• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Local and biglobal linear stability analysisof parallel shear flows

    2017-03-13 05:47:08SanjayMittalandAnubhavDwivedi

    Sanjay Mittal and Anubhav Dwivedi

    1 Introduction

    Thehydrodynamic stability of laminar flows has received significant attention and has been investigated by several researchers in the past[Schmid and Henningson(2001);Chandrasekhar(1981);Huerre and Monkewitz(1990);Huerre(2000);Chomaz(2005)].The linear stability of parallel shear flows can be analyzed via finding solution to the Orr-Sommerfeld (OS) equation [Orr (1907); Sommerfeld(1908)], with suitable boundary conditions. The disturbance fi eld is assumed to be a plane wave whose amplitude varies transverse to the flow and is periodic in the homogeneous directions. The analysis can be carried out in either a spatial or temporal framework [Boiko, Dovgal, Grek, and Kozlov (2012)]. The spatial analysis assumes that the disturbance field develops in s pace. The spatial growth rate is determined for different values of frequency and Reynolds number. In contrast, the temporal analysis assumes that the disturbance develops in time. As per the Squire’s theorem [Schmid and Henningson (2001)], the 2D disturbance is the most critical in terms of its growth rate. Therefore, it is suffi cient to consider twodimensional disturbances that have streamwise periodicity [Boiko, Dovgal, Grek,and Kozlov (2012)]. The analysis is carried out to determine temporal growth rate at various Re and for disturbances with different values of streamwise wavenumber. The spatial and temporal approaches for local analysis are related to each other[Huerre (2000)]. For example, Gaster (1962) proposed a transformation for that,approximately, relates the temporal and spatial growth. Several methods have been used to solve the OS equations. Davey and Drazin (1969) utilized Bessel functions to represent the disturbance fi eld and analyze the stability of pipe Poiseuille flow. Orszag (1971) used Chebyshev polynomials to solve the OS equation for the plane Poiseuille flow. Saraph, Vasudeva, and Panikar (1979) used Galerkin’s weighted residual method to carry out the stability analysis of plane Poiseuille flow and magneto-hydrodynamic flows. Garg and Rouleau (1972) used asymptotic analysis to carry out the linear stability analysis in pipe flow. The method has also been applied, in a local sense, to spatially developing flows [Pierrehumbert (1985); Yang and Zebib (1989); Monkewitz (1988); Chomaz, Huerre, and Redekopp (1988)]. In this approach, the flow profi les at different streamwise stations are analyzed by assuming that each profi le corresponds to an independent parallel flow. The local analysis, at each streamwise station of the flow, involves solving the OS equation,with suitable boundary conditions.

    Analternateapproach toinvestigatethelinear stability of fluid flowsisthe BiGlobal and TriGlobal stability analysis[Theofilis(2011);Swaminathan,Sahu,Sameen,and Govindrajan(2011)].Unlike in the local analysis,in this approach the disturbance fi eld is represented globally,including in the streamwise direction.The analysis results in global modes which,depending on the sign of the growth rate,may either grow or decay in the entire computational domain with time.The global analysisisusually muchmorecomputationally expensivethan thelocal one.Such an approach has been used to analyze the global linear stability properties of several non-parallel flows[Mittal(2004);Chomaz(2005);Schmid and Henningson(2001)].Swaminathan,Sahu,Sameen,and Govindrajan(2011)carried out a global linear stability analysis of a diverging channel flow using spectral collocation method.Mittal and Kumar(2003)used astabilized finite element method for the global LSA of stationary and rotating cylinder.Later,Verma and Mittal(2011)used asimilar approachfor carryingout global LSA to investigatetheexistenceand stability of secondary wake mode of a two-dimensional flow past a circular cylinder.Morerecently,Navrose,Meena,and Mittal(2015)carried out LSA of spinning cylinder in auniform flow and identifi ed several unstablethree-dimensional modes for variousrotation ratesof thespinning cylinder.

    In the present work,Linear Stability Analysis(LSA)of the plane Poiseuille flow is carried out.Local and global analyses are considered.The solutions to the OS equation for local analysis have been obtained in a temporal framework.A spectral collocation method based on Chebyshev polynomials[Schmid and Henningson(2001)]is used to solve the governing Orr-Sommerfeld(OS)equation.The global LSA of theplane Poiseuilleflow iscarried out using astabilized finiteelement formulation.The governing equationsarecast in theprimitivevariables:velocity and pressure.Equal-order finite-element interpolation functions are used for pressure and velocity disturbancefi elds.Four-noded quadrilateral elementswith bilinear interpolation isemployed.Thestreamline-upwind/Petrov-Galerkin(SUPG)[Brooks and Hughes(1982)]and pressure-stabilizing/Petrov-Galerkin(PSPG)stabilization techniques[Tezduyar,Mittal,Ray,and Shih(1992)]are employed to stabilize the computations against spurious numerical oscillations.The fi nite element formulation results in a generalized eigenvalue-vector problem which is solved using the subspace iteration method[Stewart(1975)].For carrying out the global analysis,we assume periodic boundary conditions at the inflow and the outflow for the disturbancefield.Thisallowsadirectcomparisonof theglobal LSA withthe OSequation.A comparison between the local and global analysis of the plane Poiseuille flow at Re=7000 is presented and is utilized to show the connection between the two analyses.

    2 Governing Equations

    2.1 Linearized Disturbance Equations

    Let,??Rnsdand(0,T)be the spatial and temporal domains respectively,where nsdis the number of space dimensions,and letΓ denote the boundary of?.The Navier-Stokesequationsgoverning incompressiblefluid flow are given as:

    Hereρ,u andσ are the density,velocity and the stress tensor,respectively.The stresstensor isrepresented asσ =?p I+μ((?u)+(?u)T),where p andμ arethe pressure and coeffi cient of dynamic viscosity,respectively.The boundary conditionsarespecified as:

    Here,ΓgandΓhare the complementary subsetsof the boundaryΓwhere Dirichlet and Neumann boundary conditionsarespecified,respectively.

    To understand the evolution of small disturbances,the unsteady solution is expressed asacombination of steady solution and disturbance:

    Here,U and P representthesteady statesolution whosestability isto bedetermined while u′and p′aretheperturbation fields.Substituting thedecomposition given by Eq.(3)in Eqs.(1)and subtracting from them,the equations for steady flow one obtains the evolution equations for the disturbance fields.Further,the perturbations,u′and p′,areassumed to besmall and thenon-linear termsaredropped.The linearized perturbation equationsaregiven as:

    Here,σ′is the stress tensor for the perturbed solution.Eq.(4)subjected to the initial condition,u′(x,0)=u′0describes the evolution of small disturbances in the domain,?.Theboundary conditionson u′arehomogeneousversionsof thoseused for calculating thebaseflow(Eq.(2)).

    2.2 Global Linear Stability Analysis

    To conduct a global Linear stability analysis we assume the following form of the disturbancefield,u′and p′

    Substituting Eqs.(5)in the linearized disturbanceequations(Eqs.(4))we obtain:

    Eqs.(6)representsa generalized eigenvalue problem withλas the eigenvalue and(?u,?p)as the corresponding eigenmode.The boundary conditions for(?u,?p)are homogeneous version of those used for calculating the base flow(U,P).In general,the eigenvalue λ = λr+iλiis complex.The growth rate is given by the real part,λrof the eigenvalue whereas the imaginary part,λiis related to the temporal frequency of the of the disturbance field.A positive value ofλrindicates an unstable mode.This method has been utilized by several researchers in the past to investigatetheglobal linear stability of varioussteady flow configurations[Jackson(1987);Morzynski and Thiele(1991);Morzynski,Afanasiev,and Thiele(1999);Swaminathan,Sahu,Sameen,and Govindrajan(2011)].Mittal and Kumar(2003)proposed a stabilized fi nite element formulation for solving these equations and employed it to study theglobal stability propertiesof theflow past astationary and rotating cylinder.

    2.3 Local Stability Analysis:Orr-Sommerfeld Equation

    The disturbance field is assumed to be periodic along the two homogeneous directions:x and z.The wavenumbers along the x and z directions areαandβ,respectively.Thus,the perturbation fi eld in thisscenario isgiven by:

    Similar expressions can bewritten forwhich represent the x and z component of the disturbance fi eld.Let,k=α?i+β?k represent the wavenumber vector in the x?z planewith itsmagnitudegiven by k=.Substituting,Eq.(8)in thelinearized disturbance equation described by Eq.(7),weobtain:

    We consider the case when the streamwise wavenumber,α,is real and the eigenvalueλ =λr+iλiiscomplex.Thereal part,λr,isthegrowthrateof thedisturbance whileλi,theimaginary part,isthetemporal frequency of the disturbance.The disturbance associated with the eigenvalue that has the largest real mode is of major interest as it represents the fastest growing mode.For 2?D disturbances we can rewrite Eq.(9)to obtain the Orr-Sommerfeld(OS)equation:

    The disturbance velocity,u′,v′must vanish on the far-fi eld and solid boundaries,Γ.For the periodic disturbance fi eld considered this requires?u,?v to vanish onΓ.Using the continuity equation,one can simplify thisto:

    3 Formulation

    3.1 The Stabilized Finite Element Formulation for Global Linear Stability Analysis

    Let??R2be the spatial domain for global linear stability analysis(Eq.(6)).Consider afi niteelement discretization of?into subdomains?e,e=1,2,3,...,nel,where nelis the number of elements.Based on this discretization we define fi nite element trial function spaces for velocity and pressure perturbation fi elds asand,respectively.The weighting function space areand,respectively.Thesefunction spacesareselected by taking thehomogeneous Dirichlet boundary conditions into account,assubsetsof[H1h(?)]2and H1h(?),where H1h(?)isthe finitedimensional function spaceover?.Thestabilized finiteelement formulation of Eq.(6),is as follows:Findu?h∈Suuuhandp?h∈such that?w?h∈Vuuuhand

    Here,Uhrepresents the base flow at the element nodes.In the variational formulation given by Eq.(13),the first three terms constitute the Galerkin formulation of the problem.The terms involving the element level integrals are the stabilization terms added to the basic Galerkin formulation to enhance its numerical stability.These terms stabilize the computations against node-to-node oscillations in advection dominated flows and allow the use of equal-in-order basis functions for velocity and pressure.The terms with coeffi cientsτSUPGand τPSPGare based on the SUPG(Streamline-Upwind/Petrov-Galerkin)[Brooks and Hughes(1982)]and PSPG(Pressure-stabilized/Petrov-Galerkin)[Tezduyar,Mittal,Ray,and Shih(1992)]stabilizations.The SUPGformulation for convection dominated flowswas introduced by Hughes and Brooks(1979)and Brooks and Hughes(1982).PSPG stabilization for enabling the use of equal-order interpolations for the velocity and pressureto fluid flowsat finite Reynoldsnumber wasintroduced by Tezduyar,Mittal,Ray,and Shih(1992).The term with coeffi cientτLSICis a stabilization term based on theleast squares of thedivergencefreecondition on the velocity field.It providesnumerical stability at high Reynoldsnumber.Here,thestabilization coefficients used in the finite element formulation of LSA(Eq.(13))are computed on the basis of the base flow at the element nodes,Uh.The stabilization parameters aredefi ned as[Tezduyar,Mittal,Ray,and Shih(1992)]:

    Here,heis the element length based on the minimum edge length of an element[Mittal(2000)]and Uhisthebase flow velocity at element nodes.

    Eq.(13)lead to a generalized non-symmetric eigenvalue problem of the form A X?λB X=0.For our case,theeigenvalueproblem isslightly morecomplicated asthecontinuity equation responsiblefor determining pressurecausesthematrix B to becomesingular.Hence,to avoid singularity,wesolvetheinverseproblem,i.e.,eigenvalues for B X?μA X=0 are computed.Here,λ =1/μ.To check the stability of the steady-state solution we look for the rightmost eigenvalue(eigenvalue with largest real part),using thesubspaceiteration method[Stewart(1975)].

    3.2 The Spectral Method for Local Linear Stability Analysis

    Thespectral collocation method based on Chebyshev polynomialsof thefi rstkind[Schmid and Henningson(2001)]isused to solvethe Eq.(11)for carrying out thelocal sta-

    bility analysis.The Chebyshev polynomial of the fi rst kind isdefi ned as:

    for all non-negativeintegers n∈[0,N]and y∈[?1,1].By using asuitabletransformation,it ispossibleto map any other rangeof y to the Chebyshev domain[?1,1].The Chebyshev polynomials areutilized as the basis functions to approximate the eigenfunction,?v(y)in Eq.(8):

    Thisapproximation of theeigenfunction issubstituted in the OSequation(Eq.(11).It resultsin the following equation:

    Thecollocation method isemployed to evaluatetheconstants anin theapproximation given by Eq.(17).The following Gauss-Lobatto collocation pointsareused:

    Eq.(18)leads to the generalized eigenvalue problem of the form A X?λB X=0.In the present work,the numerical solution to the same is obtained using LAPACK[Anderson,Bai,Bischof,Blackford,Demmel,Dongarra,Du Croz,Greenbaum,Hammarling,McKenney,and Sorensen(1999)]libraries.

    4 Problem Setup

    4.1 The Base Flow

    Thelocal and theglobal linear stability analysisarecarried outfor theplane Poiseuille flow.Figure(1)shows the schematic of the flow.The fluid occupies the channel formed by two stationary plates parallel to each other and separated by a distance 2H.Theplatesarealigned with the x?axis.Thevelocity profilefor thebaseflow

    Figure1:Schematic of theplane Poiseuilleflow.

    is shown in the fi gure.It is parabolic and symmetric about the channel centerline.The equation for the streamwise component of velocity isgiven as:

    Here,H denotes half the channel width and Ucis the centerline velocity.All the lengthsarenon-dimensionalized with H,and velocity with Uc.The Reynoldsnumber,Re,isdefined as:

    where,νdenotesthekinematic viscosity of thefluid.

    4.2 Local Linear Stability Analysis

    The local analysis of the plane Poiseuille flow iscarried out via the solution to OS(Eq.(11)).The domain across the channel width,[?H,H],is mapped to[?1,1].No-slip boundary conditions are applied to the disturbance fi eld at the channel walls.In thissituation,Eq.(12)can berewritten as:

    The OSequation(Eq.(11)),along withtheboundary conditions(Eq.(22),issolved in thetemporal point of view.The wavenumber,α,is assumed to bereal.The OS equation is solved for different values of values ofαand Re.The effect of the number of grid points,along y,on the accuracy of the solution is investigated.It is found that 200 collocation points provide adequate spatial resolution.All the resultspresented in thispaper for the OSanalysisarewith 200 points.

    4.3 Global Linear Stability Analysis

    The flow in a fi nite streamwise length of the channel(=L)is considered for carrying out theglobal analysis.Thebaseflow isthefully developed steady flow in the channel.The streamwise velocity for the same is given by Eq.(20).The boundary conditions for thedisturbance fi eld are as follows.The disturbance velocity is prescribed a zero value at the upper and lower walls.To enable comparison with the local analysis,the disturbance is assumed to be periodic in the streamwise direction.Therefore,periodic boundary conditionsareapplied on all thevariablesat the inflow and theoutflow boundaries.Thefi niteelementmesh consistsof 24 elements alongthestreamwiseand 150elementsinthecross-flow directions.Thegrid points are uniformly spaced along x but are clustered close to the wall in the y direction.A mesh convergence study is carried out for the Re=7000 plane Poiseuille flow and L/2H=1.A more refi ned grid with roughly twice the resolution in each direction leadsto lessthan onepercentdifferencein theresults,thereby reflecting the adequacy of theoriginal fi nite element mesh.

    5 Results:Linear Stability Analysisof the Plane Poiseuille Flow

    5.1 OSAnalysis

    Local analysis via solution to the OS equation(Eq.(11))is carried out for various values of Re andα.At each(Re,α)the eigenvalue with the largest real part is identified.Figure(2)shows the variation of the growth rate of the disturbance associated with the rightmost eigenvalue with Re andα.The fi gure shows the iso-contours for various values of growth rate in the Re?αplane.The contour corresponding to zero growth rateistheneutral curve.Thecritical Re for theonset of instability is the lowest value of the Re on the neutral curve,for any value of α.The critical Re for this flow is found to be 5773,approximately and is marked in Figure(2).The value is in excellent agreement with results from earlier studies[Schmid and Henningson(2001)].

    Theresultsfor theflow at Re=7000 arepresented inmoredetail in Figure(3).This fi gureshowsthevariation of thereal(λr)and imaginary(λi)partsof therightmost eigenvalue with wavenumber(α)at Re=7000.While λrdenotes the growth rate,λiis related to the temporal frequency of the disturbance.We observe that the Re=7000 flow is linearly unstable only to disturbances whose wavenumber lies in a specifi c interval.The maximum growth rate is0.0017,approximately forα=1.00.

    Figure 2:Orr-Sommerfeld analysis of the Plane Poiseuille flow:iso-contours of constant growth rate.The critical Re for the onset of the instability of the flow is Recr=5773 and ismarked with a vertical broken line.

    Figure 3:Orr-Sommerfeld Analysis of the Plane Poiseuille Flow at Re=7000:variation of real and imaginary partof theright-most eigenvaluewith wavenumber,α.

    Figure 4:Global linear stability analysis of the Plane Poiseuille flow for Re=7000 and L/2H=5.10:the v′field for the eigenmodes corresponding to the two rightmost eigenvalues.The upper row corresponds to one cell in the domain(n=1)and has a growth rate,λr=?0.017.The lower row is for n=2 with two cells in thedomain;the growth ratefor this mode isλr=?0.0097.

    5.2 Global Analysis

    In thelocal analysis,the OSequation(Eq.(11))can besolved by usingαasoneof the independent variables.However,the global analysis(Eq.(6))does not directly offerαas an independent variable.The analysis,of course,can be carried out for different streamwise extent(L)of the computational domain.We attempt to understand the relation between L(for the global analysis)andα(for the local analysis).We propose that for a spatially periodic disturbance,its wavenumber is related to thelength of thecomputational domain as:

    where,n is the number of waves along the stream wise direction in the domain.To demonstratethis,weconsider theglobal linear stability analysisfor Re=7000.Fig.(4)shows the eigen modes associated with the two right most eigenvalues for L/2H=5.1.While the first one is associated with one wave(n=1),the other houses two waves(n=2)in the computational domain.Thus,they both represent different wavenumbersand areassociated with their own growth rates,aslisted in the caption of the fi gure.The real and imaginary part of the eigenvalue obtained from the global analysis,and their comparison with the values obtained from the local analysis,arealso shown in Figures(5)and(6).Thedatapointscorresponding to the two eigenmodes lie on the vertical line segment marked in the two figures for L/2H=5.10.The values from the local and global analysis are in excellent agreement.

    Figures(5)and(6)show the variation of the growth rate and the imaginary part of the rightmost eigenvalue from the global analysis for plane Poiseuille flow at Re=7000.The data points from the global analysis are marked by solid circles.Also shown in thesamefigurearetheresultsfrom thelocal analysis.Thevariation is associated with a number of peaks and valleys.We attempt to understand this behavior.It isdemonstrated in Fig.(4)that thecomputational domain may accommodate multiple cells of the disturbance.We fi rst identify in Figs.(5)and(6)the cases that are associated with onecell only(n=1)in thestreamwise extent of the domain.A best fi t to these points is in excellent agreement with the results from the local analysis.These curves are marked as L=2π/α in the figures.These curvescan also beutilized to understand thevariation ofλrandλiwithα.Wenote that thegrowth rateand temporal frequency of an eigenmodeshould depend onα,but must beindependent of thenumber of cellsof the sameαin the computational domain.Usingthisidea,and thedataforλrandλiv/sα fromthelocal analysis,the variation ofλrand λiwith L/2H is generated for multiple cells by observing that L=2πn/α,where n is the number of cells.These curves are shown in Figs.(5)and(6)for various values of n.The outer envelope of these curves is shown in thicker solid line.These curves provide an estimate of the variation of the rightmost eigenvaluewiththelength of thecomputational domain.Excellentagreement is observed between the estimated rightmost eigenvalue and the actual value from global LSA computationsfor n≥2.Wenotethatasthelengthof thecomputational domain isincreased,thedependenceof the growth rateof themost unstableeigenmodeon L becomesweaker.In theasymptotic limit of thedomain being infinitely long,the fastest growing mode comprises of infi nite cells of the n=1 eigenmode whose wavenumber is associated with largestλr.We also note from Fig.(5)that in certain situations it might be diffi cult to track the eigenmodes corresponding to low values ofαfrom the global analysis.Low values ofα correspond to large L/2H.Asseen from Fig.(5),at large L/2H,n=1 modeisnot necessarily theone with rightmost eigenvalue.For example,at L/2H=15 the rightmost eigenvalue corresponds to the mode with five cells(n=5).The modes with four,three,two and onecell have lower growth rate,and in the sameorder.Therefore,tracking the modefor n=1 for thisvalueof L/2H is relatively morechallenging than theones for higher valuesof n.

    To further demonstrate that the growth rate and temporal frequency of an eigenmode must be independent of the number of streamwise cells in the global analysis,weconsider thecasewhereweseek therightmost eigenvalueforα=1.05.For n=1,thiscorrespondsto L/2H=3.0,approximately.Figure(7)showstheeigenmodesfromtheglobal analysisfor variousvaluesof L/2H for thesameα(=1.05).Thevariousvaluesof L arechosen by varying n in therelation L=2 nπ/α.A broken horizontal lineismarked in Figures(5)and(6)to show thereal and imaginary partof therightmosteigenvaluefor variousvaluesof L thatcorrespond toα=1.05.We observe that all these modes are associated with the same eigenvalue.In fact,theeigenmodesarealso of thesamefamily.They areshown in Figure(7)and have

    Figure 5:Variation of the growth rate of the leading eigenvalue with L/2H for the plane Poiseuilleflow for Re=7000:thesolid dotsrepresent thegrowth rateof the mostunstablemodeobtained atvariousvaluesof L/2H fromglobal LSA.Thesolid(red)curveisobtained from thelocal(Orr-Sommerfeld)analysis.It isin excellent agreement with the best fi t to the points corresponding to one streamwise wave(n=1)from global analysis asper the relation L=2π/α.The curve isreplicated for various n to show the predicted variation ofλr with L,for the global analysis using the relation L=n(2π/α),when the domain houses different number of cells.Theouter envelopeof thesecurves,showninthicker solid line,representsthe eigenmode associated with the rightmost eigenvalue for the corresponding length of thecomputational domain.

    the sameflow structure,albeit with different number of cells.

    6 Concluding Remarks

    Hydrodynamic stability of shear flows has been widely investigated in the past usinglocal and global Linear Stability Analysis(LSA).Inthiswork wehavereviewed thetwo approachesand attempted to highlightthedifferencebetween thetwo in the context of their application to parallel shear flows.Resultsfor thelinear stability of plane Poiseuille flow have been presented,using both approaches.The local analysisiscarried out by solving the Orr-Sommerfeld(OS)equation using thespectral collocation method based on Chebyshev polynomials.The analysis has been carried out for various wavenumbers,αof the streamwise periodic disturbance fi eld.The critical Re for the onset of linear instability for plane Poiseuille flow is found to be 5773,which is in good agreement with earlier results[Schmid and Henningson(2001)].The stability of the flow at Re=7000 has been presented in more detail.For example,the variation of the real and imaginary part of the least stable eigenvalue withαhas been presented.Unlike the local analysis which involves solution to an ordinary differential equation,the global analysis involves fi nding solution to a set of partial differential equations.The analysis has been carried out for atwo-dimensional disturbance fi eld that isassumed to bespatially periodic along the stream wise direction.A stabilized finite element method has been presented for carrying out the global LSA in primitive variables.Equal-in-order fi nite element functions are used for representing velocity and pressure.To suppress the numerical oscillationsthat might appear in thecomputations,the SUPGand PSPG,stabilizationsareadded tothe Galerkinfiniteelementformulation.Theformulation hasbeen used to carry out the linear stability analysisfor the plane Poiseuille flow at Re=7000.Computations are carried out for various values of the streamwise length,L,of thecomputational domain.

    Figure 6:Variation of the imaginary part of theleading eigenvalue with L/2H for theplane Poiseuilleflow for Re=7000:thesolid dotsrepresent theimaginary part of the most unstable mode obtained at various values of L/2H from global LSA.The solid(red)curve isobtained from the local(Orr-Sommerfeld)analysis.It isin excellent agreement with thebest fit to thepointscorresponding to onestreamwise wave(n=1)from global analysis as per the relation L=2π/α.The curve is replicated for various n to show the predicted variation ofλi with L,for the global analysisusingtherelation L=n(2π/α),when thedomainhousesdifferent number of cells.The curves shown in thicker solid line representsλi associated with the rightmost eigenvaluefor thecorresponding length of thecomputational domain.

    Figure 7:Eigenmodes of v′corresponding to the leading eigenvalue for various lengths of the domain obtained with the global LSA for the plane Poiseuille flow for Re=7000 for disturbancesthat areperiodic in thestreamwise direction.

    Unlike the local analysis, the global analysis can handle non-periodic disturbances and is applicable to non-parallel flows as well. However, the global analysis is signifi cantly more expensive than the local a nalysis. For the parallel flow and with spatially periodic disturbances the present work brings out a very interesting relationship between the wave number of the disturbance and the streamwise extent of the domain in the global analysis. When the eigenmode contains only once cell, the results from the local and global analysis are virtually identical; the wavenumber and streamwise extent of the domain are related as α = 2 π/L. However, when the eigenmode consists of n cells along the streamwise length of the domain the relationship is: α = (2 πn)/L. For a very large value of L, the global analysis results in an eigenmode with a large number of cells of the eigenmode whose α corresponds to the mode with largest growth rate. If one would like to use the global analysis to create the growth rate v/s α curve for the rightmost eigenvalue, as is done in the local analysis for a specific value of Re, the procedure is complicated by the number of cells that are housed in the domain. In the scenario when L is relatively large, to track an eigenmode for low α, the eigenmode associated with one cell might not be the most unstable mode. Therefore, one needs to examine the eigenmodes for the first few eigenvalues that are arranged in the descending order of their real part.The one that corresponds to α = 2 π/L is the eigenmode which consists of only one cell along the streamwise direction.

    Acknowledgement:The help from Mr.Hardik Parwana in carrying out some of thecomputationsisgratefully acknowledged.

    Anderson,E.;Bai,Z.;Bischof,C.;Blackford,S.;Demmel,J.;Dongarra,J.;Du Croz,J.;Greenbaum,A.;Hammarling,S.;McKenney,A.;Sorensen,D.(1999):LAPACKUsers’Guide.Society for Industrial and Applied Mathematics,Philadelphia,PA,third edition.

    Boiko,A.V.;Dovgal,A.V.;Grek,G.R.;Kozlov,V.V.(2012): Physics of Transitional Shear Flows.Springer-Verlag.

    Brooks,A.;Hughes,T.(1982):Streamlineupwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations.Computer Methods in Applied Mechanics and Engineering,vol.32,pp.199–259.

    Chandrasekhar,S.(1981): Hydrodynamic and hydromagnetic stability.Dover.

    Chomaz,J.-M.(2005): Global instabilities in spatially developing flows:nonnormality and nonlinearity.Annual Review of Fluid Mech.,vol.37,pp.357–392.

    Chomaz,J.M.;Huerre,P.;Redekopp,L.G.(1988):Bifurcations to local and global modes in spatially developing flows.Physical Review Letters,vol.60,pp.25–28.

    Davey,A.;Drazin,P.(1969):Thestability of poiseuilleflow in apipe.J.Fluid Mech.,vol.36,pp.209–218.

    Garg, V. K.; Rouleau, W. T. (1972): Linear spatial stability of pipe poiseuille flow. J. Fluid Mech., vol. 54, pp. 113–127.

    Gaster,M.(1962): A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic stability.J.Fluid Mech.,vol.14,pp.222–224.

    Huerre,P.(2000): Open shear flow instabilities.In Batchelor,G.;Moffatt,H.;Worster,M.(Eds):Perspectivesin Fluid Dynamics,pp.159–229.Cambridge.

    Huerre,P.;Monkewitz,P.(1990): Local and global instabilities in spatially developing flows.Annual Review of Fluid Mech.,vol.22,pp.473–537.

    Hughes,T.;Brooks,A.(1979): A multi-dimensional upwind scheme with no crosswind diffusion.Journal of Applied Mechanics,vol.34,pp.19–35.

    Jackson,C.(1987):A fi niteelement study of theonset of vortex shedding in flow past variously shaped bodies.J.Fluid Mech.,vol.182,pp.23.

    Mittal,S.(2000): On the performance of high aspect-ratio elements for incompressible flows.Computer Methods in Applied Mechanics and Engineering,vol.188,pp.269–287.

    Mittal,S.(2004):Three-dimensional instabilitiesin flow past a rotating cylinder.Journal of Applied Mechanics,vol.71,pp.89–95.

    Mittal,S.;Kumar,B.(2003): Flow past a rotating cylinder.Journal of Fluid Mechanics,vol.476,pp.303–334.

    Monkewitz,P.A.(1988): The absolute and convective nature of instability in two-dimensional wakes at low Reynolds numbers.Physics of Fluids,vol.31,pp.999–1006.

    Morzynski, M.; Afanasiev, K.; Thiele, F. (1999): Solution of the eigenvalue problems resulting from global non-parallel flow s ta bility analysis.Comput. Meth-ods Appl. Mech. Eng., vol. 169, pp. 161.

    Morzynski,M.;Thiele,F.(1991):Numerical stability analysis of aflow about a cylinder.Z.Angew.Math.Mech.,vol.71,pp.T424.

    Navrose;Meena,J.;Mittal,S.(2015): Three-dimensional flow past a rotating cylinder.J.Fluid Mech.,vol.766,pp.28–53.

    Orr,W.M.(1907):The stability or instability of the steady motions of a perfect liquid and of a viscousliquid.Proc.R.Irish Acad.Sec.A,vol.27,pp.9–138.

    Orszag,S.A.(1971):Accurate solution of the orr-sommerfeld stability equation.J.Fluid Mech.,vol.50,pp.689–703.

    Pierrehumbert,R.T.(1985): Local and global baroclinic instability of zonally varying flow.Journal of the Atmospheric Sciences,vol.41,pp.2141–2162.

    Saraph,V.;Vasudeva,B.R.;Panikar,J.(1979):Stability of parallel flowsby the fi nite element method.Int.J.Numer.Methods Engineering,vol.17,pp.853–870.

    Schmid,P.J.;Henningson,D.S.(2001): Stability and Transition in Shear Flows.Springer-Verlag.

    Sommerfeld,A.(1908):Ein Beitrag zur hydrodynamischen Erkl?erung der turbulenten Flüessigkeitsbewegungen. Proc.Fourth Internat.Cong.Math.,Rome,vol.III,pp.116–128.

    Stewart,G.(1975):Methods of simultaneous iteration for calculating eigenvectors of matrices.In Miller,J.(Ed):Topics in Numerical Analysis II,pp.169–185.Academic Press:New York.

    Swaminathan,G.;Sahu,K.;Sameen,A.;Govindrajan,R.(2011): Global instabilities in diverging channel flows.Theor.Comput.Fluid Dyn.,vol.25,pp.53–64.

    Tezduyar,T.;Mittal,S.;Ray,S.;Shih,R.(1992):Incompressibleflow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements.Comput.Meth.Appl.Mech.Engrg,vol.95,pp.221.

    Theofilis,V.(2011):Global linear instability.Annual Review of Fluid Mech.,vol.43,pp.319–352.

    Verma,A.;Mittal,S.(2011): A new unstable mode in the wake of a circular cylinder.Phys.Fluids.,vol.23,pp.121701.

    Yang,X.;Zebib,A.(1989): Absolute and convective instability of a cylinder wake.Physicsof Fluids A,vol.1,pp.689–696.

    国产精品一区二区免费欧美| 又黄又粗又硬又大视频| 亚洲熟妇熟女久久| 在线观看www视频免费| 97超级碰碰碰精品色视频在线观看| av天堂在线播放| 人人澡人人妻人| 无人区码免费观看不卡| 成人精品一区二区免费| 成在线人永久免费视频| 国产欧美日韩一区二区三区在线| 国产成人欧美在线观看| 88av欧美| 动漫黄色视频在线观看| 中文字幕最新亚洲高清| 亚洲av第一区精品v没综合| 在线观看免费视频日本深夜| 精品欧美一区二区三区在线| 一个人免费在线观看的高清视频| 一区二区三区高清视频在线| 久久青草综合色| 极品人妻少妇av视频| 免费在线观看完整版高清| 亚洲人成网站在线播放欧美日韩| www.熟女人妻精品国产| 亚洲七黄色美女视频| 亚洲av成人不卡在线观看播放网| 亚洲国产日韩欧美精品在线观看 | 欧美老熟妇乱子伦牲交| 成熟少妇高潮喷水视频| 免费高清在线观看日韩| 一区二区三区激情视频| 国产精品亚洲av一区麻豆| 亚洲av电影在线进入| 在线观看www视频免费| 最新在线观看一区二区三区| 国产三级黄色录像| 日本免费一区二区三区高清不卡 | 亚洲国产精品久久男人天堂| 国产三级黄色录像| 老熟妇仑乱视频hdxx| 国产精品 欧美亚洲| 色播亚洲综合网| 亚洲国产精品sss在线观看| 欧美性长视频在线观看| x7x7x7水蜜桃| 国产精品久久久久久人妻精品电影| 国产真人三级小视频在线观看| 亚洲人成网站在线播放欧美日韩| 久久人妻福利社区极品人妻图片| 欧美在线一区亚洲| 黑人巨大精品欧美一区二区mp4| 久久精品国产99精品国产亚洲性色 | 久久精品人人爽人人爽视色| 变态另类成人亚洲欧美熟女 | 91在线观看av| 在线观看免费午夜福利视频| 欧美黑人欧美精品刺激| 亚洲一区二区三区色噜噜| 亚洲国产高清在线一区二区三 | 变态另类成人亚洲欧美熟女 | 亚洲成人久久性| 女警被强在线播放| 黑人巨大精品欧美一区二区蜜桃| 多毛熟女@视频| 久久亚洲真实| avwww免费| 亚洲自偷自拍图片 自拍| 十八禁人妻一区二区| 每晚都被弄得嗷嗷叫到高潮| 国产精品电影一区二区三区| 黑人巨大精品欧美一区二区mp4| 国产又爽黄色视频| 久久久久久久精品吃奶| 亚洲第一欧美日韩一区二区三区| 欧美乱码精品一区二区三区| 欧美日本视频| 99久久久亚洲精品蜜臀av| 国产91精品成人一区二区三区| 亚洲精华国产精华精| 亚洲第一欧美日韩一区二区三区| 久久精品亚洲熟妇少妇任你| 99re在线观看精品视频| a级毛片在线看网站| 女人被狂操c到高潮| 看免费av毛片| 妹子高潮喷水视频| 亚洲精品国产精品久久久不卡| 一区在线观看完整版| 久久人人爽av亚洲精品天堂| 亚洲欧美激情在线| 午夜福利,免费看| a在线观看视频网站| 色尼玛亚洲综合影院| 97人妻天天添夜夜摸| 男女下面进入的视频免费午夜 | 国产精品 国内视频| 亚洲av熟女| 婷婷丁香在线五月| 麻豆成人av在线观看| 99re在线观看精品视频| 大香蕉久久成人网| 91大片在线观看| 在线观看66精品国产| 男女做爰动态图高潮gif福利片 | av片东京热男人的天堂| 成人亚洲精品av一区二区| 伦理电影免费视频| 久久热在线av| 国产99久久九九免费精品| 午夜日韩欧美国产| 色综合婷婷激情| 久久久久国产精品人妻aⅴ院| 免费在线观看影片大全网站| 欧美日本亚洲视频在线播放| 精品国产美女av久久久久小说| 十八禁网站免费在线| 亚洲aⅴ乱码一区二区在线播放 | 亚洲伊人色综图| 国产蜜桃级精品一区二区三区| 国产欧美日韩精品亚洲av| 精品国产乱码久久久久久男人| 午夜福利在线观看吧| 欧美色欧美亚洲另类二区 | 国产一区二区在线av高清观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲av片天天在线观看| 黄色成人免费大全| 99国产极品粉嫩在线观看| 黄色女人牲交| 亚洲精品美女久久久久99蜜臀| 亚洲精品国产精品久久久不卡| 国产欧美日韩精品亚洲av| 欧美日韩亚洲综合一区二区三区_| 嫁个100分男人电影在线观看| 中文字幕人妻熟女乱码| 亚洲一区高清亚洲精品| 桃色一区二区三区在线观看| 久久久久久亚洲精品国产蜜桃av| 18美女黄网站色大片免费观看| 一夜夜www| 人人妻人人澡人人看| 午夜成年电影在线免费观看| 国产亚洲精品一区二区www| 999精品在线视频| 波多野结衣高清无吗| 国产主播在线观看一区二区| 99国产综合亚洲精品| 一级作爱视频免费观看| 亚洲欧美精品综合久久99| av电影中文网址| 亚洲成人精品中文字幕电影| 午夜亚洲福利在线播放| 91大片在线观看| 久久婷婷成人综合色麻豆| 欧美日本中文国产一区发布| 三级毛片av免费| 亚洲一区二区三区不卡视频| 男女下面进入的视频免费午夜 | 一本久久中文字幕| 精品高清国产在线一区| 国产男靠女视频免费网站| 国产私拍福利视频在线观看| 久久人妻福利社区极品人妻图片| 中国美女看黄片| 男人操女人黄网站| 午夜福利18| 丰满的人妻完整版| 久久久水蜜桃国产精品网| 国产精品爽爽va在线观看网站 | 国产乱人伦免费视频| 不卡一级毛片| 欧美日本亚洲视频在线播放| 婷婷六月久久综合丁香| 欧美激情极品国产一区二区三区| 好男人在线观看高清免费视频 | 啦啦啦观看免费观看视频高清 | 免费观看人在逋| 一级片免费观看大全| 欧美成狂野欧美在线观看| 99精品久久久久人妻精品| 正在播放国产对白刺激| 黑人操中国人逼视频| 丝袜在线中文字幕| 亚洲男人天堂网一区| cao死你这个sao货| e午夜精品久久久久久久| 可以在线观看毛片的网站| 日韩欧美在线二视频| 久久精品亚洲熟妇少妇任你| 人人妻人人澡欧美一区二区 | 久久影院123| 欧美 亚洲 国产 日韩一| 亚洲 国产 在线| 欧美午夜高清在线| 日韩欧美免费精品| 操出白浆在线播放| 国产精品野战在线观看| 亚洲中文字幕一区二区三区有码在线看 | 色婷婷久久久亚洲欧美| 岛国视频午夜一区免费看| 很黄的视频免费| 国产精品乱码一区二三区的特点 | 在线播放国产精品三级| 日本五十路高清| 男女下面插进去视频免费观看| www.熟女人妻精品国产| 人人妻人人澡欧美一区二区 | 国产高清视频在线播放一区| 国产伦人伦偷精品视频| svipshipincom国产片| 老司机靠b影院| av在线天堂中文字幕| 午夜成年电影在线免费观看| 日本免费一区二区三区高清不卡 | 亚洲中文字幕日韩| 黄频高清免费视频| 黄片播放在线免费| 美女午夜性视频免费| 国产亚洲av嫩草精品影院| 日日夜夜操网爽| 国产亚洲精品第一综合不卡| 中国美女看黄片| 亚洲色图综合在线观看| 亚洲片人在线观看| 国产麻豆成人av免费视频| 女性被躁到高潮视频| 亚洲,欧美精品.| 亚洲免费av在线视频| 在线观看66精品国产| 久久久久久国产a免费观看| 欧美成人免费av一区二区三区| 激情视频va一区二区三区| 国产一区二区三区在线臀色熟女| 日本三级黄在线观看| 丝袜在线中文字幕| a级毛片在线看网站| 日日爽夜夜爽网站| 男女做爰动态图高潮gif福利片 | 国产99白浆流出| 日韩视频一区二区在线观看| 正在播放国产对白刺激| 午夜福利18| 一区二区三区精品91| 欧美乱码精品一区二区三区| 国产精品二区激情视频| 人妻久久中文字幕网| 在线观看www视频免费| 久久中文字幕一级| 国产精品电影一区二区三区| 午夜福利一区二区在线看| 国产精品美女特级片免费视频播放器 | 国产av在哪里看| 久久精品成人免费网站| 日韩国内少妇激情av| 1024香蕉在线观看| 婷婷丁香在线五月| 日韩欧美国产一区二区入口| 国产一区二区激情短视频| 波多野结衣一区麻豆| 亚洲第一电影网av| 精品少妇一区二区三区视频日本电影| 久久婷婷人人爽人人干人人爱 | 男男h啪啪无遮挡| 日韩中文字幕欧美一区二区| av欧美777| 亚洲性夜色夜夜综合| 别揉我奶头~嗯~啊~动态视频| 欧美日韩亚洲国产一区二区在线观看| www日本在线高清视频| www.自偷自拍.com| 嫩草影院精品99| 亚洲人成电影免费在线| 国产成人av激情在线播放| 亚洲国产高清在线一区二区三 | 人人妻,人人澡人人爽秒播| 在线天堂中文资源库| 国产成人影院久久av| 中文字幕精品免费在线观看视频| 亚洲熟妇熟女久久| 午夜久久久久精精品| 日本五十路高清| 久久精品成人免费网站| 欧美国产精品va在线观看不卡| 亚洲久久久国产精品| 中出人妻视频一区二区| 久久国产乱子伦精品免费另类| 久久九九热精品免费| 咕卡用的链子| 亚洲精品国产精品久久久不卡| 多毛熟女@视频| 女人高潮潮喷娇喘18禁视频| 别揉我奶头~嗯~啊~动态视频| 曰老女人黄片| 欧美激情高清一区二区三区| 精品久久久久久久人妻蜜臀av | 精品无人区乱码1区二区| 亚洲av第一区精品v没综合| 国产精品久久电影中文字幕| 色在线成人网| 99久久精品国产亚洲精品| 日韩中文字幕欧美一区二区| 亚洲精华国产精华精| 久久精品国产综合久久久| 天堂√8在线中文| 高清在线国产一区| 亚洲片人在线观看| 欧美另类亚洲清纯唯美| 在线视频色国产色| 日韩一卡2卡3卡4卡2021年| 一区二区三区激情视频| 黄片大片在线免费观看| 在线观看66精品国产| 少妇裸体淫交视频免费看高清 | 中文字幕人妻熟女乱码| 国产一区二区三区视频了| 亚洲国产欧美一区二区综合| 91在线观看av| or卡值多少钱| 男男h啪啪无遮挡| 亚洲久久久国产精品| 日本三级黄在线观看| 无遮挡黄片免费观看| 日本一区二区免费在线视频| 亚洲三区欧美一区| www.www免费av| 欧美激情久久久久久爽电影 | 免费无遮挡裸体视频| 香蕉丝袜av| 亚洲av成人一区二区三| 亚洲无线在线观看| 麻豆一二三区av精品| 天堂√8在线中文| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美日韩无卡精品| aaaaa片日本免费| 欧美日韩黄片免| 久久天躁狠狠躁夜夜2o2o| 日韩国内少妇激情av| 亚洲狠狠婷婷综合久久图片| 国产亚洲精品av在线| 在线天堂中文资源库| 久久国产精品人妻蜜桃| 国产91精品成人一区二区三区| 校园春色视频在线观看| 久久狼人影院| 成人三级做爰电影| 在线观看免费视频网站a站| 久久草成人影院| 韩国精品一区二区三区| 99在线视频只有这里精品首页| 亚洲欧美日韩另类电影网站| 母亲3免费完整高清在线观看| 老司机深夜福利视频在线观看| 女性生殖器流出的白浆| 免费一级毛片在线播放高清视频 | 亚洲av片天天在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 精品一区二区三区四区五区乱码| 91字幕亚洲| 两性夫妻黄色片| 在线观看免费视频日本深夜| 黄片大片在线免费观看| 一二三四在线观看免费中文在| 亚洲av熟女| 欧美日韩瑟瑟在线播放| 国产成人精品无人区| 老司机深夜福利视频在线观看| 天天添夜夜摸| 久久国产亚洲av麻豆专区| 日本精品一区二区三区蜜桃| 制服人妻中文乱码| 国产一卡二卡三卡精品| 久久午夜综合久久蜜桃| 欧美黄色片欧美黄色片| 国产精品一区二区免费欧美| 亚洲久久久国产精品| 九色国产91popny在线| 精品国产美女av久久久久小说| 国产成人啪精品午夜网站| 亚洲国产看品久久| 欧美中文日本在线观看视频| 在线视频色国产色| 成人国语在线视频| 搡老岳熟女国产| 国产精品亚洲av一区麻豆| 人人妻,人人澡人人爽秒播| aaaaa片日本免费| 日韩欧美国产一区二区入口| 99久久精品国产亚洲精品| 神马国产精品三级电影在线观看 | 最近最新免费中文字幕在线| 麻豆成人av在线观看| 亚洲精华国产精华精| 欧美激情久久久久久爽电影 | 久久久久久免费高清国产稀缺| 丝袜人妻中文字幕| 日韩中文字幕欧美一区二区| 国产熟女午夜一区二区三区| 亚洲国产高清在线一区二区三 | 真人一进一出gif抽搐免费| 一区二区三区激情视频| 一区二区三区精品91| 亚洲欧美精品综合一区二区三区| 免费搜索国产男女视频| 黑人巨大精品欧美一区二区mp4| 午夜福利在线观看吧| 变态另类成人亚洲欧美熟女 | 亚洲电影在线观看av| 亚洲av日韩精品久久久久久密| 黄色毛片三级朝国网站| 亚洲无线在线观看| 欧美乱码精品一区二区三区| 高清黄色对白视频在线免费看| 老司机深夜福利视频在线观看| 国产av精品麻豆| 91在线观看av| 精品免费久久久久久久清纯| 国产精品98久久久久久宅男小说| 一级片免费观看大全| 亚洲精品一卡2卡三卡4卡5卡| 最近最新中文字幕大全免费视频| 国产精品一区二区精品视频观看| 18美女黄网站色大片免费观看| 黄网站色视频无遮挡免费观看| 午夜福利视频1000在线观看 | 精品熟女少妇八av免费久了| 12—13女人毛片做爰片一| 一边摸一边抽搐一进一小说| 亚洲一区中文字幕在线| 俄罗斯特黄特色一大片| 中文字幕久久专区| 少妇被粗大的猛进出69影院| 女人被狂操c到高潮| 在线观看www视频免费| 制服丝袜大香蕉在线| 中文字幕久久专区| 欧美黄色片欧美黄色片| 日本在线视频免费播放| 亚洲精品国产区一区二| 亚洲精品久久国产高清桃花| 色综合站精品国产| 成在线人永久免费视频| √禁漫天堂资源中文www| 少妇粗大呻吟视频| 电影成人av| 国产亚洲精品综合一区在线观看 | 久久国产精品人妻蜜桃| 日韩成人在线观看一区二区三区| 后天国语完整版免费观看| 一级a爱视频在线免费观看| or卡值多少钱| 国产成人av激情在线播放| 日本 av在线| 女警被强在线播放| 欧美日韩精品网址| 性色av乱码一区二区三区2| 国产成人av激情在线播放| 搡老岳熟女国产| 一区在线观看完整版| 国产乱人伦免费视频| 午夜福利免费观看在线| 高潮久久久久久久久久久不卡| 无遮挡黄片免费观看| 欧美成狂野欧美在线观看| 手机成人av网站| 久久人妻熟女aⅴ| 精品久久久久久久人妻蜜臀av | 免费女性裸体啪啪无遮挡网站| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品国产区一区二| 99国产精品一区二区蜜桃av| 国产精品电影一区二区三区| 久久精品aⅴ一区二区三区四区| 免费不卡黄色视频| 动漫黄色视频在线观看| 亚洲黑人精品在线| 久久精品亚洲精品国产色婷小说| 国产午夜精品久久久久久| 亚洲天堂国产精品一区在线| av在线播放免费不卡| 首页视频小说图片口味搜索| 乱人伦中国视频| 免费在线观看黄色视频的| 亚洲电影在线观看av| 午夜福利在线观看吧| 亚洲自偷自拍图片 自拍| 90打野战视频偷拍视频| 怎么达到女性高潮| 久久婷婷人人爽人人干人人爱 | 999久久久国产精品视频| 嫁个100分男人电影在线观看| 精品少妇一区二区三区视频日本电影| 亚洲五月婷婷丁香| 久久久久亚洲av毛片大全| 色av中文字幕| 1024香蕉在线观看| 亚洲中文日韩欧美视频| 日本 欧美在线| 久久婷婷成人综合色麻豆| 97超级碰碰碰精品色视频在线观看| 亚洲第一av免费看| 黄色丝袜av网址大全| 深夜精品福利| 波多野结衣巨乳人妻| 久久中文字幕人妻熟女| 亚洲一区中文字幕在线| 在线观看免费日韩欧美大片| 亚洲成人久久性| 亚洲成a人片在线一区二区| av欧美777| 国内久久婷婷六月综合欲色啪| 日韩欧美三级三区| 国产亚洲精品综合一区在线观看 | 变态另类丝袜制服| 久久精品亚洲熟妇少妇任你| 久久性视频一级片| 午夜精品国产一区二区电影| 亚洲人成电影免费在线| 成人国产一区最新在线观看| 免费在线观看亚洲国产| 嫩草影视91久久| 99久久精品国产亚洲精品| 亚洲第一av免费看| 丰满人妻熟妇乱又伦精品不卡| 在线免费观看的www视频| 久久青草综合色| 90打野战视频偷拍视频| 一边摸一边抽搐一进一出视频| 一本久久中文字幕| 男人舔女人的私密视频| 免费在线观看亚洲国产| 在线观看免费视频网站a站| 久久人人爽av亚洲精品天堂| 女性生殖器流出的白浆| 日韩大尺度精品在线看网址 | 欧美 亚洲 国产 日韩一| 极品教师在线免费播放| 一边摸一边做爽爽视频免费| 无人区码免费观看不卡| 日韩欧美一区视频在线观看| 国产1区2区3区精品| 国产成人精品无人区| 动漫黄色视频在线观看| 性欧美人与动物交配| 欧美黄色片欧美黄色片| 国产精品亚洲美女久久久| 给我免费播放毛片高清在线观看| 午夜免费成人在线视频| 午夜久久久久精精品| 久久中文字幕人妻熟女| 亚洲中文字幕日韩| 亚洲免费av在线视频| 99精品欧美一区二区三区四区| 国产精品亚洲美女久久久| 久久久久国内视频| av天堂在线播放| 狂野欧美激情性xxxx| 国产野战对白在线观看| 日韩一卡2卡3卡4卡2021年| 日韩精品青青久久久久久| 国产色视频综合| 一区二区三区激情视频| a级毛片在线看网站| 久久国产精品影院| cao死你这个sao货| 变态另类成人亚洲欧美熟女 | 国产精品乱码一区二三区的特点 | 亚洲一区二区三区不卡视频| 免费女性裸体啪啪无遮挡网站| 香蕉久久夜色| 中文字幕另类日韩欧美亚洲嫩草| 久久精品国产综合久久久| 国产精品自产拍在线观看55亚洲| 99国产精品99久久久久| 色综合站精品国产| 精品国产国语对白av| 精品久久久久久久毛片微露脸| av电影中文网址| 满18在线观看网站| 国产精品99久久99久久久不卡| 一级,二级,三级黄色视频| 亚洲五月色婷婷综合| 中国美女看黄片| 激情视频va一区二区三区| 香蕉国产在线看| 亚洲精品中文字幕在线视频| 国产极品粉嫩免费观看在线| 丝袜美足系列| 亚洲中文av在线| 国产精品免费视频内射| 97超级碰碰碰精品色视频在线观看| 亚洲男人天堂网一区| 欧美性长视频在线观看| av福利片在线| 在线永久观看黄色视频| 精品久久久精品久久久| 如日韩欧美国产精品一区二区三区| 啦啦啦免费观看视频1| 高潮久久久久久久久久久不卡| 免费看美女性在线毛片视频| 国产精品亚洲一级av第二区| 首页视频小说图片口味搜索| 两个人免费观看高清视频| 亚洲天堂国产精品一区在线| 亚洲av成人av| 国产伦一二天堂av在线观看| 好男人在线观看高清免费视频 | 一个人观看的视频www高清免费观看 | 午夜a级毛片| 亚洲av片天天在线观看| 大香蕉久久成人网| 美女午夜性视频免费| 免费一级毛片在线播放高清视频 | ponron亚洲|