• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Deformation and failure analysis of river levee induced by coal mining and its influence factor

    2017-03-13 05:47:03MengLiJixiongZhangNanZhouQiangZhang

    Meng Li , Jixiong Zhang, Nan Zhou, Qiang Zhang

    1 Introduction

    Currently, significant coal resources in China are buried beneath river levees. Therefore,the exploration of such coal resources is supposed to affect the normal use of river levees.When coal is mined, the equilibrium stress in those rocks around the coal resources is lost so as to result in the movement and fracture of overlying strata [Booth (1986); Qian, Xu and Shi (2003)]. Finally, the ground surface is damaged and subsides, which then causes the deformation and failure of river levees. At present, there is a paucity of research into the influence of mining on the stability of river levees. Wang et al. [Wang, Lian and Chen(2013)] studied the movement and deformation of river levees under the influence of mining by simulating surface ground movement during coal mining under river levees.By using a FLAC3D, Li et al. [Li, Hu, Chen and Yang (2008)] simulated the movement and deformation of the river levee of Nantuo River influenced by the mining of the 6123 working face in Baishan Mine (Anhui, China). Wang Lieping et al. [Wang, Hu, Chen,Chen and Li (2009)] predicted the mining subsidence of the southern river levee of Nantuo River lying on thick, unconsolidated, overburden using a probability integral method and FLAC3Dsoftware. Wu et al. [Wu, Wang, Yin, Sun, Jia and Li (2007)]investigated the influence of mining subsidence on the safety of dams by combining numerical calculations and field measurement. All these research projects focus on the deformation of river levees induced by mining. However, since many factors can influence the stability of river levees, a method to evaluate the stability of river levees induced by mining as well as the criterion to determine whether river levees are damaged or not is required. Therefore, based on the deformation characteristics of river levees under mining conditions, this research established a mechanical model for the deformation of river levees and proposed a failure criterion for river levees. After calculating the deformation and stress distribution in typical river levees, this work further analysed those factors which could influence the stability of river levees. This aimed to provide a theoretical basis for the prediction of the deformation and failure of river levees induced by mining.

    2 Deformation characteristics of river levees induced by mining

    Before the mining of underground coal, the underground stress state is in equilibrium.When the coal is mined out, the stress in the surrounding rocks is redistributed, resulting in the movement and fracture of overlying strata [Mohammad, Mohammad, and Abbas(2015); Cao, Zhou, Xu and Li (2014)]. Finally, these cracks develop, from the bottom up,to the ground surface, causing surface subsidence [Can, Kuscu, and Kartal (2012); Wang,Zhang, Guo, and Zha (2014)]. As a result, river levees in the range of surface subsidence are affected. This comes from their foundation and causes their deformation. When the deformation exceeds the capacity of a river levee to sustain it, damage ensues. The horizontal deformation of the surface is mainly attributed to the failure of river levees as their lateral tensile stiffness is small and they are easily cracked, which finally results in their failure. Figure 1 shows the mining-induced deformation characteristics of river levees.

    Figure 1: Mining-induced deformation characteristics of river levees

    3 Mechanical analysis of deformation and failure of river levees

    3.1 Mechanical model

    As surface subsidence basins enlarge and deepen with the advance of a working face,river levees at different positions on the subsidence basin are subject to different influences. Meanwhile, the deformation and stress at different positions of a river levee are different. Therefore, two coordinate [Tan and Deng (2004)] systems describing the surface subsidence and river levee subsidence, which are independent and interconnected,can be constituted to study the deformation and stress distribution of river levees under the influence of mining (Figure 2).

    Figure 2: Coordinate systems for the river levee and the surface subsidence

    Taking the maximum surface subsidence point o as the origin, a coordinate system (w(x)-o-x) for surface subsidence is established with the advancing direction of the working face as the x-axis which lies horizontally to the right, and the vertical, w(x)-axis which extends vertically downwards, represents the surface subsidence at point x. While by regarding the left-hand end o1 of the river levee, at x, to the maximum surface subsidence point o as the origin, a coordinate system (w(r)-o1-r) for river levee subsidence was established. Thereinto, abscissa r is consistent with the direction of the x-axis and the subsidence of any point r in the river levee is recorded as w(r). The corresponding values of surface subsidence are represented as w(x+r).

    Since the deformation of river levees induced by mining is similar to that seen in beam bending problems, the river levee could be regarded as a beam on an elastic foundation.Based on Winkler foundation theory, the foundation subsidence is positively related to the foundation force.

    Where, σ(r) is the subgrade reaction at any point on the foundation at the bottom of the river levee, while k represents the elastic foundation coefficient.

    According to the theory of coal mining subsidence, a trigonometric function [Zou, Deng,and Ma (2003); Tan, and Deng (2007)] is applied to describe the surface subsidence curve:

    Where, L is the half-basin length (the distance between the point of maximum subsidence and the boundary of the subsidence basin) and wmaxis the maximum value of surface subsidence.

    3.2 Solutions to the mechanical model

    The load on the river levee is the difference between its self-weight and the foundation force.

    Where, q is the self-weight of the river levee.

    Based on Winkler theory of foundation beams, the differential equation describing the flexure of a river levee on an elastic foundation is:

    Where, E is the elastic modulus of the soil comprising river levee, and I is the moment of inertia of the cross-section of the river levee normal to the axis of bending.

    By substituting Formula (2) into Formula (4), the differential equation governing flexure of the river levee can be rewritten as follows:

    The solutions of the homogeneous differential equation (6) are composed of general and special solutions. By processing (6), the following subsidence formula for the river levee can be obtained:

    Where, d1to d4are coefficients to be solved as determined by the boundary conditions.

    Since the river levee is supposed to move with the subsidence of the surface, the two ends of the river levee can regarded as free. Then, the specific boundary conditions are acquired as follows:

    Where, l is the length of the river levee.

    By substituting the relevant parameters into (7), and combining this with the boundary conditions (8) for the river levee, the undetermined coefficients d1to d4can be found.

    After subtracting the subsidence caused by the self-weight of the river levee, the subsidence thereof induced by mining can be acquired.

    The corresponding surface subsidence is

    3.3 Failure criterion for a river levee

    The stress in the river levee under the influence of mining is:

    The bending moment in the river levee during mining is:

    Horizontal tensile deformation is the main factor damaging the river levee, therefore the first strength theory is used to determine the failure of the river levee. Under the influence of mining, the maximum tensile stress in the river levee occurs at the bottom of the river levee, that is:

    Where, Izis the moment of inertia of the section about the neutral axis of the beam, while b and h are the width and height of the river levee.

    When the maximum tensile stress at the bottom of the river levee is larger than the tensile strength, the river levee is supposed to be damaged and:

    Where, σtis the tensile strength of the river levee.

    4 Analysis of examples

    4.1 Calculation parameters

    The deformation and failure of a river levee under the influence of mining was studied based on actual cases: the river levee was just under the 14120 working face and parallel to the advancing direction of the working face (Figure 3). According to the subsidence of the adjacent working face in this region after mining, the maximum surface subsidence wmaxof the river levee and the half-length L of the surface subsidence basin were set to 0.8 m and 300 m, respectively. In addition, the width b, height h, and length l of the river levee were 5 m, 8 m, and 120 m, separately. In addition, with the elastic modulus E and self-weight load q being 2.5 GPa and 0.16 MPa, the tensile strength σtof the river levee was 0.8 MPa. Moreover, the distance x between the river levee to the point of maximum subsidence was 30 m and the foundation coefficient k was 45 MN/m3.

    Figure 3: Positions of the river levee and the 14120 working face

    4.2 Deformation and failure of river levees

    Based on the boundary conditions in (8), d1to d4are obtained as follows by substituting the above parameters into (7):

    The mining-induced subsidence of the river levee is acquired by substituting d1to d4into(9):

    According to (16), the subsidence at different positions along the river levee is as shown in Figure 4.

    Figure 4: The subsidence of different positions along the river levee

    Based on Figure 4, it can be seen that when the river levee is not influenced by mining,the maximum subsidence thereof is 0.78 m, which is found at the left-hand end of the river levee. Moving right along the river levee, the subsidence decreases continuously until reaching the minimum value of 0.41 m which is found at the right-hand end of the river levee. Furthermore, the tensile stress at the bottom of the river levee is given by (13)as:

    Based on (17), the tensile stress at different positions at the bottom of the river levee is as shown in Figure 5.

    Figure 5: Tensile stress at different positions at the bottom of the river levee

    As seen in Figure 5, the maximum horizontal stresses on the river levee at different positions are distributed in an arcuate manner. When the river levee is not influenced by mining, the maximum tensile stress at the bottom of the river levee is 0.58 MPa which is observed at a point 47 m from the left-hand end thereof. As the maximum tensile stress is less than the tensile strength of the river levee, therefore, according to the failure criterion in (14), the river levee is not damaged.

    4.3 Analysis of the factors affecting levee subsidence

    There are, in the main, three factors including the maximum surface subsidence, the halflength of the surface subsidence basin, and the foundation coefficient which can affect the deformation and failure of the river levee. Therefore, the influence of these factors on the stability of the river levee is analysed as follows.

    (1) The maximum surface subsidence

    Figure 6 shows the influence of the maximum surface subsidence on the stability of the river levee.

    Figure 6: Influence of the maximum surface subsidence on the river levee

    From Figure 6, it is seen that the maximum surface subsidence significantly influences the river levee: upon the gradual increase in maximum surface subsidence, the tensile stress at the bottom of the river levee continuously increases. The maximum surface subsidence of, and the maximum tensile stress on, the river levee are linearly related:when the maximum surface subsidence increases from 0.3 m to 1.2 m, the maximum tensile stress correspondingly increases from 0.215 MPa to 0.859 MPa. When the maximum surface subsidence reached 1.2 m, the river levee was damaged. Thus it can be seen that, reducing the height of the working face was beneficial in that it decreased the influence of mining on the river levee.

    (2) The half-length of the surface subsidence basin

    The influence of the half-length of the surface subsidence basin on the stability of the river levee is shown in Figure 7.

    Figure 7: Influence of the half-length of the surface subsidence basin on the river levee

    As shown in Figure 7, the half-length of the surface subsidence basin exerts a significant influence on the river levee: the tensile stress decreases with increasing half-length of the surface subsidence basin, but by decreasing amounts. The half-length of the surface subsidence basin and the maximum tensile stress on the river levee are fitted by a polynomial relationship: when the half-length of the surface subsidence basin increased from 300 m to 600 m, the maximum tensile stress decreased from 0.575 MPa to 0.132 MPa. Therefore, it can be seen that increasing the advancing length of the working face can decrease the influence of mining on the river levee.

    (3) The foundation coefficient

    Figure 8: Influence of the foundation coefficient on the river levee

    Figure 8 shows the influence of the foundation coefficient on the stability of the river levee.By analysing Figure 8, it can be seen that the foundation coefficient exerts no obvious influence on the stability of the river levee. The tensile stress increases with increasing foundation coefficient. However, the amplitude of this increase gradually diminished.The foundation coefficient and the maximum tensile stress on the river levee had a polynomial relationship: when the foundation coefficient increased from 15 MN/m3to 100 MN/m3, the maximum tensile stress increased by only 0.021 MPa. Thus it can be seen that softening of the foundation was beneficial with regard to decreasing the influence of mining on the river levee.

    5 Conclusions

    (1) The lateral deformation of the ground surface (under tension) is the major factor leading to failure of such river levees. Since the river levees have poor resistance to lateral (tensile) deformation, cracks readily occur in river levees subject to tensile deformation: this ultimately damages them.

    (2) Based on the deformation characteristics of typical river levees under the influence of mining, this research established a mechanical model of the deformation of a levee by using a typical surface subsidence function. Moreover, a failure criterion for the river levee was proposed.

    (3) After the analysis of specific examples, the deformation and stress distributions were obtained for typical river levees under the influence of mining. When the maximum tensile stress at the bottom of the river levee was less than its tensile strength, the river levee was undamaged. Moreover, this research further analysed the influence of three key factors including: the maximum surface subsidence, the half-length of the surface subsidence basin, and the foundation coefficient, on the stability of a typical river levee.Results showed that reducing the mining height of the working face and the foundation coefficient, and increasing the advancing length of the working face, were beneficial to a reduction in the influence of mining on the river levee.

    Acknowledgement Financial support for this work, provided by Project of Jiangsu Distinguished Professor (2015-29) and Jiangsu Province Fourth 333 Engineering(BRA2015311).

    Booth, C. J. (1986): Strata-movement concepts and the hydrogeological impact of underground coal mining. Ground Water, vol. 24, no. 4, pp. 507–515.

    Can, E.; Kuscu, S. and Kartal, M. E. (2012): Effects of mining subsidence on masonry buildings in Zonguldak hard coal region in Turkey. Environmental Earth Sciences, vol.66, no. 8, pp. 2503–2518.

    Cao, Z. Z.; Zhou, Y. J.; Xu, P.; Li, J. W. (2014): Mechanical response analysis and safety assessment of shallow-buried pipeline under the influence of mining. CMES:Computer Modeling in Engineering & Sciences, vol. 101, no. 5, pp. 351–364.

    Li, M.; Hu, K.; Chen, Z. Q.; Yang, R. (2008): Numerical simulation prediction study of surface subsidence caused by coal mining under the bank of Nantuo river. Journal of Anhui University of Science and Technology (Natural Science), vol. 28, no. 2, pp. 6–10.Mohammad, R.; Mohammad, F. H.; Abbas, M. (2015): Determination of longwall mining-induced stress using the strain energy method. Rock Mechanics and Rock Engineering, vol. 48, no. 6, pp. 2421–2433.

    Qian, M. G.; Xu, J. L.; Shi, P. W. (2003): Mining Pressure and Ground Control. China University of Mining & Technology Press.

    Tan, Z. X.; Deng, K. Z. (2004): Coordinating work model of ground, foundation and structure of building in mining area. Journal of China University of Mining &Technology, vol 33, no. 3, pp. 264-267.

    Tan, Z. X.; Deng, K. Z. (2007): Study on change laws of additional ground reaction force of buildings in mining area. Journal of China Coal Society, vol. 32, no. 9, pp. 907–911.

    Wu, X.; Wang, X. G.; Yin, Q. W.; Sun, Y. D.; Jia, Z. X.; Li, X. Q. (2007): Study on coal mining in seam under large reservoir areas. Journal of China Coal Society, vol. 32,no. 12, pp. 1273–1276.

    Wang, L. P.; Hu, K.; Chen, Y. P.; Chen, Z. Q.; Li, M. (2009): Mining subsidence prediction of Nantuo river bank under condition of thick and unconsolidated overburden.Coal Science & Technology, vol. 37, no. 12, pp. 96–99.

    Wang, C. J.; Lian, W. L.; Chen, Y. (2013): Deformation laws of river levees under the influence of mining. Energy Technology & Management, vol. 38, no. 3, pp. 159–162.

    Wang, L.; Zhang, X. N.; Guo, G. L.; Zha, J. F. (2014): Research on surface subsidence prediction model of coal mining with solid compacted backfilling. Rock & Soil Mechanics, vol. 35, no. 7, pp. 1973–1978.

    Zou, Y. F.; Deng, K. Z.; Ma, W. M. (2003): Mining Subsidence Engineering. China University of Mining & Technology Press.

    午夜爱爱视频在线播放| 嘟嘟电影网在线观看| 99久久成人亚洲精品观看| 久久久精品大字幕| 少妇高潮的动态图| 婷婷色麻豆天堂久久 | 好男人在线观看高清免费视频| 91精品国产九色| 亚洲丝袜综合中文字幕| 九九在线视频观看精品| 看非洲黑人一级黄片| 九九热线精品视视频播放| 国产亚洲av嫩草精品影院| 亚洲精品456在线播放app| 久久久久久久国产电影| 成人一区二区视频在线观看| 国产白丝娇喘喷水9色精品| 色网站视频免费| 97人妻精品一区二区三区麻豆| 成人特级av手机在线观看| 久久久久网色| 日本一本二区三区精品| 国产熟女欧美一区二区| 午夜a级毛片| 日韩成人av中文字幕在线观看| 亚洲人与动物交配视频| 久久久欧美国产精品| av在线蜜桃| 免费电影在线观看免费观看| 久久国内精品自在自线图片| 蜜桃久久精品国产亚洲av| 内射极品少妇av片p| 久久热精品热| 亚洲18禁久久av| 一边摸一边抽搐一进一小说| 最近最新中文字幕大全电影3| 久久精品国产亚洲av涩爱| 日韩一本色道免费dvd| 亚洲av成人av| 能在线免费观看的黄片| 日韩一区二区视频免费看| 亚洲中文字幕日韩| 中文精品一卡2卡3卡4更新| 一个人免费在线观看电影| 国产黄色视频一区二区在线观看 | 噜噜噜噜噜久久久久久91| 国产精品久久久久久精品电影小说 | 七月丁香在线播放| 久久国内精品自在自线图片| 成人欧美大片| 亚洲激情五月婷婷啪啪| 一级毛片久久久久久久久女| 欧美另类亚洲清纯唯美| 免费av不卡在线播放| 最新中文字幕久久久久| 插阴视频在线观看视频| 丝袜喷水一区| 日本-黄色视频高清免费观看| 国产精品一及| 亚洲欧美日韩高清专用| 啦啦啦观看免费观看视频高清| 汤姆久久久久久久影院中文字幕 | 丰满乱子伦码专区| 国产69精品久久久久777片| 亚洲欧美成人精品一区二区| 人人妻人人澡欧美一区二区| 一级二级三级毛片免费看| 免费在线观看成人毛片| 国产成人午夜福利电影在线观看| 国产亚洲5aaaaa淫片| 久久久久久大精品| 人妻系列 视频| 青春草视频在线免费观看| 你懂的网址亚洲精品在线观看 | 看黄色毛片网站| 三级男女做爰猛烈吃奶摸视频| 亚洲欧美成人综合另类久久久 | 在线观看av片永久免费下载| 久久久久久久久久黄片| 日韩高清综合在线| 国产大屁股一区二区在线视频| 国产午夜精品论理片| 亚洲精品,欧美精品| 中国国产av一级| 国产在视频线精品| 91精品国产九色| 久久久久久久亚洲中文字幕| 中国美白少妇内射xxxbb| 精品国产露脸久久av麻豆 | 观看免费一级毛片| 亚洲人成网站在线观看播放| 欧美日本视频| 国产老妇女一区| 永久免费av网站大全| av播播在线观看一区| 亚洲国产精品专区欧美| 国产精品人妻久久久影院| 久久久精品94久久精品| 最近视频中文字幕2019在线8| 午夜亚洲福利在线播放| 日韩欧美精品免费久久| 国产精品久久久久久久久免| 国产免费又黄又爽又色| 欧美性感艳星| av在线播放精品| 麻豆成人午夜福利视频| 能在线免费看毛片的网站| 综合色av麻豆| 色播亚洲综合网| 日韩欧美精品免费久久| 啦啦啦啦在线视频资源| 久热久热在线精品观看| 中文字幕精品亚洲无线码一区| 少妇人妻精品综合一区二区| 人妻系列 视频| 久久久国产成人精品二区| 久久精品国产99精品国产亚洲性色| 久久99热6这里只有精品| 国产精品美女特级片免费视频播放器| 建设人人有责人人尽责人人享有的 | 亚洲美女搞黄在线观看| 欧美3d第一页| 免费黄色在线免费观看| 久久人人爽人人爽人人片va| 波多野结衣高清无吗| 2022亚洲国产成人精品| 欧美日韩综合久久久久久| 纵有疾风起免费观看全集完整版 | 乱码一卡2卡4卡精品| 天堂网av新在线| 少妇熟女aⅴ在线视频| 久久精品91蜜桃| 22中文网久久字幕| 只有这里有精品99| 国产成人91sexporn| 亚洲av福利一区| 国产精品女同一区二区软件| 天天躁日日操中文字幕| 久久久色成人| 亚洲人与动物交配视频| 国产免费男女视频| 久久亚洲精品不卡| 中文乱码字字幕精品一区二区三区 | 国产久久久一区二区三区| 国产成人freesex在线| 免费观看a级毛片全部| 日日摸夜夜添夜夜爱| 国产91av在线免费观看| 国产一级毛片七仙女欲春2| 亚州av有码| 国产精品嫩草影院av在线观看| 国产成人精品一,二区| 欧美三级亚洲精品| 欧美激情国产日韩精品一区| 国产精品久久久久久精品电影| 男插女下体视频免费在线播放| 99热这里只有是精品50| 寂寞人妻少妇视频99o| 日本猛色少妇xxxxx猛交久久| 亚洲欧美一区二区三区国产| 特级一级黄色大片| 热99在线观看视频| 能在线免费观看的黄片| 精品酒店卫生间| 国产精品av视频在线免费观看| 毛片一级片免费看久久久久| 成年av动漫网址| 黄色日韩在线| 男女边吃奶边做爰视频| 亚洲av电影不卡..在线观看| 国产毛片a区久久久久| 日韩精品有码人妻一区| 成人av在线播放网站| 国产色婷婷99| 亚洲av中文av极速乱| 免费看美女性在线毛片视频| 99热这里只有精品一区| 永久网站在线| 美女xxoo啪啪120秒动态图| 日韩一区二区三区影片| 国产毛片a区久久久久| 国产私拍福利视频在线观看| 成人性生交大片免费视频hd| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久精品久久久久真实原创| 禁无遮挡网站| 中文字幕久久专区| 五月伊人婷婷丁香| 18禁在线无遮挡免费观看视频| 天堂影院成人在线观看| 亚洲av中文av极速乱| 嫩草影院精品99| 久久久久久久国产电影| 边亲边吃奶的免费视频| 最近中文字幕高清免费大全6| 国产乱人偷精品视频| 欧美日韩一区二区视频在线观看视频在线 | 国产探花在线观看一区二区| 精品久久久久久久久亚洲| 久久久色成人| 欧美不卡视频在线免费观看| 亚洲一级一片aⅴ在线观看| 一级毛片我不卡| 亚洲丝袜综合中文字幕| 蜜臀久久99精品久久宅男| 午夜亚洲福利在线播放| 国产精品麻豆人妻色哟哟久久 | 久久久久久伊人网av| 日韩av在线大香蕉| av线在线观看网站| 亚洲色图av天堂| 国产极品天堂在线| 最近视频中文字幕2019在线8| 99久久精品国产国产毛片| 丝袜喷水一区| 亚洲中文字幕日韩| 亚州av有码| 麻豆成人午夜福利视频| a级一级毛片免费在线观看| 亚洲欧美日韩高清专用| 亚洲在线观看片| 人体艺术视频欧美日本| 少妇人妻一区二区三区视频| 免费大片18禁| 国产中年淑女户外野战色| av在线老鸭窝| 中国美白少妇内射xxxbb| 永久网站在线| 免费播放大片免费观看视频在线观看 | 精品国产三级普通话版| 又粗又硬又长又爽又黄的视频| 六月丁香七月| 免费在线观看成人毛片| 日本三级黄在线观看| 国产伦理片在线播放av一区| 午夜福利在线观看免费完整高清在| 国产亚洲5aaaaa淫片| 麻豆国产97在线/欧美| 国产精华一区二区三区| 日本三级黄在线观看| 国产精品1区2区在线观看.| 有码 亚洲区| 婷婷色av中文字幕| 欧美精品一区二区大全| 国产精品久久久久久av不卡| 久久久久免费精品人妻一区二区| 亚洲熟妇中文字幕五十中出| 韩国高清视频一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 舔av片在线| 亚洲人成网站在线播| 熟女电影av网| 亚洲av熟女| 欧美97在线视频| 中文欧美无线码| 能在线免费看毛片的网站| 亚洲精华国产精华液的使用体验| 五月玫瑰六月丁香| 亚洲不卡免费看| 日本免费一区二区三区高清不卡| 18禁裸乳无遮挡免费网站照片| 国产午夜精品一二区理论片| 最近最新中文字幕免费大全7| 久久99热6这里只有精品| 精品不卡国产一区二区三区| 欧美一区二区亚洲| 日韩一区二区视频免费看| 最新中文字幕久久久久| 桃色一区二区三区在线观看| 日本-黄色视频高清免费观看| 少妇裸体淫交视频免费看高清| av在线老鸭窝| 26uuu在线亚洲综合色| 久久久国产成人免费| 国产精品一区二区三区四区免费观看| 亚洲最大成人av| 午夜久久久久精精品| 久久99精品国语久久久| 麻豆成人午夜福利视频| 精品国产露脸久久av麻豆 | 免费看美女性在线毛片视频| 成人欧美大片| 国产精品一及| 亚洲美女搞黄在线观看| 久久国产乱子免费精品| 韩国av在线不卡| 99视频精品全部免费 在线| 最近视频中文字幕2019在线8| 丝袜喷水一区| 久久亚洲精品不卡| 蜜桃亚洲精品一区二区三区| 亚洲精品日韩在线中文字幕| 国产精品国产三级国产专区5o | av在线播放精品| 可以在线观看毛片的网站| 国产伦精品一区二区三区视频9| 在线免费观看不下载黄p国产| 白带黄色成豆腐渣| 久久综合国产亚洲精品| 国产又色又爽无遮挡免| 五月玫瑰六月丁香| 天堂影院成人在线观看| 免费播放大片免费观看视频在线观看 | 在线播放国产精品三级| 日本色播在线视频| 午夜激情欧美在线| 永久网站在线| 18禁裸乳无遮挡免费网站照片| 色5月婷婷丁香| 国产男人的电影天堂91| 欧美高清性xxxxhd video| 欧美又色又爽又黄视频| 简卡轻食公司| 国内精品美女久久久久久| 欧美激情在线99| 日韩在线高清观看一区二区三区| 色哟哟·www| videos熟女内射| 中文欧美无线码| 国产亚洲av嫩草精品影院| 久久久久国产网址| 亚洲最大成人av| 国产免费又黄又爽又色| 国产精品,欧美在线| 日本黄色片子视频| 国产极品天堂在线| 亚洲欧美中文字幕日韩二区| 欧美三级亚洲精品| 国语对白做爰xxxⅹ性视频网站| 亚洲最大成人中文| 舔av片在线| 日韩视频在线欧美| 国产精品国产三级国产av玫瑰| 亚洲一区高清亚洲精品| 婷婷色麻豆天堂久久 | 身体一侧抽搐| 18禁裸乳无遮挡免费网站照片| 久久久久国产网址| 日本av手机在线免费观看| 小蜜桃在线观看免费完整版高清| 国内揄拍国产精品人妻在线| 精品欧美国产一区二区三| 成人一区二区视频在线观看| 午夜a级毛片| 久久精品国产亚洲网站| 日韩,欧美,国产一区二区三区 | 国产免费又黄又爽又色| 久久精品久久久久久噜噜老黄 | 国产精品无大码| 熟女人妻精品中文字幕| 在线观看66精品国产| 我要看日韩黄色一级片| 大又大粗又爽又黄少妇毛片口| 欧美日韩精品成人综合77777| 国产精品久久久久久精品电影小说 | 亚洲图色成人| 亚洲第一区二区三区不卡| 日韩欧美三级三区| 三级国产精品片| 国产高清三级在线| 亚洲精品成人久久久久久| 2021少妇久久久久久久久久久| 亚洲人成网站在线观看播放| 国产一级毛片七仙女欲春2| 日韩欧美三级三区| 国产一级毛片在线| 国产精品1区2区在线观看.| 国产黄a三级三级三级人| 女的被弄到高潮叫床怎么办| 麻豆成人av视频| 黄片无遮挡物在线观看| 色播亚洲综合网| 伊人久久精品亚洲午夜| 免费观看性生交大片5| 伦精品一区二区三区| 成人漫画全彩无遮挡| 尾随美女入室| 观看美女的网站| 内射极品少妇av片p| 最近中文字幕高清免费大全6| 日韩,欧美,国产一区二区三区 | 日本黄大片高清| 男人和女人高潮做爰伦理| 成年女人看的毛片在线观看| 午夜爱爱视频在线播放| 亚洲精品久久久久久婷婷小说 | 国内少妇人妻偷人精品xxx网站| 亚洲成人久久爱视频| 午夜福利高清视频| 国产亚洲一区二区精品| av免费观看日本| 中文字幕制服av| 午夜a级毛片| 国产av一区在线观看免费| 我的女老师完整版在线观看| 国产探花在线观看一区二区| 国产高清国产精品国产三级 | 亚洲精品日韩av片在线观看| 国产真实伦视频高清在线观看| 国产精品国产高清国产av| 国产亚洲av片在线观看秒播厂 | 我的女老师完整版在线观看| 男人的好看免费观看在线视频| 最近2019中文字幕mv第一页| 国产精品一二三区在线看| 中国美白少妇内射xxxbb| 村上凉子中文字幕在线| 成人特级av手机在线观看| 午夜激情欧美在线| 欧美+日韩+精品| 婷婷色麻豆天堂久久 | 日韩欧美国产在线观看| 日本黄色视频三级网站网址| 精品久久久久久久久av| 成人二区视频| h日本视频在线播放| 国产精品人妻久久久影院| 亚洲成人久久爱视频| 亚洲精华国产精华液的使用体验| 国产三级在线视频| 美女内射精品一级片tv| 久久这里有精品视频免费| 日韩av在线免费看完整版不卡| 精品免费久久久久久久清纯| 亚洲精品一区蜜桃| 边亲边吃奶的免费视频| 亚洲av一区综合| 亚洲国产精品久久男人天堂| 精品熟女少妇av免费看| 免费看美女性在线毛片视频| 久久精品国产鲁丝片午夜精品| 亚洲第一区二区三区不卡| 男女国产视频网站| 国产精品久久电影中文字幕| 国产精品久久久久久久久免| a级一级毛片免费在线观看| 成人午夜高清在线视频| 乱码一卡2卡4卡精品| 边亲边吃奶的免费视频| 青青草视频在线视频观看| 亚洲av不卡在线观看| 日本免费在线观看一区| 最近视频中文字幕2019在线8| 国产久久久一区二区三区| 边亲边吃奶的免费视频| 91久久精品国产一区二区成人| 中文在线观看免费www的网站| 韩国高清视频一区二区三区| 国产精品99久久久久久久久| 免费电影在线观看免费观看| 久久久久性生活片| 小说图片视频综合网站| 一级毛片电影观看 | 中文字幕人妻熟人妻熟丝袜美| 久久欧美精品欧美久久欧美| 亚洲国产精品成人综合色| 国产一区有黄有色的免费视频 | 国产精品电影一区二区三区| 日本色播在线视频| 最近手机中文字幕大全| 欧美变态另类bdsm刘玥| 黄片无遮挡物在线观看| 亚洲综合精品二区| 中国美白少妇内射xxxbb| 精品一区二区免费观看| 日韩一区二区三区影片| 国产精品1区2区在线观看.| 久久久久久大精品| 国产大屁股一区二区在线视频| ponron亚洲| 一个人观看的视频www高清免费观看| 又黄又爽又刺激的免费视频.| 汤姆久久久久久久影院中文字幕 | 日本黄大片高清| 狂野欧美激情性xxxx在线观看| 日本三级黄在线观看| 中文字幕av成人在线电影| 国产精品久久视频播放| 欧美日本视频| 丰满人妻一区二区三区视频av| 狂野欧美白嫩少妇大欣赏| 成年版毛片免费区| 99九九线精品视频在线观看视频| 免费黄网站久久成人精品| 91久久精品电影网| 18禁在线无遮挡免费观看视频| 色5月婷婷丁香| 久久精品影院6| 亚洲久久久久久中文字幕| 亚洲自拍偷在线| 男人的好看免费观看在线视频| 天天一区二区日本电影三级| 精品午夜福利在线看| 免费看日本二区| 人妻夜夜爽99麻豆av| 性插视频无遮挡在线免费观看| 欧美变态另类bdsm刘玥| 日日撸夜夜添| 女人被狂操c到高潮| 天堂中文最新版在线下载 | 精品人妻熟女av久视频| 黄色日韩在线| 欧美性猛交黑人性爽| 老师上课跳d突然被开到最大视频| 欧美日本亚洲视频在线播放| 能在线免费看毛片的网站| 日韩成人伦理影院| 七月丁香在线播放| 女人被狂操c到高潮| 精品一区二区三区人妻视频| 91久久精品国产一区二区成人| 欧美性猛交黑人性爽| 国产精品伦人一区二区| 午夜福利网站1000一区二区三区| 欧美激情在线99| 亚洲丝袜综合中文字幕| 搡女人真爽免费视频火全软件| 在线免费观看不下载黄p国产| 熟女电影av网| 久久久久九九精品影院| 高清午夜精品一区二区三区| 欧美激情在线99| 日韩视频在线欧美| 国内揄拍国产精品人妻在线| 免费在线观看成人毛片| 欧美三级亚洲精品| 69人妻影院| kizo精华| 国产高清视频在线观看网站| 九九爱精品视频在线观看| 免费看a级黄色片| 99在线视频只有这里精品首页| 亚洲色图av天堂| 中文字幕熟女人妻在线| 亚洲人成网站高清观看| 在线观看一区二区三区| 在线免费观看不下载黄p国产| 国产熟女欧美一区二区| 亚洲aⅴ乱码一区二区在线播放| 国产成人一区二区在线| 精品久久久久久久久av| 精品人妻一区二区三区麻豆| 国产一区二区在线观看日韩| 一级黄片播放器| 日韩av在线免费看完整版不卡| 免费黄色在线免费观看| 久久久久久九九精品二区国产| 久久久色成人| 欧美日韩一区二区视频在线观看视频在线 | 免费看a级黄色片| 日本黄色片子视频| 亚洲精品日韩在线中文字幕| 韩国高清视频一区二区三区| 91aial.com中文字幕在线观看| 精品无人区乱码1区二区| 日日啪夜夜撸| 人妻系列 视频| 汤姆久久久久久久影院中文字幕 | 国产高清视频在线观看网站| 国产av一区在线观看免费| 久久久久久伊人网av| 国产乱人偷精品视频| 精品一区二区免费观看| 久久久久久久国产电影| 3wmmmm亚洲av在线观看| 精品99又大又爽又粗少妇毛片| 男人舔女人下体高潮全视频| 蜜桃久久精品国产亚洲av| 3wmmmm亚洲av在线观看| 亚洲美女搞黄在线观看| 久久这里只有精品中国| 国产精品久久电影中文字幕| 久久精品国产自在天天线| 特大巨黑吊av在线直播| 久久亚洲精品不卡| av线在线观看网站| 免费电影在线观看免费观看| 夜夜爽夜夜爽视频| 色哟哟·www| 日日摸夜夜添夜夜添av毛片| 18禁在线播放成人免费| 久久久久国产网址| 91精品伊人久久大香线蕉| 白带黄色成豆腐渣| 18禁在线无遮挡免费观看视频| 在线天堂最新版资源| 在线免费十八禁| 22中文网久久字幕| 亚洲一区高清亚洲精品| 五月伊人婷婷丁香| 精品久久久久久成人av| 国产一区二区在线观看日韩| 欧美成人午夜免费资源| 七月丁香在线播放| 联通29元200g的流量卡| 有码 亚洲区| 色5月婷婷丁香| 亚洲欧美日韩卡通动漫| 国产av码专区亚洲av| 免费观看的影片在线观看| 欧美一区二区精品小视频在线| 久久精品夜色国产| 亚洲国产精品sss在线观看| 99久久人妻综合| 国产精品一及| 啦啦啦观看免费观看视频高清| 久久久久久国产a免费观看| 伦精品一区二区三区| 少妇猛男粗大的猛烈进出视频 | 日韩欧美精品免费久久| 大话2 男鬼变身卡| 久99久视频精品免费| 成人三级黄色视频| 晚上一个人看的免费电影| 久久久久久伊人网av|