進(jìn)行定量,裝配有C18色譜柱(250nm′4.6nm′5μm, Waters)和UV可見(jiàn)光檢測(cè)器.流動(dòng)相采用乙腈(15%)和水(85%),流速為1.0mL/min,紫外裝置采用準(zhǔn)平行光束儀,檢測(cè)波長(zhǎng)為242nm,柱溫維持在35℃,檢測(cè)時(shí)間為10min.

      1.3 實(shí)驗(yàn)方法

      在實(shí)驗(yàn)條件下,用超純水配制100mL的目標(biāo)污染物加入到200mL的結(jié)晶皿中,再加入所需的氧化劑溶液oxone,然后將結(jié)晶皿放置在紫外裝置臺(tái)上(紫外裝置已提前預(yù)熱30min),反應(yīng)開(kāi)始并計(jì)時(shí),在指定的反應(yīng)時(shí)間采用移液槍取樣0.8mL加至預(yù)先放置了足量的淬滅劑硫代硫酸鈉的液相棕色小瓶中,保證殘余氧化劑反應(yīng)完畢.平行實(shí)驗(yàn)進(jìn)行3次,取其平均值,見(jiàn)式(1).采用方差分析實(shí)驗(yàn)數(shù)據(jù)的誤差棒,見(jiàn)式(2).

      式中:1,2,3—3次實(shí)驗(yàn)后ACE的濃度;C—3次平行實(shí)驗(yàn)的平均值;2—實(shí)驗(yàn)方差.

      2 結(jié)果與分析

      2.1 不同氧化工藝降解ACE

      圖1 3種工藝降解ACE的效果及動(dòng)力學(xué)擬合

      如圖1所示,采用UV單獨(dú)降解ACE15min后降解效果不明顯,僅為2.1%,這一結(jié)果與唐敏康[16]的研究結(jié)果較為一致,證實(shí)了ACE的光穩(wěn)定性.而oxone和UV/Oxone對(duì)ACE的去除率分別為53.7%和98.3%,產(chǎn)生這種現(xiàn)象是因?yàn)閛xone單獨(dú)降解ACE時(shí),Cl-可以與PMS發(fā)生反應(yīng)生成活性氯從而達(dá)到降解ACE的目的,具體反應(yīng)如下式(3~4)所示.此結(jié)論與徐蕾等[17]降解2,4,6-三氯苯酚的結(jié)論相似. UV/Oxone協(xié)同工藝降解ACE時(shí),降解率高達(dá)98.3%,充分說(shuō)明oxone在紫外光照激活下產(chǎn)生了其他活性物質(zhì),從而使ACE的降解效率大大提高.分別對(duì)oxone和UV/oxone 2種工藝降解ACE的數(shù)據(jù)進(jìn)行動(dòng)力學(xué)擬合,均遵循擬一級(jí)反應(yīng)動(dòng)力學(xué),具體動(dòng)力學(xué)參數(shù)見(jiàn)表2.

      表2 oxone和UV/Oxone工藝降解ACE的擬一級(jí)動(dòng)力學(xué)速率常數(shù)

      2.2 活性物質(zhì)的鑒別

      之前報(bào)道表明PMS在紫外激活下可產(chǎn)生×OH和SO4?–[10-13],且oxone的主要成分為PMS.為了鑒別UV/Oxone工藝中起氧化作用的活性物質(zhì),分別向系統(tǒng)溶液中加入MeOH和TBA. MeOH可有效淬滅?OH和SO4?–,而TBA只能作為×OH的有效淬滅劑[18-19],如式(5~8)所示.從圖2可以看出:加入MeOH/TBA之后反應(yīng)速率常數(shù)顯著降低,且加入MeOH的系統(tǒng)比加入TBA下降得更快.同時(shí)隨著MeOH/TBA濃度的增加,反應(yīng)速率常數(shù)不斷降低,但降低幅度逐漸減小.這是因?yàn)?×OH和MeOH/TBA的反應(yīng)速率快,加入低濃度的MeOH或TBA時(shí),主要淬滅系統(tǒng)中的×OH,導(dǎo)致ACE的降解速率下降.隨著MeOH或TBA的濃度逐漸增大,相繼開(kāi)始淬滅系統(tǒng)中的SO4?–,導(dǎo)致體系中ACE降解速率減小,進(jìn)而說(shuō)明oxone在UV激活下可以產(chǎn)生活性自由基(×OH和SO4?–).從圖2看出隨著MeOH濃度增加,ACE仍有一定程度的降解,說(shuō)明體系中除了生成×OH和SO4?–,還有其他活性物質(zhì). 古振川等人[20]在研究Cl-/PMS降解甲氧芐啶時(shí)發(fā)現(xiàn)其反應(yīng)系統(tǒng)中的活性物質(zhì)主要是活性氯.為了進(jìn)一步的驗(yàn)證活性氯的存在,設(shè)計(jì)驗(yàn)證實(shí)驗(yàn):在反應(yīng)體系中同時(shí)加入足量的MeOH和NH4+,ACE無(wú)降解.在反應(yīng)體系中加入MeOH,再加入氯離子時(shí),反應(yīng)速率變慢.以上結(jié)果表明,在UV/Oxone工藝降解ACE過(guò)程中起氧化作用的活性物質(zhì)有3種:×OH、SO4?–和活性氯.

      為了計(jì)算出各活性物質(zhì)的貢獻(xiàn)率,分別向系統(tǒng)中加入足量的淬滅劑MeOH、TBA和NH4+,得到如圖3所示的ACE降解圖.由圖3可知分別加入不同淬滅劑后ACE的降解率分別為52.39%、75.41%和67.41%,得到不同活性物質(zhì)降解ACE的降解率方程.通過(guò)聯(lián)立方程可求解×OH、SO4?–.和活性氯單獨(dú)對(duì)ACE的降解率,進(jìn)而計(jì)算出各活性物質(zhì)對(duì)ACE降解的貢獻(xiàn)率分別為37.05%、19.22%和43.73%.

      圖3 MeOH、TBA和NH4+對(duì)ACE降解率的影響

      2.3 響應(yīng)面曲線法實(shí)驗(yàn)?zāi)P?/h3>

      在實(shí)際背景水體中存在多種因素,可能對(duì)ACE降解產(chǎn)生影響,例如實(shí)際水體中包含各種類(lèi)型的無(wú)機(jī)陰離子(如HCO3-、Cl?、NO3-), pH值和溫度()等.采用響應(yīng)面曲線法[21](5因素3水平)探究3種陰離子、pH值和溫度等因素在不同水平條件下的ACE降解效果及模型方程,詳見(jiàn)表3.對(duì)應(yīng)的響應(yīng)值為ACE的去除率(),水平響應(yīng)面實(shí)驗(yàn)設(shè)計(jì)及響應(yīng)值見(jiàn)表4,基于響應(yīng)面曲線法得到如圖4所示的三維模型圖.通過(guò)方差分析法(ANOVA)驗(yàn)證模型的準(zhǔn)確和適用性,結(jié)果見(jiàn)表5,的值為11.96,對(duì)應(yīng)的值小于0.0001,模型顯著.擬合缺失項(xiàng)不顯著,校正決定系數(shù)2>0.8,說(shuō)明該模型可信度高,能夠很好的預(yù)測(cè)實(shí)際水體中ACE的降解效果.

      表3 因素水平

      表4 5因素、3水平響應(yīng)面實(shí)驗(yàn)設(shè)計(jì)及響應(yīng)值

      續(xù)表4

      表5 方差分析結(jié)果

      圖4 響應(yīng)面曲線圖

      基于上述響應(yīng)面曲線法可以得到如式(9)所示的5因素、3水平的影響模型方程式:

      2.4 模型預(yù)測(cè)值與實(shí)驗(yàn)降解值的比較

      為了驗(yàn)證響應(yīng)面曲線法(RSM)設(shè)計(jì)影響模型的準(zhǔn)確性和適用性,特選取不同原水水質(zhì)進(jìn)行研究.圖5將ACE實(shí)驗(yàn)降解值和模型預(yù)測(cè)值進(jìn)行比較,如圖5所示,模型預(yù)測(cè)值與實(shí)際降解值接近,略小于實(shí)際降解值,這可能是因?yàn)樵趯?shí)際水體中還存在其他因素(例如其他微生物,溴離子等)會(huì)影響ACE的降解效果.但模型預(yù)測(cè)值和實(shí)驗(yàn)值誤差不大,說(shuō)明該模型可以較好的預(yù)測(cè)不同水質(zhì)背景下ACE的降解率.

      圖5 ACE實(shí)測(cè)去除率和RSM模型預(yù)測(cè)值的比較

      2.5 不同工藝效能比較

      采用單位電能效率(EE/O)比較oxone和UV/Oxone2種工藝降解水中ACE時(shí)所消耗的能量.單位電能效率(EE/O kW×h/m3/order)可以采用式(10)進(jìn)行計(jì)算[22]:

      式中:代表總輸入電量,kW;為反應(yīng)時(shí)間,0.25h;溶液的體積,1′10-4m3.在實(shí)際工藝中還包含藥劑的投加費(fèi)用,而上式10僅能用來(lái)表示直接消耗的電能,所以在具體計(jì)算時(shí)將藥劑投加費(fèi)用換算為間接消耗的電能來(lái)綜合考察.表6為在同等時(shí)間和降解率的條件下2種工藝降解ACE的能耗(控制反應(yīng)時(shí)間均為15min,降解率均為98.3%,此時(shí)單獨(dú)oxone的投加量為UV/oxone的3.2倍). EE/O1和EE/O2分別表示為:直接和間接消耗的電能.從表6中可以看出在同等時(shí)間和相同降解率條件下UV/Oxone工藝降解ACE的能耗最小,最為經(jīng)濟(jì).所以UV/Oxone效率最高,是一種高效可行的降解方法.

      表6 2種工藝電能消耗

      注:Cost1為系統(tǒng)化學(xué)試劑的投加費(fèi)用,Cost2為系統(tǒng)化學(xué)試劑投加費(fèi)用根據(jù)電費(fèi)折算成的用電量.電價(jià)取0.1元/(kW?h),化學(xué)試劑oxone的價(jià)格取0.054元/g.

      3 結(jié)論

      3.1 Oxone 在UV激活下生成了其他高效的氧化活性物質(zhì),大大提高oxone降解ACE的去除率;通過(guò)活性物質(zhì)鑒別實(shí)驗(yàn)可知UV/Oxone降解ACE時(shí)起氧化作用的活性物質(zhì)有3種:×OH、SO4?–和活性氯,對(duì)ACE降解的貢獻(xiàn)率分別為37.05%、19.22%和43.73%.

      3.2 通過(guò)響應(yīng)面曲線法得到ACE降解回歸方程式,通過(guò)方差分析可知該模型可信度高.選用實(shí)際水體背景降解發(fā)現(xiàn)實(shí)際降解值略接近于模型預(yù)測(cè)值,基本符合模型預(yù)測(cè)值誤差范圍,進(jìn)一步證明該模型方程的可信度高.

      3.3 對(duì)兩種工藝進(jìn)行效能比較分析,發(fā)現(xiàn)在同等反應(yīng)時(shí)間和降解率的情況下,UV/Oxone更為高效、經(jīng)濟(jì)可行.

      [1] Ternes T A. Occurrence of drugs in German sewage treatment plants and rivers 1Dedicated to Professor Dr. Klaus Haberer on the occasion of his 70th birthday. 1 [J]. Water Research, 1998,32(11):3245–3260.

      [2] Sui Q, Lv M, Hu A Y, et al. Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in a wastewater treatment plant in Xiamen, China [J]. Journal of hazardous materials, 2014,277:69–75.

      [3] Roberts P H, Thomas K V. The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment [J]. Science of the Total Environment, 2005,356(1-3):143–153.

      [4] Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance [J]. Environmental Science & Technology, 2002,36(6):1202-1211.

      [5] Jones O A H, Green P G, Voulvoulis N, et al. Questioning the excessive use of advanced treatment to remove organic micropollutants from wastewater [J]. Environmental Science & Technology, 2007,41(14):5085-5089.

      [6] Zhang G Y, Sun Y B, Zhang C X, et al. Decomposition of acetaminophen in water by a gas phase dielectric barrier discharge plasma combined with TiO2-rGO nanocomposite: Mechanism and degradation pathway [J]. Journal of hazardous materials, 2017(B), 323:719-729.

      [7] Carballa M, Omil F, Lema J M, et al. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant [J]. Water Research, 2004,38(12):2918-2926.

      [8] Vogna D, Marotta R, Napolitano A, et al. Advanced oxidation chemistry of paracetamol. UV/H2O2-induced hydroxylation/ degradation pathways and15N-aided inventory of nitrogenous breakdown products [J]. The Journal of Organic Chemistry, 2002, 67(17):6143-6151.

      [9] 高 穎,楊 曦,劉 鈺.含碳酸鹽水溶液中撲熱息痛的光解研究 [J]. 環(huán)境科學(xué), 2008,29(3):643-649. Gao Y, Yang X, Liu Y. Photodegradation of Paracetamol in Carbonate Solution [J]. Environmental Science, 2008,29(3):643-649.

      [10] Luo C W, Ma J, Jiang J, et al. Simulation and comparative study on the oxidation kinetics of atrazine by UV/H2O2, UV/HSO5-and UV/S2O82-[J]. Water Research, 2015,80:99-108.

      [11] Lu X, Shao Y S, Gao N Y, et al. Degradation of diclofenac by UV-activated persulfate process: Kinetic studies, degradation pathways and toxicity assessments [J]. Ecotoxicology and Environmental Safety, 2017,141:139-147.

      [12] Xie P C, Ma J, Liu W, et al. Impact of UV/persulfate pretreatment on the formation of disinfection byproducts during subsequent chlorination of natural organic matter [J]. Chemical Engineering Journal, 2015,269:203-211.

      [13] 陳菊香,高乃云,楊 靜,等.UV/PS降解水中2,4-二氯苯酚的特性研究 [J]. 中國(guó)環(huán)境科學(xué), 2017,38(6):2145-2149. Chen J X, Gao N Y, Yang Y, et al. Study on the characteristics of 2,4-dichlorophenol in water degraded by UV/PS [J]. China Environmental Science, 2017,38(6):2145-2149.

      [14] Zhang Q, Chen J B, Dai C M, et al. Degradation of carbamazepine and toxicity evaluation using the UV/persulfate process in aqueous solution [J]. Journal of Chemical Technology and Biotechnology, 2015, 90(4):701-708.

      [15] Xiong Y Y, ASCE A M, Melching C S, et al. Comparison of kinematic-wave and nonlinear reservoir routing of urban watershed runoff [J]. Journal of Hydrologic Engineering, 2005,10(1):39-49.

      [16] 唐敏康,莊珍珍,高乃云,等.基于紫外的高級(jí)氧化工藝降解水溶液中撲熱息痛研究 [J]. 水處理技術(shù), 2014,40(12):39-43+47. Tang M K, Zhuang Z Z, Gao N Y, et al. Degradation of paracetamol in aqueous solution by advanced oxidation process (AOP) based on ultraviolet (UV) [J]. Technology of Water Treatment, 2014,40(12): 39-43+47.

      [17] 徐 蕾,袁瑞霞,郭耀廣,等.氯離子對(duì)鈷/單過(guò)氧硫酸鹽體系降解2,4,6三氯苯酚的影響 [J]. 武漢大學(xué)學(xué)報(bào)(理學(xué)版), 2013,59(1):51-56. Xu L, Yuan R X, Guo Y G, et al. Effects of chloride ions on degradation of 2, 4, 6-trichlorophenol by Co(Ⅱ)/peroxymonosulfate (Co/PMS) system [J]. Journal of Wuhan University (Natural Science Edition), 2013,59(1):51-56.

      [18] Neta P, Huie R E, Ross A B. Rate constants for reactions of inorganic radicals in aqueous-solution [J]. Journal of Physical and Chemical Reference Data, 1988,17(3):1027-1284.

      [19] Buxton G V, Greenstock C L, Helman W P, et al. Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (×OH/O-in aqueous-solution [J]. Journal of Physical and Chemical Reference Data, 1988,17(2):513-886.

      [20] 古振川,高乃云,安 娜,等.Cl-/PMS體系降解甲氧芐啶的效能與機(jī)理 [J]. 中國(guó)環(huán)境科學(xué), 2018,38(3):977-984. Gu Z Z, Gao N Y, An N, et al. Efficiency and mechanism of trimethoprim degradation in Cl-/PMS system [J]. China Environmental Science, 2018,38(3):977-984.

      [21] Amiri H, Nabizadeh R, Silva M S, et al. Response surface methodology modeling to improve degradation of chlorpyrifos in agriculture runoff using TiO2solar photocatalytic in a raceway pond reactor [J]. Ecotoxicology and Environmental Safety, 2018,147:919- 925.

      [22] Tan C Q, Gao N Y, Zhou S Q, et al. Kinetic study of acetaminophen degradation by UV-based advanced oxidation processes [J]. Chemical Engineering Journal, 2014,253:229-236.

      Efficiency and effect model of acetaminophen degradation by UV/Oxone.

      ZHANG Meng-wen1, CHEN Ju-xiang1,2*, YANG Jing1, GAO Nai-yun2*

      (1.College of Architecture and Civil Engineering, Xinjiang University, Xinjiang Urumqi 830047, China;2.State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China)., 2019,39(8):3293~3299

      This work reported the efficiency of degradation ACE used three degradation processes (i.e. UV、oxone and UV/Oxone). Meanwhile, the kinds of oxidative active substances and contribution in the system were identified and calculated. Response surface curve method (RSM) was used to study the comprehensive effect of UV/Oxone on ACE removal under five factors including HCO3-, Cl-, NO3-, pH and T and three levels. Furthermore, three kinds of actual water were chosen as the quality indicator of raw water to evaluate the difference between actual degradation values and model predictive values of degradation ACE by UV/Oxone. Finally, the degradation efficiencies of three processes were evaluated. The results showed that the degradation rates of UV、oxone and UV/Oxone were 2.1%, 53.7% and 98.3%, respectively. Identification experiments of active substances found that three active substances were produced by UV activation of oxone, such as?OH、SO4?–and reactive chlorine, and the contribution of three active substances to ACE degradation were 37.05%、19.22% and 43.73%, respectively. The regression equation of ACE degradation was obtained by RSM. The p value was less than 0.0001, the missing fitting term was not obvious and2>0.8, which indicated that the model was highly reliable. Actual waters, as degradation substance, were selected to compare the actual and model predicted and found that two values were matched basically. Compared with the efficiency of two different processes, the result showed that UV/Oxone was an effective, rapid and feasible degradation process with the lowest energy consumption at the same time and degradation rate.

      acetaminophen;UV/Oxone;dynamics;RSM;effectiveness evaluation

      X703

      A

      1000-6923(2019)08-3293-07

      張夢(mèng)文(1994-),女,陜西咸陽(yáng)人,碩士研究生,主要從事水處理研究.發(fā)表論文3篇.

      2019-02-12

      國(guó)家自然科學(xué)基金資助項(xiàng)目(51768067)

      * 責(zé)任作者, 陳菊香, 副教授, chenyu1816@126.com; 高乃云, 教授, gaonaiyun@126.com

      猜你喜歡
      預(yù)測(cè)值效能水體
      IMF上調(diào)今年全球經(jīng)濟(jì)增長(zhǎng)預(yù)期
      企業(yè)界(2024年8期)2024-07-05 10:59:04
      遷移探究 發(fā)揮效能
      農(nóng)村黑臭水體治理和污水處理淺探
      加拿大農(nóng)業(yè)部下調(diào)2021/22年度油菜籽和小麥產(chǎn)量預(yù)測(cè)值
      ±800kV直流輸電工程合成電場(chǎng)夏季實(shí)測(cè)值與預(yù)測(cè)值比對(duì)分析
      生態(tài)修復(fù)理念在河道水體治理中的應(yīng)用
      同時(shí)多層擴(kuò)散成像對(duì)胰腺病變的診斷效能
      充分激發(fā)“以工代賑”的最大效能
      法電再次修訂2020年核發(fā)電量預(yù)測(cè)值
      廣元:治理黑臭水體 再還水清岸美
      福海县| 阿荣旗| 乌恰县| 修武县| 盱眙县| 南平市| 菏泽市| 儋州市| 台湾省| 汉沽区| 文水县| 左云县| 玛曲县| 阿尔山市| 广昌县| 泌阳县| 治县。| 五大连池市| 城固县| 玉树县| 清水县| 铜陵市| 手机| 武川县| 洞口县| 鸡东县| 昭苏县| 读书| 都江堰市| 军事| 澜沧| 丹凤县| 涪陵区| 泰州市| 漠河县| 治县。| 剑河县| 通州区| 称多县| 工布江达县| 鄂州市|